Soil Comprehensive Fertility Changes in Response to Stand Age and Initial Planting Density of Long-Term Spacing Trials of Chinese Fir Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sample Collection and Analysis
2.3. Assessment of Soil Fertility
2.3.1. Assessment of a Single Index of Soil Fertility
2.3.2. Assessment of Soil Comprehensive Fertility
2.4. Data Statistics and Analysis
3. Results
3.1. Effects of Stand Age, Initial Planting Density, and Region on SCFI
3.1.1. Effects of Stand Age on SCFI
3.1.2. Effects of Initial Planting Density on SCFI
3.1.3. Effects of the Region on SCFI
3.2. Pathway Analysis of the Impact of Stand Age and Initial Planting Density on SCFI
4. Discussion
4.1. The Impact of Stand Age on SCFI
4.2. The Impact of Initial Planting Density on SCFI
4.3. The Impact of Region on SCFI
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Suggestions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tittler, R.; Filotas, É.; Kroese, J.; Messier, C. Maximizing conservation and production with intensive forest management: It’s all about location. Environ. Manag. 2015, 56, 1104–1117. [Google Scholar] [CrossRef] [PubMed]
- Yousefpour, R.; Nabel, J.E.; Pongratz, J.J.B. Simulating growth-based harvest adaptive to future climate change. Biogeosciences 2019, 16, 241–254. [Google Scholar] [CrossRef]
- Liski, J.; Pussinen, A.; Pingoud, K.; Mäkipää, R.; Karjalainen, T. Which rotation length is favourable to carbon sequestration? Can. J. For. Res. 2001, 31, 2004–2013. [Google Scholar] [CrossRef]
- Betts, M.G.; Phalan, B.T.; Wolf, C.; Baker, S.C.; Messier, C.; Puettmann, K.J.; Green, R.; Harris, S.H.; Edwards, D.P.; Lindenmayer, D.B.; et al. Producing wood at least cost to biodiversity: Integrating triad and sharing-sparing approaches to inform forest landscape management. Biol. Rev. Camb. Philos. Soc. 2021, 96, 1301–1317. [Google Scholar] [CrossRef]
- Guo, G.; Li, X.; Zhu, X.; Xu, Y.; Dai, Q.; Zeng, G.; Lin, J.J.F. Effect of forest management operations on aggregate-associated SOC dynamics using a 137Cs tracing method. Forests 2021, 12, 859. [Google Scholar] [CrossRef]
- Huang, C.; Fu, S.; Ma, X.; Ma, X.; Ren, X.; Tian, X.; Tong, Y.; Yuan, F.; Liu, H.J.S.R. Long-term intensive management reduced the soil quality of a Carya dabieshanensis forest. Sci. Rep. 2023, 13, 5058. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.J.; Fernández-Ugalde, O.; Gartzia-Bengoetxea, N.; Enrique, A.; Bescansa, P.J.S. Soil degradation and soil quality in Western Europe: Current situation and future perspectives. Sustainability 2014, 7, 313–365. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Niu, L.J.E.E. The degradation of soil fertility in pure larch plantations in the northeastern part of China. Ecol. Eng. 1998, 10, 75–86. [Google Scholar] [CrossRef]
- Hartemink, A.E.; Veldkamp, T.; Bai, Z. Land cover change and soil fertility decline in tropical regions. Turk. J. Agric. For. 2008, 32, 195–213. [Google Scholar]
- Pankhurst, C.E.; Magarey, R.C.; Stirling, G.R.; Blair, B.L.; Bell, M.J.; Garside, A.L.; Venture, S.Y.D.J. Management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Tillage Res. 2003, 72, 125–137. [Google Scholar] [CrossRef]
- Perron, T.; Kouakou, A.; Simon, C. Logging residues promote rapid restoration of soil health after clear-cutting of rubber plantations at two sites with contrasting soils in Africa. Sci. Total Environ. 2022, 816, 151526. [Google Scholar] [CrossRef] [PubMed]
- Sundram, S.; Angel, L.P.L.; Sirajuddin, S.A. Integrated balanced fertiliser management in soil health rejuvenation for a sustainable oil palm cultivation: A review. J. Oil Palm Res. 2019, 31, 348–363. [Google Scholar] [CrossRef]
- Schall, P.; Ammer, C. How to quantify forest management intensity in Central European forests. Eur. J. For. Res. 2013, 132, 379–396. [Google Scholar] [CrossRef]
- Vadeboncoeur, M.A.; Hamburg, S.P.; Yanai, R.D.; Blum, J.D. Rates of sustainable forest harvest depend on rotation length and weathering of soil minerals. For. Ecol. Manag. 2014, 318, 194–205. [Google Scholar] [CrossRef]
- Guo, L.; Sims, R.J. Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests. Agric. Ecosyst. Environ. 1999, 75, 133–140. [Google Scholar] [CrossRef]
- Nilsson, U. Development of growth and stand structure in Picea abies stands planted at different initial densities. Scand. J. For. Res. 1994, 9, 135–142. [Google Scholar] [CrossRef]
- Ford, E. Competition and stand structure in some even-aged plant monocultures. J. Ecol. 1975, 63, 311–333. [Google Scholar] [CrossRef]
- Larocque, G. Examining different concepts for the development of a distance-dependent competition model for red pine diameter growth using long-term stand data differing in initial stand density. For. Sci. 2002, 48, 24–34. [Google Scholar] [CrossRef]
- Wallraf, A.; Wagner, S. Effects of initial plant density, interspecific competition, tending and age on the survival and quality of oak (Quercus robur L.) in young mixed stands in European Russia. For. Ecol. Manag. 2019, 446, 272–284. [Google Scholar] [CrossRef]
- Furey, G.N.; Tilman, D. Plant biodiversity and the regeneration of soil fertility. Proc. Natl. Acad. Sci. USA 2021, 118, e2111321118. [Google Scholar] [CrossRef]
- Tiessen, H.; Cuevas, E.; Chacon, P.J.N. The role of soil organic matter in sustaining soil fertility. Nature 1994, 371, 783–785. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Benge, J.; Carey, P.; Lucock, D.; Manhire, J. Assessment of soil properties and earthworms in organic and conventional farming systems after seven years of dairy farm conversions in New Zealand. Agroecol. Sustain. Food Syst. 2019, 43, 678–704. [Google Scholar] [CrossRef]
- Sinha, D.; Tandon, P. An overview of nitrogen, phosphorus and potassium: Key players of nutrition process in plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Springer: Singapore, 2020; pp. 85–117. [Google Scholar]
- Nair, P.R.; Kumar, B.M.; Nair, V.D.; Nair, P.R.; Kumar, B.M.; Nair, V. Soils and agroforestry: General principles. In An Introduction to Agroforestry; Springer: Cham, Switzerland, 2021; pp. 367–382. [Google Scholar]
- Li, Q.; Yang, J.; Guan, W.; Liu, Z.; He, G.; Zhang, D.; Liu, X. Soil fertility evaluation and spatial distribution of grasslands in Qilian Mountains nature reserve of eastern Qinghai-Tibetan Plateau. PeerJ 2021, 9, e10986. [Google Scholar] [CrossRef]
- Jin, J.; Wang, L.; Müller, K.; Wu, J.; Wang, H.; Zhao, K.; Berninger, F.; Fu, W.J.S.R. A 10-year monitoring of soil properties dynamics and soil fertility evaluation in Chinese hickory plantation regions of southeastern China. Sci. Rep. 2021, 11, 23531. [Google Scholar] [CrossRef]
- Li, X.; Duan, A.; Zhang, J. Site index for Chinese fir plantations varies with climatic and soil factors in southern China. J. For. Res. 2022, 33, 1765–1780. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Z.; Chen, H.; Hu, Y.; Qu, Y.; Chhin, S.; Zhang, J.; Zhang, X. A Bayesian network model to disentangle the effects of stand and climate factors on tree mortality of Chinese fir plantations. Front. For. Glob. Change 2023, 6, 1298968. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Yu, X. Decline of soil fertility during forest conversion of secondary forest to Chinese fir plantations in subtropical China. Land Degrad. Dev. 2011, 22, 444–452. [Google Scholar] [CrossRef]
- Wang, S.; Sun, H.; Santos, E.; Soares, A. Soil microbial communities, soil nutrition, and seedling growth of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation in response to three weed control methods. Plant Soil 2022, 480, 245–264. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, L.; He, Z.; Wang, R.; Wu, P.; Ma, X. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Enviorn. Sci. Pollut. Res. 2016, 23, 24135–24150. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Wang, H.; Nong, Y.; Sun, G.; Yu, S.; Liao, L.; Ye, S. Long-term effects of thinning and mixing on stand spatial structure: A case study of Chinese fir plantations. Iforest-Biogeosci. For. 2021, 14, 113. [Google Scholar] [CrossRef]
- Lei, J.; Cao, Y.; Wang, J.; Chen, Y.; Peng, Y.; Shao, Q.; Dan, Q.; Xu, Y.; Chen, X.; Dang, P.; et al. Soil nutrients, enzyme activities, and microbial communities along a chronosequence of Chinese fir plantations in subtropical China. Plants 2023, 12, 1931. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, J.; Yao, L. Soil microbial community and physicochemical properties together drive soil organic carbon in Cunninghamia lanceolata plantations of different stand ages. PeerJ 2022, 10, e13873. [Google Scholar] [CrossRef]
- Fang, X.-M.; Zhang, X.-L.; Zong, Y.-Y.; Zhang, Y.; Wan, S.-Z.; Bu, W.-S.; Chen, F.-S. Soil phosphorus functional fractions and tree tissue nutrient concentrations influenced by stand density in subtropical Chinese fir plantation forests. PLoS ONE 2017, 12, e0186905. [Google Scholar] [CrossRef]
- Diao, S.; Sun, H.; Forrester, D.I.; Soares, A.A.V.; Protásio, T.P.; Jiang, J. Variation in growth, wood density, and stem taper along the stem in self-thinning stands of Sassafras tzumu. Front. Plant Sci. 2022, 13, 853968. [Google Scholar] [CrossRef]
- Xu, Z.; Mi, W.; Mi, N.; Fan, X.; Zhou, Y.; Tian, Y. Comprehensive evaluation of soil quality in a desert steppe influenced by industrial activities in northern China. Sci. Rep. 2021, 11, 17493. [Google Scholar] [CrossRef]
- Pereira, D.G.; Afonso, A.; Medeiros, F. Overview of Friedman’s test and post-hoc analysis. Commun. Stat. Simul. Comput. 2015, 44, 2636–2653. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R. lmerTest package: Tests in linear mixed-effects models. J. Stat. Softw. 2017, 82, 26. [Google Scholar] [CrossRef]
- Sakaria, D.; Maat, S.M.; Mohd Matore, M. Examining the optimal choice of SEM statistical software packages for sustainable mathematics education: A systematic review. Sustainability 2023, 15, 3209. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Huang, S.; Wu, X.; Zhou, P.; Geng, Y.; Zhu, Y.; Wang, Y.; Wu, Y.; Chen, Q. Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters. J. Clean. Prod. 2023, 417, 138068. [Google Scholar] [CrossRef]
- Zhao, W.; Cao, X.; Li, J.; Xie, Z.; Sun, Y.; Peng, Y. Novel weighting method for evaluating forest soil fertility index: A structural equation model. Plants 2023, 12, 410. [Google Scholar] [CrossRef]
- Wang, C.; Xue, L.; Dong, Y.; Wei, Y.; Jiao, R. Soil microbial community structure and composition in Chinese fir plantations of different ages in Fujian, southeast China. J. Sustain. For. 2020, 41, 1–23. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Park, G.-E.; Lee, H.-I.; Lee, C.-B. Stand age-driven tree size variation and stand type regulate aboveground biomass in alpine-subalpine forests, South Korea. Sci. Total Environ. 2024, 915, 170063. [Google Scholar] [CrossRef]
- Gan, H.Y.; Schöning, I.; Schall, P.; Ammer, C.; Schrumpf, M. Soil organic matter mineralization as driven by nutrient stoichiometry in soils under differently managed forest stands. Front. For. Glob. Change 2020, 3, 99. [Google Scholar] [CrossRef]
- Pan, J.; Guo, Q.; Li, H.; Luo, S.; Zhang, Y.; Yao, S.; Fan, X.; Sun, X.; Qi, Y.J.F. Dynamics of soil nutrients, microbial community structure, enzymatic activity, and their relationships along a chronosequence of Pinus massoniana plantations. Forests 2021, 12, 376. [Google Scholar] [CrossRef]
- Wang, K.; Wang, G.G.; Song, L.; Zhang, R.; Yan, T.; Li, Y. Linkages between nutrient resorption and ecological stoichiometry and homeostasis along a chronosequence of Mongolian pine plantations. Front. Plant Sci. 2021, 12, 692683. [Google Scholar] [CrossRef]
- Wu, H.; Xiang, W.; Chen, L.; Ouyang, S.; Xiao, W.; Li, S.; Forrester, D.I.; Lei, P.; Zeng, Y.; Deng, X.J.E. Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations. Ecosystems 2020, 23, 973–988. [Google Scholar] [CrossRef]
- Da-Lun, T.; Yuan-Ying, P.; Wen-De, Y.; Xi, F.; Wen-Xing, K.; Guang-Jun, W.; Xiao-Yong, C.J.P. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in Masson pine plantations. Pedosphere 2010, 20, 486–493. [Google Scholar]
- Zhao, M.; Sun, Y.; Liu, S.; Li, Y.; Chen, Y. Effects of stand density on the structure of soil microbial functional groups in Robinia pseudoacacia plantations in the hilly and gully region of the Loess Plateau, China. Sci. Total Environ. 2024, 912, 169337. [Google Scholar] [CrossRef]
- Chen, J.; Li, T.; Cai, J.; Yu, P.; Guo, Y. Physiological and molecular response of Liriodendron chinense to varying stand density. Plants 2024, 13, 508. [Google Scholar] [CrossRef]
- Nasir, K.; Jayadi, M.; Ahmad, A. Minerals of parent material as an indicator of soil fertility. IOP Conf. Ser. Earth Environ. Sci. 2021, 807, 042007. [Google Scholar] [CrossRef]
- Gao, J.; Ji, Y.; Zhang, X. Net primary productivity exhibits a stronger climatic response in planted versus natural forests. For. Ecol. Manag. 2023, 529, 120722. [Google Scholar] [CrossRef]
- Gelybó, G.; Tóth, E.; Farkas, C.; Horel, Á.; Kása, I.; Bakacsi, Z. Potential impacts of climate change on soil properties. Agrokémia És Talajtan. 2018, 67, 121–141. [Google Scholar] [CrossRef]
- Castro, H.F.; Classen, A.T.; Austin, E.E.; Norby, R.J.; Schadt, C. Soil microbial community responses to multiple experimental climate change drivers. Appl. Environ. Microbiol. 2010, 76, 999–1007. [Google Scholar] [CrossRef]
- Wang, G.G. Ecological Site Quality, Site Index, and Height Growth of White Spruce Stands in the Sub-Boreal Spruce Zone of British Columbia. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1993. [Google Scholar]
- Eisenhauer, N.J.P. Plant diversity effects on soil microorganisms: Spatial and temporal heterogeneity of plant inputs increase soil biodiversity. Pedobiologia 2016, 59, 175–177. [Google Scholar] [CrossRef]
Item | Min | Max | Mean | SD | CV/% |
---|---|---|---|---|---|
SOM g·kg−1 | 8.51 | 50.81 | 25.88 | 7.94 | 30.68 |
TN g·kg−1 | 0.32 | 2.35 | 0.98 | 0.34 | 34.52 |
AN mg·kg−1 | 9.50 | 286.91 | 89.68 | 49.03 | 54.67 |
TP g·kg−1 | 0.02 | 0.97 | 0.29 | 0.17 | 60.30 |
AP mg·kg−1 | 0.10 | 9.38 | 1.53 | 1.49 | 97.24 |
TK g·kg−1 | 1.30 | 35.10 | 12.35 | 8.28 | 67.03 |
AK mg·kg−1 | 5.99 | 214.07 | 58.48 | 36.81 | 62.94 |
pH | 3.44 | 5.53 | 4.30 | 0.42 | 9.83 |
Soil Properties | Grade | SOM g/kg | TN g/kg | AN mg/kg | TP g/kg | AP mg/kg | TK g/kg | AK mg/kg | pH |
---|---|---|---|---|---|---|---|---|---|
Classification index for Nemerow | xe | 40 | 2 | 150 | 1.0 | 40 | 25 | 200 | 8.5 |
xd | 30 | 1.5 | 120 | 0.8 | 20 | 20 | 150 | 7.5 | |
xc | 20 | 1 | 90 | 0.6 | 10 | 15 | 100 | 6.5 | |
xb | 10 | 0.75 | 60 | 0.4 | 5 | 10 | 50 | 5.5 | |
Xa | 6 | 0.5 | 30 | 0.2 | 3 | 5 | 30 | 4.5 |
Grade | SOM g/kg | TN g/kg | AN mg/kg | TP g/kg | AP mg/kg | TK g/kg | AK mg/kg | pH | Description |
---|---|---|---|---|---|---|---|---|---|
1 | >40 | >2 | >150 | >1 | >40 | >25 | >200 | 8.5–9 | Extremely |
2 | 30–40 | 1.5–2 | 120–150 | 0.8–1 | 20–40 | 20–25 | 150–200 | 7.5–8.5 | Rich |
3 | 20–30 | 1–1.5 | 90–120 | 0.6–0.8 | 10–20 | 15–20 | 100–150 | 6.5–7.5 | Medium |
4 | 10–20 | 0.75–1 | 60–90 | 0.4–0.6 | 5–10 | 10–15 | 50–100 | 5.5–6.5 | Moderately inferior |
5 | 6–10 | 0.5–0.75 | 30–60 | 0.2–0.4 | 3–5 | 5–10 | 30–50 | 4.5–5.5 | Poor |
6 | <6 | <0.5 | <30 | <0.2 | <3 | <5 | <30 | <4.5 | Very poor |
Parameters | Stand Age (S) | Initial Planting Density (I) | S × I | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Fujian Province | 3.543 | *** | 14.103 | * | 0.385 | 0.980 |
Jiangxi Province | 13.853 | *** | 0.825 | 0.516 | 0.928 | 0.544 |
Sichuan Province | 6.343 | *** | 29.684 | *** | 0.680 | 0.829 |
Response Variable | AIC | BIC | logLik | Pr (>Chisq) | |||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | ||
SCFI | 3.14 | 72.02 | 22.30 | 87.98 | 4.43 | −31.01 | *** |
SOM | 1259.20 | 1258.60 | 1278.30 | 1274.60 | −623.59 | −624.30 | 0.23 |
TN | 10.77 | 37.01 | 29.93 | 52.97 | 0.62 | −13.50 | *** |
AN | 1935.40 | 1943.90 | 1954.60 | 1959.90 | −961.72 | −966.96 | ** |
TP | −204.76 | −143.51 | −185.60 | −127.54 | 108.38 | 76.75 | *** |
AP | 1026.30 | 1059.60 | 1045.50 | 1075.50 | −507.17 | −524.79 | *** |
TK | 1174.40 | 1197.80 | 1193.60 | 1213.70 | −581.22 | −593.88 | *** |
AK | 1761.50 | 1804.30 | 1780.60 | 1820.20 | −874.73 | −897.14 | *** |
pH | 165.92 | 198.95 | 185.08 | 214.91 | −76.96 | −94.47 | *** |
Response Variable | Sampling Sites | ||
---|---|---|---|
Fujian | Jiangxi | Sichuan | |
SCFI | 0.16 | 0.22 | −0.38 |
SOM | −0.46 | 1.49 | −1.03 |
TN | 0.00 | 0.15 | −0.16 |
AN | 5.62 | 14.75 | −20.37 |
TP | 0.11 | 0.06 | −0.18 |
AP | −0.23 | 2.63 | −2.39 |
TK | 0.65 | 2.88 | −3.53 |
AK | 24.79 | 7.62 | −32.41 |
pH | 0.17 | 0.12 | −0.29 |
Dependent Variable | Independent Variable | Region | ||
---|---|---|---|---|
FJ | JX | SC | ||
SCFI | standage | 0.01 *** (0.00, 0.02) | 0.00 (−0.01, 0.01) | 0.01 *** (0.00, 0.02) |
Initial planting density | 0.02 (−0.01, 0.05) | 0.02 * (0.00, 0.04) | 0.02 *** (0.01, 0.03) | |
SOM | standage | 0.03 (−0.09, 0.15) | −0.04 (−0.20, 0.12) | −0.01 (−0.26, 0.24) |
Initial planting density | 0.601 ** (0.199, 1) | 0.592 * (0.0226, 1.16) | 0.653 * (−0.195, 1.5) | |
TN | standage | 0.00 (0.00, 0.00) | 0.00(0.00, 0.01) | 0.01 * (0.00, 0.02) |
Initial planting density | 0.02 (0.00, 0.04) | 0.02 (0.01, 0.04) | 0.02 (0.00, 0.04) | |
AN | standage | 1.57 *** (0.81, 2.33) | 2.39 ** (1.03,3.75) | 2.05 *** (1.43, 2.66) |
Initial planting density | 1.45 (−1.25, 4.14) | 1.47 (−3.33,6.28) | 1.79 (−0.37, 4.00) | |
TP | standage | −0.01 *** (−0.01, 0.00) | −0.01 *** (0.01, 0.00) | 0.01 *** (0.00, 0.02) |
Initial planting density | 0.01 (−0.01, 0.02) | 0.00 (−0.01, 0.01) | 0.00 (−0.01, 0.01) | |
AP | standage | −0.23 *** (−0.30, −0.17) | −0.55 *** (−0.68, −0.41) | −0.03 *** (−0.04, −0.02) |
Initial planting density | 0.07 (−0.17, 0.31) | 0.14 (−0.34, 0.62) | 0.01 (−0.02, 0.04) | |
TK | standage | 0.47 *** (0.38, 0.57) | 0.04 (−0.04, 0.12) | 0.37 *** (0.22, 0.51) |
Initial planting density | 0.15 (−0.21, 0.51) | −0.06 (−0.42, 0.29) | 0.22 (−0.28, 0.73) | |
AK | standage | 0.91 *** (0.47, 1.35) | 1.29 *** (0.61, 1.97) | 0.08 (−0.37, 0.53) |
Initial planting density | 1.11 (−1.96, 4.17) | 4.35 ** (1.57, 7.14) | 0.364 (−1.22, 1.95) | |
pH | standage | 0.00 (−0.01, 0.01) | −0.01 ** (−0.02, −0.00) | −0.01 (−0.01, 0.00) |
Initial planting density | −0.01 (−0.04, 0.01) | −0.01 (−0.05, 0.02) | 0.00 (−0.02, 0.02) |
Outcome Variables | Independent Variables | Standardized Effects | ||
---|---|---|---|---|
Direct | Indirect | Total | ||
SCFI (combined area) | stand age | 0.18 *** | −0.06 ** | 0.12 ** |
initial planting density | 0.03 | 0.09 ** | 0.09 ** | |
SCFI (Fujian Province) | stand age | 0.44 *** | −0.19 ** | 0.25 ** |
initial planting density | 0.06 | 0.11 | 0.17 | |
SCFI (Jiangxi Province) | stand age | −0.24 *** | 0.25 ** | 0.01 ** |
initial planting density | 0.00 | 0.02 | 0.02 | |
SCFI (Sichuan Province) | stand age | −0.02 | 0.32 *** | 0.32 *** |
initial planting density | 0.10 * | 0.08 | 0.10 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Lei, J.; Liu, J.; Zhang, X.; Yuan, D.; Duan, A.; Zhang, J. Soil Comprehensive Fertility Changes in Response to Stand Age and Initial Planting Density of Long-Term Spacing Trials of Chinese Fir Plantations. Forests 2025, 16, 224. https://doi.org/10.3390/f16020224
Sun H, Lei J, Liu J, Zhang X, Yuan D, Duan A, Zhang J. Soil Comprehensive Fertility Changes in Response to Stand Age and Initial Planting Density of Long-Term Spacing Trials of Chinese Fir Plantations. Forests. 2025; 16(2):224. https://doi.org/10.3390/f16020224
Chicago/Turabian StyleSun, He, Jie Lei, Juanjuan Liu, Xiongqing Zhang, Deyi Yuan, Aiguo Duan, and Jianguo Zhang. 2025. "Soil Comprehensive Fertility Changes in Response to Stand Age and Initial Planting Density of Long-Term Spacing Trials of Chinese Fir Plantations" Forests 16, no. 2: 224. https://doi.org/10.3390/f16020224
APA StyleSun, H., Lei, J., Liu, J., Zhang, X., Yuan, D., Duan, A., & Zhang, J. (2025). Soil Comprehensive Fertility Changes in Response to Stand Age and Initial Planting Density of Long-Term Spacing Trials of Chinese Fir Plantations. Forests, 16(2), 224. https://doi.org/10.3390/f16020224