Interior Ponderosa Pine (Pinus ponderosa var. scopulorum Engelm.) Genetic Profiles, Chemistry, Growth Rates, and Climate Sensitivity in Relation to Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) Predation
Abstract
1. Introduction
2. Methods
2.1. Locations
2.2. Sampling
2.3. Genetic Profiling
2.4. Terpene Analysis
2.5. Tree Core Preparation and Measurements
2.6. Data Analysis
2.6.1. Site and Tree Characteristics
2.6.2. Genetic Analysis
2.6.3. Chemistry
2.6.4. Tree Growth and Climate Analysis
3. Results
3.1. Tree Characteristics
3.2. Genetic Profiles
3.3. Chemical Profiles
3.4. Climate and Growth Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DETO | Devils Tower National Monument |
| WICA | Wind Cave National Park |
| SWMC | Sapwood moisture content |
| DBH | Diameter breast height |
| MA | Mean annual |
| GS | Growing season |
| MPB | Mountain pine beetle |
| NPS | National Park Service |
| ISSR | Inter-simple sequence repeats |
| PCoA | Principle coordinate analysis |
References
- Bend, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negrón, J.; Seybold, S.J. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Raffa, K.F.; Andersson, M.N.; Schlyter, F. Host Selection by Bark Beetles: Playing the Odds in a High-Stakes Game. In Advances in Insect Physiology; Tittiger, C., Blomquist, G.J., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 50, pp. 1–74. [Google Scholar]
- Huang, J.; Kautz, M.; Trowbridge, A.M.; Hammerbacher, A.; Raffa, K.F.; Adams, H.D.; Goodsman, D.W.; Xu, C.; Meddens, A.J.H.; Kandasamy, D.; et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 2020, 225, 26–36. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Hicke, J.A.; Ferguson, C.A. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 2012, 22, 1876–1891. [Google Scholar] [CrossRef]
- Bend, B.J.; Boone, C.; Raffa, K.F. Tree response and mountain pine beetle attack preference, reproduction and emergence timing in mixed whitebark and lodgepole pine stands. Agric. For. Entomol. 2015, 17, 421–432. [Google Scholar] [CrossRef]
- Gray, C.A.; Runyon, J.B.; Jenkins, M.J.; Giunta, A.D. Mountain pine beetles use volatile cues to locate host limber pine and avoid non-host Great Basin bristlecone pine. PLoS ONE 2015, 10, e0135752. [Google Scholar] [CrossRef] [PubMed]
- West, D.R.; Briggs, J.S.; Jacobi, W.R.; Negrón, J.F. Mountain pine beetle host selection between lodgepole and ponderosa pines in the southern Rocky Mountains. Environ. Entomol. 2015, 45, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Six, D.L.; Vergobbi, C.; Cutter, M. Are survivors different? Genetic and growth analyses of co-occurring whitebark and lodgepole pine after a mountain pine beetle outbreak. Front. Plant Sci. 2018, 9, 993. [Google Scholar] [CrossRef]
- Cullingham, C.I.; Cooke, J.E.K.; Dang, S.; Davis, C.S.; Cooke, B.J.; Coltman, D.W. Mountain pine beetle host-range expansion threatens the boreal forest. Mol. Ecol. 2011, 20, 2157–2171. [Google Scholar] [CrossRef]
- Clark, E.L.; Carroll, A.L.; Huber, D.P.W.; Lindgren, B.S.; Pitt, C. Comparison of lodgepole and jack pine constitutive and induced resin chemistry: Implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae, (Coleoptera: Curculionidae). PeerJ 2014, 2, 240. [Google Scholar] [CrossRef]
- Raffa, K.F.; Mason, C.J.; Bonello, P.; Cook, S.; Erbilgin, N.; Keefover-Ring, K.; Klutsch, J.G.; Villari, C.; Townsend, P.A. Defence syndromes in lodgepole—White bark pine ecosystems relate to degree of historical exposure to mountain pine beetles. Plant Cell Environ. 2017, 40, 1791–1806. [Google Scholar] [CrossRef]
- Burke, J.L.; Bohlmann, J.; Carroll, A.L. Consequences of distributional asymmetry in a warming environment: Invasion of novel forests by the mountain pine beetle. Ecosphere 2017, 8, e0178. [Google Scholar] [CrossRef]
- Norris, J.R.; Betancourt, J.L.; Jackson, S.T. Late Holocene expansion of ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains, USA. J. Biogeogr. 2016, 43, 778–790. [Google Scholar] [CrossRef]
- Smith, R.H.; Peloquin, R.L.; Passof, P.C. Local and Regional Variation in the Monoterpenes of Ponderosa Pine Wood Oleoresin; USDA Forest Service research paper PSW—Volume 56; Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 1969. [Google Scholar]
- Potter, K.M.; Hipkins, V.D.; Mahalovich, M.F.; Means, R.E. Mitiochondrial DNA haplotype diversity patterns in Pinus ponderosa (Pinaceae): Range-wide evolutionary history and implications for conservation. Am. J. Bot. 2013, 100, 1562–1579. [Google Scholar] [CrossRef]
- Potter, K.M.; Hipkins, V.D.; Mahalovich, M.F.; Means, R.E. Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic, and conservation implications. Tree Genet. Genomes 2015, 11, 38. [Google Scholar] [CrossRef]
- Shinneman, D.J.; Means, R.E.; Potter, K.M.; Hipkins, V.D. Exploring climate niches of ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western United States: Implications for evolutionary history and conservation. PLoS ONE 2016, 11, e0151811. [Google Scholar] [CrossRef] [PubMed]
- Rehfeldt, G.E. Systematics and genetic structure of Ponderosae taxa (Pinaceae) inhabiting the mountain islands of the southwest. Am. J. Bot. 1999, 86, 741–752. [Google Scholar] [CrossRef]
- Willyard, A.; Gernandt, D.S.; Potter, K.; Hipkins, V.; Marquardt, P.; Mahalovich, M.F.; Langer, S.K.; Telewski, F.W.; Cooper, B.; Douglas, E.; et al. Pinus ponderosa: A checkered past obscured by four species. Am. J. Bot. 2017, 104, 161–181. [Google Scholar] [CrossRef]
- Alexander, R.R. Silvicultural Systems, Cutting Methods, and Cultural Practices for Black Hills Ponderosa Pine; Gen. Tech. Rep. RM-139; Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Fort Collins, CO, USA, 1987; 32p. [Google Scholar]
- Shinneman, D.J.; Baker, W.L. Nonequilibrium dynamics between catastrophic disturbances and old-growth forests in ponderosa pine landscapes of the Black Hills. Conserv. Biol. 1997, 11, 1276–1288. [Google Scholar] [CrossRef]
- Fisher, R.F.; Jenkins, M.J.; Fisher, W.F. Fire and the Prairie-forest Mosaic of Devils Tower National Monument. Am. Midl. Nat. 1987, 117, 250–257. [Google Scholar] [CrossRef]
- Brown, P.M.; Cook, B. Early settlement forest structure in Black Hills ponderosa pine forests. For. Ecol. Manag. 2006, 223, 284–290. [Google Scholar] [CrossRef]
- Costello, S.L.; Jacobi, W.R.; Negron, J.F. Emergence of Buprestidae, Cerambycidae, and Scolytinae (Coleoptera) from mountain pine beetle-killed and fire-killed ponderosa pines in the Black Hills, South Dakota, USA. Coleopt. Bull. 2013, 67, 149–154. [Google Scholar] [CrossRef]
- Wood, S.L. The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae). A Taxonomic Monograph; Brigham Young University Press: Provo, UT, USA, 1982; 1359p. [Google Scholar]
- Dowle, E.J.; Bracewell, R.R.; Prefender, M.E.; Mock, K.E.; Bentz, B.J.; Ragland, G.J. Reproductive isolation and environmental adaptation shape the phylogeography of mountain pine beetle (Dendroctonus ponderosae). Mol. Ecol. 2017, 26, 6071–6084. [Google Scholar] [CrossRef]
- Bracewell, R.R.; Vanderpool, D.; Good, J.M.; Six, D.L. Cascading speciation among mutualists and antagonists in a tree-beetle-fungal interaction. R. Soc. B Biol. Sci. 2018, 285, 20180694. [Google Scholar] [CrossRef]
- McMillan, J.; Allen, K.K. Evaluation of Mountain Pine Beetle Activity in the Black Hills National Forest; USFS Rocky Mountain Region: Lakewood, CO, USA, 2001. [Google Scholar]
- Thoss, V.; Byers, J.A. Monoterpene chemo diversity of ponderosa pine in relation to herbivory and bark beetle colonization. Chemoecology 2006, 16, 51–58. [Google Scholar] [CrossRef]
- Keefover-Ring, K.; Trowbridge, A.; Mason, C.J.; Raffa, K.F. Rapid induction of multiple terpenoid groups by ponderosa pine in response to bark beetle-associated fungi. J. Chem. Ecol. 2016, 42, 1–12. [Google Scholar] [CrossRef]
- Chiu, C.C.; Keeling, C.I.; Bohlmann, J. Toxicity of pine monoterpenes to mountain pine beetle. Nat. Sci. Rep. 2017, 7, 8858. [Google Scholar] [CrossRef]
- Six, D.L.; Trowbridge, A.; Howe, M.; Perkins, D.; Berglund, E.; Brown, P.; Hicke, J.A.; Balasubramanian, G. Growth, chemistry, and genetic profiles of whitebark pine forests affected by climate-driven mountain pine beetle outbreaks. Front. For. Glob. Change 2021, 4, 671510. [Google Scholar] [CrossRef]
- Campbell, S.A.; Borden, J.H. Integration of visual and olfactory cues of hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae). Ecol. Entomol. 2006, 31, 437–449. [Google Scholar] [CrossRef]
- Moeck, H.A.; Simmons, C.S. Primary attraction of mountain pine beetle, Dendroctonus ponderosae Hopk., (Coleoptera: Scolytidae) to bolts of lodgepole pine. Can. Entomol. 1991, 123, 299–304. [Google Scholar] [CrossRef]
- Trowbridge, A.M.; Stoy, P.C.; Adams, H.D.; Law, D.J.; Breshears, D.D.; Helmig, D.; Monson, R.K. Drought supersedes warming in determining volatile and tissue defenses of pinon pine (Pinus edulis). Environ. Res. Lett. 2019, 14, 065006. [Google Scholar] [CrossRef]
- Trowbridge, A.M.; Adams, H.D.; Collins, A.; Dickman, L.T.; Grossiord, C.; Hofland, M.; Malone, S.; Wever, D.K.; Sevanto, S.; Stoy, P.C.; et al. Hotter droughts alter resource allocation to chemical defenses. Oecologia 2021, 197, 921–938. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.C.; Thompson, R.A.; Chow, P.S.; de Oliveira, C.R., Jr.; Landhäusser, S.M.; Six, D.L.; McCulloh, K.A.; Adams, H.D.; Trowbridge, A.M. Water, not carbon, drives drought-constraints on stem terpene defense against simulated bark beetle attack in Pinus edulis. New Phytol. 2025, 245, 318–331. [Google Scholar] [CrossRef]
- Kremer, A.; Ronce, O.; Robledo-Arnuncio, J.J.; Guillaume, F.; Bohrer, G.; Nathan, R.; Bridle, J.R.; Gomulkiewicz, R.; Klein, E.K.; Ritland, K.; et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 2012, 15, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Stine, A.R.; Huybers, P. Implications of Liebig’s Law of the Minimum for tree-ring reconstructions of climate. Environ. Res. Lett. 2017, 12, 114018. [Google Scholar] [CrossRef]
- Kichas, N.E.; Trowbridge, A.M.; Raffa, K.F.; Malone, S.C.; Hood, S.M.; Everett, R.G.; McWethy, D.B.; Pederson, G.T. Growth and defense characteristics of white bark pine (Pinus albicaulis) and lodgepole pine (Pinus contorta var latifolia) in a high elevation, disturbance prone mixed forest in northwestern Montana, USA. For. Ecol. Manag. 2021, 493, 119286. [Google Scholar] [CrossRef]
- Cooper, L.A.; Reed, C.C.; Ballantyne, A.P. Mountain pine beetle attack faster growing lodgepole pine at low elevations in western Montana, USA. For. Ecol. Manag. 2019, 427, 200–207. [Google Scholar] [CrossRef]
- Keen, R.M.; Voelker, S.L.; Bentz, B.J.; Wang, S.-Y.S.; Farrell, R. Stronger influence of growth rate than severity of drought stress on mortality of large ponderosa pines during the 2012–2015 CA drought. Oecologia 2020, 194, 359–370. [Google Scholar] [CrossRef]
- Reed, C.C.; Hood, S.M. Few generalizable patterns of tree-level mortality during extreme drought and concurrent bark beetle outbreaks. Sci. Total Environ. 2019, 750, 141306. [Google Scholar] [CrossRef]
- Graham, R.T.; Asherin, L.A.; Battaglia, M.A.; Jain, T.B.; Mata, S.A. Mountain Pine Beetle: A Century of Knowledge, Control Attempts, and Impacts to the Black Hills; USDA RMRS Gen. Tech. Rep. RMS-GTR-353; USDA RMRS: Washington, DC, USA, 2016; p. 2016. [Google Scholar]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Parasharami, V.A.; Thengane, S.R. Inter population genetic diversity analysis using ISSR markers in Pinus roxburghii (Sarg.) from Indian provenances. Int. J. Biodivers. Conserv. 2012, 4, 219–227. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 2010, 16, 399–415. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; McEvoy, D.J.; Redmond, K.T. The west-wide drought tracker: Drought monitoring at fine spatial scales. Bull. Am. Meteorol. Soc. 2017, 98, 1815–1820. [Google Scholar] [CrossRef]
- Howe, M.; Yanchuk, A.; Wallin, K.F.; Raffa, K.F. Quantification of heritable variation in multiple lodgepole pine chemical and physical traits that contribute to defense against mountain pine beetle (Dendroctonus ponderosae). For. Ecol. Manag. 2024, 553, 121660. [Google Scholar] [CrossRef]
- Gaylord, M.L.; Kolb, T.E.; Wallin, K.F.; Wagner, M.R. Seasonal dynamics of tree growth, physiology, and resin defenses in a northern Arizona ponderosa pine forest. Can. J. For. Res. 2007, 37, 1173–1183. [Google Scholar] [CrossRef]
- Krokene, P. Conifer defense and resistance to bark beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Academic Press: Cambridge, MA, USA, 2015; pp. 177–207. [Google Scholar]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Kane, J.M.; Kolb, T.E. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 2010, 164, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Ferrenberg, S.; Kane, J.M.; Mitton, J.B. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 2014, 174, 1283–1292. [Google Scholar] [CrossRef]
- Zhao, S.; Erbilgin, N. Larger resin ducts are linked to the survival of lodgepole pine trees during mountain pine beetle outbreak. Front. Plant Sci. 2019, 10, 1459. [Google Scholar] [CrossRef]
- Kichas, N.E.; Pederson, G.T.; Hood, S.M.; Everett, R.G.; McWethy, D.B. Increased whitebark pine (Pinus albicaulis) growth and defense under a warmer and regionally drier climate. Front. For. Glob. Chang. 2023, 6, 1089138. [Google Scholar] [CrossRef]
- Hood, S.; Sala, A. Ponderosa pine resin defenses and growth: Metrics matter. Tree Physiol. 2015, 35, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Valor, T.; Hood, S.M.; Pique, M.; Larranaga, A.; Casals, P. Resin ducts and bark thickness influence pine resistance to bark beetles after prescribed fire. For. Ecol. Manag. 2021, 494, 119322. [Google Scholar] [CrossRef]



| Site | N | Resin Mass | SWMC | Phloem | Basal Area | DBH | CD |
|---|---|---|---|---|---|---|---|
| DETO | 31 | 0.34 (1.38) a | 54.6 (7.9) a | 2.4 (0.6) a | 2.9 (1.8) a | 39.3 (6.0) a | 37.1(12.3) a |
| WICA | 20 | 0.53 (1.11) a | 53.0 (6.4) a | 2.3 (0.8) a | 3.9 (2.3) a | 32.6 (6.3) b | 28.8(18.6) a |
| CD | Basal Area | DBH | SWMC | Resin Mass | |
|---|---|---|---|---|---|
| DETO (N = 31) | |||||
| Basal area | 0.476 | ||||
| DBH | −0.289 | −0.387 | |||
| SWMC | −0.822 | −0113 | 0.223 | ||
| Resin mass | 0.258 | 0.075 | −0.211 | −0.153 | |
| Phloem | −0.518 | −0.417 | 0.292 | 0.364 | −0.155 |
| WICA (N = 20) | |||||
| Basal area | 0.504 | ||||
| DBH | −0.180 | −0.551 | |||
| SWMC | 0.020 | −0.355 | 0.079 | ||
| Resin mass | −0365 | −0.382 | −0.086 | 0.277 | |
| Phloem | −0.093 | −0.278 | 0.018 | 0.554 | 0.339 |
| Site | N | CD | Basal Area | DBH |
|---|---|---|---|---|
| DETO beetle-killed | 19 | 30.7 (15.2) a | 30 (22) a | 44.0 (9.1) a |
| DETO neighbor | 31 | 37.3 (12.3) a | 30 (17) a | 39.3 (6.0) a |
| WICA beetle-killed | 12 | 28.3 (18.6) a | 48 (23) a | 31.9 (7.2) a |
| WICA neighbor | 20 | 44.2 (15.3) b | 39 (23) a | 32.6 (6.3) a |
| Predictor Variables | Coefficient | SE | Coefficient SE | p-Value |
|---|---|---|---|---|
| DETO (N = 51) | ||||
| Constant | 3.231 | 2.361 | 1.37 | 0.177 |
| CD | 0.032 | 0.026 | 1.20 | 0.228 |
| Basal area | −0.123 | 0.183 | −0.67 | 0.502 |
| DBH | −0.084 | 0.047 | −1.77 | 0.076 |
| Deviance | 60.05 | |||
| p-value | 0.080 | |||
| DF | 46 | |||
| WICA (N = 32) | ||||
| Constant | −0.913 | 2.905 | −0.31 | 0.753 |
| CD | 0.095 | 0.042 | 2.28 | 0.023 |
| Basal area | −0.532 | 0.286 | −1.86 | 0.063 |
| DBH | 0.004 | 0.075 | 0.06 | 0.954 |
| Deviance | 30.97 | |||
| p-value | 0.318 | |||
| DF | 28 |
| Source | df | SS | MS | Variance | % |
|---|---|---|---|---|---|
| Among | 3 | 128.6 | 42.9 | 1.9 | 24 |
| Within | 73 | 449.2 | 6.2 | 6.2 | 76 |
| Total | 76 | 577.7 | 49.1 | 8.1 | 100 |
| PhiPT | 0.238 | ||||
| p-value | 0.001 |
| Terpene | DETO (N = 16) | WICA (N = 21) | t | p-Value |
|---|---|---|---|---|
| Monoterpenes | ||||
| Camphene | 11.25 (11.25) | 18.21 (11.68) | 1.53 | 0.14 |
| g-carene | 3.78 (2.04) | 4.86 (3.80) | 0.83 | 0.41 |
| p-cymene | 0.72 (0.20) | 0.74 (0.24) | 0.18 | 0.86 |
| Geraniol | 0.58 (0.01) | 0.57 (0.01) | 3.88 | 0.0006 |
| Isopolugol | 0.76 (0.07) | 0.70 (0.02) | 3.12 | 0.004 |
| Linalool | 0.58 (0.08) | 1.04 (0.50) | 2.91 | 0.007 |
| Limonene | 0.48 (0.03) | 0.46 (0.02) | 1.65 | 0.11 |
| b-myrcene | 2.33 (1.81) | 3.33 (2.25) | 1.20 | 0.24 |
| Ocimene | 0.80 (0.04) | 0.78 (0.02) | 1.90 | 0.07 |
| a-pinene | 0.25 (0.06) | 0.27 (0.10) | 0.81 | 0.42 |
| b-pinene | 1.68 (1.42) | 2.36 (1.83) | 1.02 | 0.32 |
| a-terpinene | 4.18 (2.02) | 5.01 (3.61) | 0.66 | 0.51 |
| g-terpinene | 0.74 (0.99) | 0.41 (0.36) | 1.31 | 0.20 |
| Terpinolene | ||||
| Sesquiterpenes | 0.64 (0.01) | 0.61 (0.01) | 4.53 | 0.0001 |
| a-bisabolol | 0.66 (0.01) | 0.65 (0.01) | 0.07 | 0.16 |
| b-caryophellene | 1.34 (0.08) | 1.38 (0.24) | 0.59 | 0.56 |
| Guaicol | 1.51 (0.08) | 1.49 (0.07) | 0.66 | 0.52 |
| a-humulene | 6.34 (5.90) | 0.26 (0.09) | 4.58 | 0.00001 |
| Nerolidal | 1.45 (0.26) | 1.49 (0.25) | 0.40 | 0.69 |
| Total | 40.07 | 44.62 |
| DETO Neighbors 1925–2015 (n = 27) | ||||
| Current | p-Value | Lagged r | p-Value | |
| MA Temperature | −0.321 | 0.002 | −0.283 | 0.007 |
| MA Precipitation | 0.448 | 0.0001 | 0.425 | 0.0001 |
| MA PDSI | 0.579 | 0.0001 | 0.555 | 0.0001 |
| GS Temperature | −0.373 | 0.0003 | −0.378 | 0.0002 |
| GS Precipitation | 0.36 | 0.0001 | 0.354 | 0.0006 |
| GS PDSI | 0.567 | 0.0001 | 0.52 | 0.0001 |
| DETO Neighbors 2000–2015 (n = 27) | ||||
| Current r | p-Value | Lagged r | p-Value | |
| MA Temperature | −0.389 | 0.137 | 0.207 | 0.46 |
| MA Precipitation | 0.631 | 0.009 | 0.549 | 0.034 |
| MA PDSI | 0.672 | 0.004 | 0.634 | 0.011 |
| GS Temperature | −0.084 | 0.758 | 0.177 | 0.527 |
| GS Precipitation | 0.402 | 0.123 | 0.328 | 0.233 |
| GS PDSI | 0.669 | 0.005 | 0.616 | 0.015 |
| DETO Beetle-killed 1925–2015 (n = 18) | ||||
| Current r | p-Value | Lagged r | p-Value | |
| MA Temperature | −0.035 | 0.745 | −0.09 | 0.4 |
| MA Precipitation | 0.106 | 0.318 | 0.181 | 0.088 |
| MA PDSI | 0.117 | 0.114 | 0.242 | 0.021 |
| GS Temperature | −0.209 | 0.047 | −0.181 | 0.087 |
| GS Precipitation | 0.108 | 0.307 | 0.117 | 0.272 |
| GS PDSI | 0.18 | 0.088 | 0.23 | 0.029 |
| DETO Beetle-killed 2000–2015 (n = 18) | ||||
| Current r | p-Value | Lagged r | p-Value | |
| MA Temperature | 0.089 | 0.744 | −0.097 | 0.732 |
| MA Precipitation | −0.568 | 0.022 | 0.32 | 0.911 |
| MA PDSI | −0.555 | 0.026 | 0.312 | 0.257 |
| GS Temperature | 0.168 | 0.5634 | 0.099 | 0.727 |
| GS Precipitation | −0.399 | 0.126 | −0.227 | 0.416 |
| GS PDSI | −0.493 | 0.053 | 0.323 | 0.198 |
| WICA Neighbors 1925–2015 (n = 19) | ||||
| Current r | p-Value | Lagged r | p-Value | |
| MA Temperature | 0.068 | 0.5193 | 0.095 | 0.374 |
| MA Precipitation | 0.343 | 0.0009 | 0.326 | 0.002 |
| MA PDSI | 0.424 | 0.0001 | 0.332 | 0.001 |
| GS Temperature | −0.228 | 0.03 | −0.042 | 0.695 |
| GS Precipitation | 0.298 | 0.0001 | 0.285 | 0.007 |
| GS PDSI | 0.4 | 0.0001 | 0.332 | 0.001 |
| WICA Neighbors 2000–2025 (n = 19) | ||||
| Current r | p-Value | Lagged r | p-Value | |
| MA Temperature | 0.562 | 0.023 | −0.26 | 0.35 |
| MA Precipitation | 0.529 | 0.036 | 0.053 | 0.851 |
| MA PDSI | 0.264 | 0.323 | 0.16 | 0.569 |
| GS Temperature | −0.347 | 0.188 | −0.148 | 0.599 |
| GS Precipitation | 0.407 | 0.117 | 0.006 | 0.983 |
| GS PDSI | −0.061 | 0.824 | 0.134 | 0.634 |
| WICA Beetle-killed 1925–2015 (n = 10) | ||||
| Current r | p-Value | Lagged r | p-Value | |
| MA Temperature | −0.012 | 0.914 | 0.028 | 0.794 |
| MA Precipitation | −0.03 | 0.779 | 0.186 | 0.035 |
| MA PDSI | −0.037 | 0.762 | 0.136 | 0.201 |
| GS Temperature | 0.012 | 0.914 | 0.092 | 0.389 |
| GS Precipitation | −0.081 | 0.444 | 0.146 | 0.17 |
| GS PDSI | 0.057 | 0.595 | 0.253 | 0.016 |
| WICA Beetle-killed 2000–2015 (n = 10) | ||||
| Current r | p-Value | Lagged r | p-Value | |
| MA Temperature | −0.24 | 0.371 | −0.308 | 0.265 |
| MA Precipitation | −0.158 | 0.558 | 0.008 | 0.0976 |
| MA PDSI | −0.087 | 0.749 | 0.068 | 0.8 |
| GS Temperature | −0.203 | 0.451 | −0.18 | 0.521 |
| GS Precipitation | −0.281 | 0.293 | −0.115 | 0.682 |
| GS PDSI | −0.061 | 0.824 | 0.076 | 0.787 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Six, D.L.; Alverson, H.R. Interior Ponderosa Pine (Pinus ponderosa var. scopulorum Engelm.) Genetic Profiles, Chemistry, Growth Rates, and Climate Sensitivity in Relation to Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) Predation. Forests 2025, 16, 1453. https://doi.org/10.3390/f16091453
Six DL, Alverson HR. Interior Ponderosa Pine (Pinus ponderosa var. scopulorum Engelm.) Genetic Profiles, Chemistry, Growth Rates, and Climate Sensitivity in Relation to Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) Predation. Forests. 2025; 16(9):1453. https://doi.org/10.3390/f16091453
Chicago/Turabian StyleSix, Diana L., and Hannah R. Alverson. 2025. "Interior Ponderosa Pine (Pinus ponderosa var. scopulorum Engelm.) Genetic Profiles, Chemistry, Growth Rates, and Climate Sensitivity in Relation to Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) Predation" Forests 16, no. 9: 1453. https://doi.org/10.3390/f16091453
APA StyleSix, D. L., & Alverson, H. R. (2025). Interior Ponderosa Pine (Pinus ponderosa var. scopulorum Engelm.) Genetic Profiles, Chemistry, Growth Rates, and Climate Sensitivity in Relation to Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) Predation. Forests, 16(9), 1453. https://doi.org/10.3390/f16091453
