The Radial Growth Responses Differences of High-Elevation Larix sibirica to Climate Change in the Altay Mountains of China and Russia
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area and Tree-Ring Sample Collection
2.2. Development of Regional Chronologies
2.3. Meteorological Data
2.4. Statistical Analysis
3. Results
3.1. Relationship Between Tree-Ring Widths and Climate Factors
3.2. Effects of Climate Change on Relationship Between Tree-Ring Parameters and Climate Response
4. Discussion
4.1. Early Summer Temperatures Dominate the Radial Growth Pattern of L. sibirica in the High-Elevation of Altay Mountains
4.2. The Dynamic Changes in the Response Relationship Between Radial Growth of Trees and Climate Under the Background of Climate Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Production Yearbook 1999; Stastical Series No. 156; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001; Volume 53. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Berner, L.T.; Goetz, S.J. Satellite observations document trends consistent with a boreal forest biome shift. Glob. Change Biol. 2022, 28, 3275–3292. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liang, H.; Zhou, P.; Wang, Z.; Zhu, H.; Kang, J.; Huang, J. Spatial and temporal differences in the response of Larix sibirica to climate change in the central Altai Mountains. Dendrochronologia 2021, 67, 125827. [Google Scholar] [CrossRef]
- Buentgen, U.; Myglan, V.S.; Ljungqvist, C.F.; McCormick, M.; DiCosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling andsocietal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef]
- Panyushkina, I.P.; Ovtchinnikov, D.V.; Adamenko, M.F. Mixedresponse of decadal variability in larch tree-ring chronologies from upper tree-lines of the Russian Altai. Tree-Ring Res. 2005, 61, 33–42. [Google Scholar] [CrossRef]
- Ovtchinnikov, D.; Adamenko, M.; Panushkina, I. A 1105-year tree-ring chronology in Altai region and its application for reconstruction of summer temperature. GeoLines 2000, 11, 121–122. [Google Scholar]
- Zhang, T.; Yuan, Y.; Hu, Y.; Wei, W.; Shang, H.; Huang, L.; Zhang, R.; Chen, F.; Yu, S.; Fan, Z.; et al. Early summer temperature changes in the southern Altai Mountains of Central Asia during the past 300 years. Quat. Inter. 2015, 358, 68–76. [Google Scholar] [CrossRef]
- Shang, H.; Wei, W.; Yuan, Y.; Yu, S.; Zhang, T.; Zhang, R. Early Summer Temperature History in Northeastern Kazakhstan during the Last 310 Years Recorded by Tree Rings. J. Mt. Sci. 2011, 29, 402–408. [Google Scholar]
- Chen, F.; Yuan, Y.; Wei, W.; Fan, Z.; Zhang, T.; Shang, H.; Zhang, R.; Yu, S.; Ji, C.; Qin, L. Climatic response of ring width and maximum latewood density of Larix sibirica in the Altay Mountains, reveals recent warming trends. Ann. For. Sci. 2012, 69, 723–733. [Google Scholar] [CrossRef]
- Davi, N.K.; Rao, M.P.; Wilson, R.; Andreu-Hayles, L.; Oelkers, R.; D’Arrigo, R.; Nachin, B.; Buckley, B.; Pederson, N.; Leland, C. Accelerated recent warming and temperature variability over the past eight centuries in the Central Asian Altai from blue intensity in tree rings. Geophys. Res. Lett. 2021, 48, e2021GL092933. [Google Scholar] [CrossRef]
- Zhang, R.; Shang, H.; Wei, W.; Yuan, Y.; Yu, S.; Zhang, T.; Fan, Z.; Chen, F.; Qin, L. Summer temperature history in Altay during the last 160 years recorded by δ13C in tree rings. Desert Oasis Meteorol. 2014, 8, 34–40. [Google Scholar]
- Churakova-Sidorova, O.V.; Myglan, V.S.; Fonti, M.V.; Naumova, O.V.; Kirdyanov, A.V.; Kalugin, I.A.; Babich, V.V.; Falster, G.M.; Vaganov, E.V.; Siegwolf, R.T.W.; et al. Modern aridity in the Altai-Sayan mountain range derived from multiple millennial proxies. Sci. Rep. 2022, 12, 7752. [Google Scholar] [CrossRef]
- Sidorova, O.V.; Siegwolf, R.T.W.; Myglan, V.S.; Ovchinnikov, D.V.; Shishov, V.V.; Helle, G.; Loader, N.J.; Saurer, M. The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai. Clim. Change 2013, 120, 153–167. [Google Scholar] [CrossRef]
- Loader, N.J.; Helle, G.; Los, S.O.; Lehmkuhl, F.; Schleser, G.H. Twentieth-century summer temperature variability in the southern Altai Mountains: A carbon and oxygen isotope study of tree-rings. Holocence 2010, 20, 1149–1156. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Qin, D.; Chen, T.; Wang, W.; Wu, G.; Sun, W.; An, W.; Zeng, X. Relative humidity reconstruction for northwestern China’s Altay Mountains using tree-ring δ18O. Chin. Sci. Bull. 2014, 59, 190–200. [Google Scholar] [CrossRef]
- Ran, M.; Feng, Z. Holocene moisture variations across China and driving mechanisms: A synthesis of climatic records. Quat. Int. 2013, 313, 179–193. [Google Scholar] [CrossRef]
- Chen, F.; Jia, J.; Chen, J.; Li, G.; Zhang, X.; Xie, H.; Xia, D.; Hang, W.; An, C. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quat. Sci. Rev. 2016, 146, 134–146. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, A.; Abdusalih, N.; Ran, M.; Kurban, A.; Lan, B.; Zhang, D.; Yang, Y. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. Holocene 2017, 27, 683–693. [Google Scholar] [CrossRef]
- Oyunmunkh, B.; Weijers, S.; Loeffler, J.; Byambagerel, S.; Soninkhishig, N.; Buerkert, A.; Goenster-Jordan, S.; Simmer, C. Climate variations over the southern Altai Mountains and Dzungarian Basin region, central Asia, since 1580 CE. Int. J. Climatol. 2019, 39, 4543–4558. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Lan, B. Climate variability in the northern and southern Altai Mountains during the past 50 years. Sci. Rep. 2018, 8, 3238. [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree-Ring Research; The University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Cook, E.R. A Time-Series Analysis Approach to Tree-Ring Standardization; The University of Arizona Press: Tucson, AZ, USA, 1985. [Google Scholar]
- Cook, E.R.; Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 1997, 7, 361–370. [Google Scholar] [CrossRef]
- Melvin, T.M.; Briffa, K.R. CRUST: Software for the implementation of regional chronology standardisation: Part 1. signal-free RCS. Dendrochronologia 2014, 32, 7–20. [Google Scholar] [CrossRef]
- Huang, J.; Ma, Q.; Rossi, S.; Biondi, F.; Deslauriers, A.; Fonti, P.; Liang, E.; Mäkinen, H.; Oberhuber, W.; Rathgeber, C.B.K.; et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl. Acad. Sci. USA 2020, 117, 20645–20652. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, J.; Zhang, T.; Qin, L.; Jiang, S.; Zhou, P.; Zhang, Y.; Peñuelas, J. Precipitation regulates the responses of xylem phenology of two dominant tree species to temperature in arid and semi-arid forest of the southern Altai Mountains. Sci. Total Environ. 2023, 886, 163951. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Bunn, A.G.; Berner, L. A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. Glob. Change Biol. 2011, 17, 1935–1945. [Google Scholar] [CrossRef]
- Sano, M.; Furuta, F.; Sweda, T. Tree-ring-width chronology of Larix gmelinii as an indicator of changes in early summer temperature in east-central Kamchatka. J. For. Res. 2009, 14, 147–154. [Google Scholar] [CrossRef]
- Grudd, H. Tornetrask tree-ring width and density AD 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 2008, 31, 843–857. [Google Scholar] [CrossRef]
- Taynik, A.V.; Barinov, V.V.; Oidupaa, O.C.; Myglan, V.S.; Reinig, F.; Büntgen, U. Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai-Sayan Mountains. Dendrochronologia 2016, 39, 10–16. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Khishigjargal, M.; Leuschner, C.; Hauck, M. Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. J. Plant Ecol. 2014, 7, 24–38. [Google Scholar] [CrossRef]
- Li, W.; Manzanedo, R.D.; Jiang, Y.; Ma, W.; Du, E.; Zhao, S.; Rademacher, T.; Dong, M.; Xu, H.; Kang, X.; et al. Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests. Nat. Commun. 2023, 14, 3358. [Google Scholar] [CrossRef] [PubMed]
Location | Code | Site Name | Latitude (°N) | Longitude (°E) | Elevation (m) |
---|---|---|---|---|---|
Northern Altay Mountains (Russia) | Russ248 | Chind | 49°12′ | 87°01′ | 2250 |
Russ247 | Ak-ha | 49°14′ | 87°14′ | 2200 | |
Russ250 | Jelo | 49°31′ | 87°30′ | 2250 | |
Russ251 | Kokcy | 49°22′ | 87°34′ | 2200 | |
Russ135 | Aktasch Valley | 50°25′ | 87°35′ | 2000 | |
Russ137 | Ust Ulagan Lake | 50°29′ | 87°39′ | 2150 | |
Russ133 | Ust Ulagan Bog | 50°30′ | 87°41′ | 1950 | |
Russ229 | Altay KUR2 | 50°18′ | 87°50′ | Miss | |
Russ226 | Altay AT2 | 50°05′ | 87°56′ | Miss | |
Russ227 | Altay Djaza | 49°37′ | 88°06′ | Miss | |
Russ257 | Tara | 49°23′ | 88°08′ | 2250 | |
Southern Altay Mountains (China) | HNN | Kanasi | 48°47′ | 86°55′ | 2150 |
KLN | Kalakelike | 48°22′ | 87°34′ | 2000 | |
AZB | Azubai | 47°53′ | 88°49′ | 2200 | |
ALS | Alasan | 47°34′ | 89°24′ | 2200 | |
BYZ | Bozhayiduergen | 47°47′ | 89°42′ | 2350 | |
ZGE | Zhengge | 47°42′ | 89°53′ | 2150 | |
TYT | Tayate | 47°10′ | 90°00′ | 2400 | |
ALL | Arshatehe | 47°10′ | 90°16′ | 2150 | |
XNL | Xianangou | 45°17′ | 90°42′ | 2250 |
Location | Station Name | Latitude (°N) | Longitude (°E) | Elevation (m) | Mean Temperature (°C) | Total Precipitation (mm) | Start and End Years |
---|---|---|---|---|---|---|---|
Northern Altay Mountains (Russia) | Kyzyl-Ozek | 50°54′ | 86°00′ | 324 | 2.14 | 745 | 1940/66–2015 |
Kara-Tyurek | 50°02′ | 86°27′ | 2601 | −5.51 | 599 | 1940/66–2015 | |
Ust-Coksa | 50°16′ | 86°37′ | 977 | −0.61 | 473 | 1940/66–2015 | |
Yailu | 51°46′ | 87°36′ | 482 | 3.79 | 893 | 1940/66–2015 | |
Kosh-Agach | 50°00′ | 88°40′ | 1759 | −4.95 | 120 | 1940/66–2015 | |
Southern Altay Mountains (China) | Habahe | 48°03′ | 86°24′ | 535 | 5.02 | 198 | 1960–2021 |
Buerjin | 47°42′ | 86°52′ | 476 | 4.77 | 145 | 1960–2021 | |
Fuhai | 47°04′ | 87°28′ | 503 | 4.40 | 126 | 1960–2021 | |
Aletai | 47°44′ | 88°05′ | 738 | 4.60 | 199 | 1960–2021 | |
Fuyun | 46°59′ | 89°31′ | 811 | 3.22 | 196 | 1960–2021 | |
Qinghe | 46°40′ | 90°23′ | 1220 | 0.96 | 177 | 1960–2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Yuan, Y.; Zhang, D.; Zhang, T.; Yu, S.; Shang, H.; Jiang, S.; Zhang, R. The Radial Growth Responses Differences of High-Elevation Larix sibirica to Climate Change in the Altay Mountains of China and Russia. Forests 2025, 16, 1460. https://doi.org/10.3390/f16091460
Qin L, Yuan Y, Zhang D, Zhang T, Yu S, Shang H, Jiang S, Zhang R. The Radial Growth Responses Differences of High-Elevation Larix sibirica to Climate Change in the Altay Mountains of China and Russia. Forests. 2025; 16(9):1460. https://doi.org/10.3390/f16091460
Chicago/Turabian StyleQin, Li, Yujiang Yuan, Dongliang Zhang, Tongwen Zhang, Shulong Yu, Huaming Shang, Shengxia Jiang, and Ruibo Zhang. 2025. "The Radial Growth Responses Differences of High-Elevation Larix sibirica to Climate Change in the Altay Mountains of China and Russia" Forests 16, no. 9: 1460. https://doi.org/10.3390/f16091460
APA StyleQin, L., Yuan, Y., Zhang, D., Zhang, T., Yu, S., Shang, H., Jiang, S., & Zhang, R. (2025). The Radial Growth Responses Differences of High-Elevation Larix sibirica to Climate Change in the Altay Mountains of China and Russia. Forests, 16(9), 1460. https://doi.org/10.3390/f16091460