Extraction of Plant Ecological Indicators and Use of Environmental Simulation Methods Based on 3D Plant Growth Models: A Case Study of Wuhan’s Daijia Lake Park †
Abstract
1. Introduction
1.1. Applicability of 3D Plant Models in Ecological Analysis
1.2. Problem Statement
1.3. Project Goals
2. Materials and Methods
2.1. Data Acquisition and Processing
2.1.1. Data Acquisition
2.1.2. Site Segmentation
2.2. Plant Growth Model Generation
2.2.1. Geometric Features Acquisition and Prediction of Different Tree Species
2.2.2. Individual Plant Model Generation
2.2.3. Environmental Factors Simulation
2.3. Accuracy Verification
2.3.1. Field Sampling
2.3.2. Verification Process
2.4. Ecological Indicators Extraction and Analysis
2.4.1. Model Data Processing
2.4.2. LAI Calculation
2.4.3. LAD Calculation
2.4.4. Aboveground Biomass and Aboveground Carbon Storage Calculation
2.5. ENVI-met Simulation
2.5.1. ENVI-met Plant Modeling
2.5.2. ENVI-met Site Modeling
2.5.3. ENVI-met Parameter Settings
3. Results
3.1. Plant Models at Different Growth Stages
3.2. Plant Ecological Indicators Calculation Results
3.2.1. LAI Calculation Results
3.2.2. LAD Calculation Results
3.2.3. Aboveground Biomass and Aboveground Carbon Storage Results
3.3. ENVI-met Simulation Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erlwein, S.; Zölch, T.; Pauleit, S. Regulating the microclimate with urban green in densifiying cities: Joint assessment on two scales. Build. Environ. 2021, 205, 108233. [Google Scholar] [CrossRef]
- Buyadi, S.N.A.; Mohd, W.M.N.W.; Misni, A. Vegetation’s role on modifying microclimate of urban resident. Procedia-Soc. Behav. Sci. 2015, 202, 400–407. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Q.; Li, X. Promoting sustainable carbon sequestration of plants in urban greenspace by planting design: A case study in parks of Beijing. Urban For. Urban Green. 2021, 64, 127291. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Arnold, E.; Haase, D. The carbon footprint of urban green space—A life cycle approach. Landsc. Urban Plan. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- McPherson, E.G.; Peper, P.J. Urban tree growth modeling. J. Arboric. Urban For. 2012, 38, 175–183. [Google Scholar] [CrossRef]
- Rötzer, T.; Rahman, M.A.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Sci. Total Environ. 2019, 676, 651–664. [Google Scholar] [CrossRef]
- Rötzer, T.; Moser-Reischl, A.; Rahman, M.A.; Grote, R.; Pauleit, S.; Pretzsch, H. Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives. In Progress in Botany; Cánovas, F.M., Lüttge, U., Risueño, M.C., Pretzsch, H., Eds.; Springer: Cham, Switzerland, 2020; Volume 82, pp. 405–464. [Google Scholar]
- Ervin, S.M. Digital landscape modeling and visualization: A research agenda. Landsc. Urban Plan. 2001, 54, 49–62. [Google Scholar] [CrossRef]
- Muhar, A. Three-dimensional modelling and visualisation of vegetation for landscape simulation. Landsc. Urban Plan. 2001, 54, 5–17. [Google Scholar] [CrossRef]
- Rodriguez, A.; Lecigne, B.; Wood, S.; Carmeliet, J.; Kubilay, A.; Derome, D. Optimal representation of tree foliage for local urban climate modeling. Sustain. Cities Soc. 2024, 115, 105857. [Google Scholar] [CrossRef]
- Yazdi, H.; Moser-Reischl, A.; Rötzer, T.; Petzold, F.; Ludwig, F. Machine learning-based prediction of tree crown development in competitive urban environments. Urban For. Urban Green. 2024, 101, 128527. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; Van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef]
- Franceschi, E.; Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Crown shapes of urban trees—Their dependences on tree species, tree age and local environment, and effects on ecosystem services. Forests 2022, 13, 748. [Google Scholar] [CrossRef]
- Kimm, H.; Ryu, Y. Seasonal variations in photosynthetic parameters and leaf area index in an urban park. Urban For. Urban Green. 2015, 14, 1059–1067. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Zhang, B.; Xuan, J.; Gong, Y.; Tan, C.; Huang, H.; Du, H. Estimating 3D green volume and aboveground biomass of urban forest trees by UAV-lidar. Remote Sens. 2022, 14, 5211. [Google Scholar] [CrossRef]
- Bréda, N.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Lyu, R.; Pang, J.; Tian, X.; Zhao, W.; Zhang, J. How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data. Sustain. Cities Soc. 2023, 88, 104287. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, L.; Andreas, L. Extraction method of key ecological index for trees based on point cloud data. Landsc. Des. 2024, 1, 4–8. [Google Scholar]
- Han, D.; Cai, H.; Zhang, L.; Wen, Y. Multi-sensor high spatial resolution leaf area index estimation by combining surface reflectance with vegetation indices for highly heterogeneous regions: A case study of the Chishui River Basin in southwest China. Ecol. Inform. 2024, 80, 102489. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, J.; Liu, Q.; Qu, Y.; Huete, A.R.; Xu, B.; Yin, G.; Zhao, J. An optimal sampling design for observing and validating long-term leaf area index with temporal variations in spatial heterogeneities. Remote Sens. 2015, 7, 1300–1319. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Lei, K.; Yang, T.; Zhang, J.; Cui, Z.; Fu, R.; Yu, H.; Zhao, B.; Wang, X. A novel forest dynamic growth visualization method by incorporating spatial structural parameters based on convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 3471–3488. [Google Scholar] [CrossRef]
- Yazdi, H.; Shu, Q.; Chen, X.; Rötzer, T.; Ludwig, F. GroTree–A novel toolbox for simulating and managing urban tree canopy growth. J. Digit. Landsc. Archit. 2024, 9, 815–825. [Google Scholar]
- Ackerman, A.; Crespo, A.; Auwaerter, J.; Foulds, E. Using tree modeling applications and game design software to simulate tree growth, mortality, and community interaction. J. Digit. Landsc. Archit. 2021, 6, 163–170. [Google Scholar]
- Plant Database. Available online: https://help.rhinolands.com/interface-overview/lands-design-interface/toolbars/tools/plant-database/ (accessed on 13 July 2025).
- Free Resources for Architectural Projects and Visualizations. Available online: https://blog.enscape3d.com/free-resources-for-architectural-projects (accessed on 13 July 2025).
- Herwig, A.; Paar, P. Game engines: Tools for landscape visualization and planning. In Trends in GIS and Virtualization in Environmental Planning and Design, 1st ed.; Buhmann, E., Nothelfer, U., Pietsch, M., Eds.; Wichmann: Karlsruhe, Germany, 2002; pp. 162–171. [Google Scholar]
- Yu, H.; Wu, M.M.; He, H.S. Developing platform of 3-D visualization of forest landscape. Environ. Model. Softw. 2022, 157, 105524. [Google Scholar] [CrossRef]
- Song, Y.; Jing, Y. Application prospect of CAD-SketchUp-PS integrated software technology in landscape planning and design. Comput. Aided Des. Appl. 2021, 18, 153–163. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Y.; Chang, M.; Zeng, F.; Wu, Y.; Wang, L.L.; Niu, J.; Gao, N.; Gao, N. Numerical simulation methods of tree effects on microclimate: A review. Renew. Sustain. Energy Rev. 2024, 205, 114852. [Google Scholar] [CrossRef]
- Zhang, M.; Bae, W.; Kim, J. The effects of the layouts of vegetation and wind flow in an apartment housing complex to mitigate outdoor microclimate air temperature. Sustainability 2019, 11, 3081. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, H.; Zhao, L.; Qu, K.; Liu, W.; Zhuang, Z.; Ye, H. Microclimate optimization of school campus landscape based on comfort assessment. Buildings 2022, 12, 1375. [Google Scholar] [CrossRef]
- Mirza, S.; Niwalkar, A.; Anjum, S.; Bherwani, H.; Singh, A.; Kumar, R. Studying impact of infrastructure development on urban microclimate: Integrated multiparameter analysis using OpenFOAM. Energy Nexus 2022, 6, 100060. [Google Scholar] [CrossRef]
- Vurro, G.; Carlucci, S. Contrasting the features and functionalities of urban microclimate simulation tools. Energ. Build. 2024, 311, 114042. [Google Scholar] [CrossRef]
- Song, P.; Kim, G.; Mayer, A.; He, R.; Tian, G. Assessing the ecosystem services of various types of urban green spaces based on i-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef]
- Simon, H.; Sinsel, T.; Bruse, M. Introduction of fractal-based tree digitalization and accurate in-canopy radiation transfer modelling to the microclimate model ENVI-met. Forests 2020, 11, 869. [Google Scholar] [CrossRef]
- Leading 3D Modelling Software for Urban Cooling and Climate Adaptive Planning. Available online: http://www.envi-met.com (accessed on 13 July 2025).
- Yao, Y.; Wang, Y.; Ni, Z.; Chen, S.; Xia, B. Improving air quality in Guangzhou with urban green infrastructure planning: An i-Tree Eco model study. J. Clean. Prod. 2022, 369, 133372. [Google Scholar] [CrossRef]
- Sodoudi, S.; Zhang, H.; Chi, X.; Müller, F.; Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Lovett, A.; Appleton, K.; Warren-Kretzschmar, B.; Von Haaren, C. Using 3D visualization methods in landscape planning: An evaluation of options and practical issues. Landsc. Urban Plan. 2015, 142, 85–94. [Google Scholar] [CrossRef]
- Li, C.; Deussen, O.; Song, Y.Z.; Willis, P.; Hall, P. Modeling and generating moving trees from video. ACM Trans. Graph. 2011, 30, 1–12. [Google Scholar] [CrossRef]
- Neubert, B.; Pirk, S.; Deussen, O.; Dachsbacher, C. Improved model- and view-dependent pruning of large botanical scenes. Comput. Graph. Forum 2011, 30, 1708–1718. [Google Scholar] [CrossRef]
- Lluch, J.; Camahort, E.; Hidalgo, J.L.; Vivo, R. A hybrid multiresolution representation for fast tree modeling and rendering. Procedia Comput. Sci. 2010, 1, 485–494. [Google Scholar] [CrossRef]
- Alvear, A.G. New Technologies + Algorithmic Plant Communities: Parametric/agent-based workflows to support planting design documentation and representation of living systems. J. Digit. Landsc. Archit. 2020, 5, 103–110. [Google Scholar]
- Beviá, A.M.; Vogler, V.; Ghabouli, E. Enhancing urban greenery: Integrating environmental data into 3D urban tree models. J. Digit. Landsc. Archit. 2024, 9, 212–222. [Google Scholar]
- Xu, H.; Wang, C.C.; Shen, X.; Zlatanova, S. 3D tree reconstruction in support of urban microclimate simulation: A comprehensive literature review. Buildings 2021, 11, 417. [Google Scholar] [CrossRef]
- Du, S.; Lindenbergh, R.; Ledoux, H.; Stoter, J.; Nan, L. AdTree: Accurate, detailed, and automatic modelling of laser-scanned trees. Remote Sens. 2019, 11, 2074. [Google Scholar] [CrossRef]
- Pałubicki, W.; Makowski, M.; Gajda, W.; Hädrich, T.; Michels, D.L.; Pirk, S. Ecoclimates: Climate-response modeling of vegetation. ACM Trans. Graph. 2022, 41, 1–19. [Google Scholar] [CrossRef]
- Chen, C.; Wang, H.; Wang, D.; Wang, D. Towards the digital twin of urban forest: 3D modeling and parameterization of large-scale urban trees from close-range laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103695. [Google Scholar] [CrossRef]
- Reitberger, R.; Kooniyara, V.P.; Parhizgar, L.; Roetzer, T.; Lang, W. Tree growth simulation in Geographic Information Systems: Coupling CityTree and ArcGIS for solar radiation analysis. Sustain. Cities Soc. 2025, 120, 106128. [Google Scholar] [CrossRef]
- Lu, S.; Fang, C.; Xiao, X. Virtual scene construction of wetlands: A case study of Poyang Lake, China. ISPRS Int. J. Geo-Inf. 2023, 12, 49. [Google Scholar] [CrossRef]
- Mrosla, L.; Fabritius, H.; Kupper, K.; Dembski, F.; Fricker, P. What grows, adapts and lives in the digital sphere? Systematic literature review on the dynamic modelling of flora and fauna in digital twins. Ecol. Model. 2025, 504, 111091. [Google Scholar] [CrossRef]
- Fabritius, H.; Kupper, K.; Mrosla, L.; Nummi, P.; Prilenska, V.; Yao, C. Varying data on urban trees complicates meeting user needs for digital twins of urban green infrastructure. In Proceedings of the 18th International Conference on Computational Urban Planning and Urban Management, Montreal, QC, Canada, 20–22 June 2023. [Google Scholar]
- Havel, J.; Merciol, F.; Lefèvre, S. Efficient tree construction for multiscale image representation and processing. J. Real-Time Image Process. 2019, 16, 1129–1146. [Google Scholar] [CrossRef]
- Guo, J.; Xu, S.; Yan, D.M.; Cheng, Z.; Jaeger, M.; Zhang, X. Realistic procedural plant modeling from multiple view images. IEEE Trans. Vis. Comput. Graph. 2018, 26, 1372–1384. [Google Scholar] [CrossRef]
- Münzinger, M.; Prechtel, N.; Behnisch, M. Mapping the urban forest in detail: From LiDAR point clouds to 3D tree models. Urban For. Urban Green. 2022, 74, 127637. [Google Scholar] [CrossRef]
- Fan, G.; Xu, Z.; Wang, J.; Nan, L.; Xiao, H.; Xin, Z.; Chen, F. Plot-level reconstruction of 3D tree models for aboveground biomass estimation. Ecol. Indic. 2022, 142, 109211. [Google Scholar] [CrossRef]
- Peng, F.; Zheng, H.; Lu, S.; Shi, Z.; Liu, X.; Li, L. Growth model and visualization of a virtual jujube tree. Comput. Electron. Agric. 2019, 157, 146–153. [Google Scholar] [CrossRef]
- Cao, W.; Zeng, L. Natural tree modeling based on fractal. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge, Tianjin, China, 14–16 August 2009. [Google Scholar]
- Jain, A.; Sunkara, J.; Shah, I.; Sharma, A.; Rajan, K.S. Automated tree generation using grammar & particle system. In Proceedings of the Twelfth Indian Conference on Computer Vision, Graphics and Image Processing, Jodhpur, India, 19 December 2021. [Google Scholar]
- Petrenko, O.; Terraz, O.; Sbert, M.; Ghazanfarpour, D. Interactive flower modeling with 3Gmap L-systems. In Proceedings of the 21st International Conference on Computer Graphics and Vision, Moscow, Russia, 26–30 September 2011; Maks Press: New Delhi, India; pp. 20–24. [Google Scholar]
- Ding, W.L.; Zhao, Y.L.; Xin, W.T.; He, W.X.; Xu, L.F. Parameter extraction method of virtual plant growth model based on Improved Particle Swarm Optimization. Comput. Electron. Agric. 2021, 191, 106470. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, H.Q.; Lu, K.N. Research on Three-Dimensional Simulation of Tree’s Morphology Based on Tree-Crown Growth Model. In Proceedings of the 2010 International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 10–12 December 2010; pp. 1–4. [Google Scholar]
- Zhang, W.; Li, W. Construction of environment-sensitive digital twin plant model for ecological indicators analysis. In Proceedings of the 2024 Digital Landscape Architecture Conference (DLA), Vienna, Austria, 5–7 June 2024. [Google Scholar]
- Aguiar, P.; Szucs, P. Detailed visualization and morphometric analysis of reconstructed neurons using Blender and Python. BMC Neurosci. 2011, 12 (Suppl. S1), 323. [Google Scholar] [CrossRef][Green Version]
- The Grove Simulates Trees. Available online: https://www.thegrove3d.com/ (accessed on 13 July 2025).[Green Version]
- Chung, N.C.; Miasojedow, B.; Startek, M.; Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence–absence data. BMC Bioinform. 2019, 20 (Suppl. S15), 644. [Google Scholar] [CrossRef] [PubMed]
- Wuhan Daijia Lake Park Landscaping and Ecological Restoration Project. Available online: https://www.c40.org/zh-CN/case-studies/daijiahu-park-wuhan/ (accessed on 13 July 2025).
- Urban Tree Database. Available online: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2016-0005 (accessed on 13 July 2025).
- Peper, P.J.; Alzate, C.P.; McNeil, J.W.; Hashemi, J. Allometric equations for urban ash trees (Fraxinus spp.) in Oakville, Southern Ontario, Canada. Urban For. Urban Green. 2014, 13, 175–183. [Google Scholar] [CrossRef]
- Feng, D.; Yang, C.; Fu, M.; Wang, J.; Zhang, M.; Sun, Y.; Bao, W. Do anthropogenic factors affect the improvement of vegetation cover in resource-based region? J. Clean. Prod. 2020, 271, 122705. [Google Scholar] [CrossRef]
- Lu, Z.; Mao, W.; Dai, Y.; Li, W.; Su, Z. Slicing-tracking-detection: Simultaneous multi-cylinder detection from large-scale and complex point clouds. IEEE Trans. Vis. Comput. Graph. 2021, 28, 4172–4185. [Google Scholar] [CrossRef]
- Conversion Factors for Leaf Area to Biomass. Available online: https://www.fs.usda.gov/nrs/pubs/gtr/gtr-nrs200-2021_appendixes/gtr_nrs200-2021_appendix4.pdf (accessed on 13 July 2025).
- Wood Density Values. Available online: https://www.fs.usda.gov/nrs/pubs/gtr/gtr-nrs200-2021_appendixes/gtr_nrs200-2021_appendix11.pdf (accessed on 13 July 2025).
- Huttner, S.; Bruse, M.; Dostal, P. Using ENVI-met to simulate the impact of global warming on the microclimate in central European cities. In Proceedings of the 5th Japanese-German Meeting on Urban Climatology, Freiburg, Germany, 6–8 October 2008. [Google Scholar]
- Shinzato, P.; Simon, H.; Silva Duarte, D.H.; Bruse, M. Calibration process and parametrization of tropical plants using ENVI-met V4–Sao Paulo case study. Archit. Sci. Rev. 2019, 62, 112–125. [Google Scholar] [CrossRef]
- Weather Data. Available online: https://energyplus.net/weather (accessed on 13 July 2025).
- Chason, J.W.; Baldocchi, D.D.; Huston, M.A. A comparison of direct and indirect methods for estimating forest canopy leaf area. Agric. For. Meteorol. 1991, 57, 107–128. [Google Scholar] [CrossRef]
- Guo, Y. Tridimensional Green Biomass Measures of Wuhan Artificial Vegetation. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2009. [Google Scholar]
- Fan, G.; Liang, H.; Zhao, Y.; Li, Y. Automatic reconstruction of three-dimensional root system architecture based on ground penetrating radar. Comput. Electron. Agric. 2022, 197, 106969. [Google Scholar] [CrossRef]
- Shu, Q.; Rötzer, T.; Detter, A.; Ludwig, F. Tree information modeling: A data exchange platform for tree design and management. Forests 2022, 13, 1955. [Google Scholar] [CrossRef]
- Xu, H.; Wang, C.C.; Shen, X.; Zlatanova, S.; Paolini, R. Refined definition of level-of-detail for tree models in support of microclimate simulation. Sustain. Cities Soc. 2025, 126, 106387. [Google Scholar] [CrossRef]
Data | Time | Purpose | Application Stage |
---|---|---|---|
Park’s Planting Design Drawings | 2013 | To obtain planting locations and tree species. | Initial stage |
Plant Species Lists | 2013 | To obtain a list of plants and initial tree dimensions. | Initial stage |
Google Earth Online Remote Sensing Imagery | 2013 | To validate the average crown width of different tree species on the site. | Initial stage |
Field Surveys | 2023 | To obtain twig geometries (twig length, leaf width and length, and petiole length) | Growing stage |
Allometric Equations Data for Different Tree Species | -- | To predict tree growth dimensions (DBH, tree height, and crown width) with equations corresponding to similar climate zones | Growing stage Mature stage |
Distance (cm) | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.20 | 0.30 | 0.40 | 0.50 |
RMSE | 0.020 | 0.034 | 0.035 | 0.051 | 0.059 | 0.072 | 0.083 | 0.089 | 0.102 | 0.120 | 0.144 | 0.149 | 0.176 | 0.144 | 0.149 | 0.176 | 0.245 |
Parameter Name | Parameter Values |
---|---|
Simulated date | 13 August 2023 |
Time period | 7:00 a.m.–14:00 p.m. |
Temperature (°C) | 20–36 °C |
Wind speed (m/s) | 1 m/s |
Wind direction | 225° |
Humidity (%) | 67%–87% |
Plot 2 | Plot 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2-1 | 2-2 | 2-3 | 2-4 | 2-5 | 3-1 | 3-2 | 3-3 | 3-4 | 3-5 | |
Effective LAI | 1.424 | 1.919 | 0.554 | 0.624 | 1.674 | 1.598 | 0.842 | 1.014 | 0.193 | 0.613 |
LAI | 3.413 | 4.792 | 1.163 | 1.333 | 4.104 | 3.891 | 1.874 | 2.316 | 0.350 | 1.304 |
Model-predicted LAI | 2.872 | 3.642 | 1.089 | 0.800 | 3.102 | 3.186 | 0.807 | 2.162 | 0.125 | 1.059 |
Growth Stages | Geometric Properties of Tree Models | |||
---|---|---|---|---|
Number of Leaf Point Clouds | Number of Branch Point Clouds | Total Leaf Area (m2) | Total Branch Volume (m3) | |
Initial Stage | 86,935,676 | 3,449,963 | 869,356.76 | 431.25 |
Growing Stage | 762,472,591 | 34,827,755 | 7,624,725.91 | 4353.47 |
Mature Stage | 1,312,715,284 | 112,958,322 | 13,127,152.84 | 14,119.79 |
Total aboveground biomass and carbon storage | ||||
Leaf Biomass (t) | Branch Biomass (t) | Total biomass (t) | Carbon Storage (t) | |
Initial Stage | 70.58 | 230.78 | 301.35 | 147.71 |
Growing Stage | 619.91 | 2031.24 | 2651.15 | 1297.13 |
Mature Stage | 1078.80 | 6513.90 | 7592.70 | 3728.40 |
Species | Cedrus deodara | Photinia serratifolia | Metasequoia glyptostroboides | Styphnolobium japonicum | Ligustrum lucidum |
---|---|---|---|---|---|
Carbon content rate | 0.4963 | 0.4901 | 0.5083 | 0.4901 | 0.4502 |
Initial stage (t) | 16.81 | 38.32 | 12.96 | 3.40 | 8.17 |
Growing stage (t) | 146.11 | 276.16 | 244.53 | 46.06 | 54.83 |
Mature stage (t) | 950.75 | 523.36 | 542.70 | 203.82 | 150.05 |
Total carbon storage (t) | 1113.67 | 837.84 | 800.18 | 253.29 | 213.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Li, W.; Zhang, W. Extraction of Plant Ecological Indicators and Use of Environmental Simulation Methods Based on 3D Plant Growth Models: A Case Study of Wuhan’s Daijia Lake Park. Forests 2025, 16, 1487. https://doi.org/10.3390/f16091487
Chen A, Li W, Zhang W. Extraction of Plant Ecological Indicators and Use of Environmental Simulation Methods Based on 3D Plant Growth Models: A Case Study of Wuhan’s Daijia Lake Park. Forests. 2025; 16(9):1487. https://doi.org/10.3390/f16091487
Chicago/Turabian StyleChen, Anqi, Wenjiao Li, and Wei Zhang. 2025. "Extraction of Plant Ecological Indicators and Use of Environmental Simulation Methods Based on 3D Plant Growth Models: A Case Study of Wuhan’s Daijia Lake Park" Forests 16, no. 9: 1487. https://doi.org/10.3390/f16091487
APA StyleChen, A., Li, W., & Zhang, W. (2025). Extraction of Plant Ecological Indicators and Use of Environmental Simulation Methods Based on 3D Plant Growth Models: A Case Study of Wuhan’s Daijia Lake Park. Forests, 16(9), 1487. https://doi.org/10.3390/f16091487