Biochar Application for Soil Carbon Sequestration and Greenhouse Gas Mitigation in Forest Ecosystems: A Bibliometric Analysis Using CiteSpace
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Biochar Application on Soil Carbon Sequestration of Forest Ecosystem
3.1.1. Research Hotspot and Trend
3.1.2. Timeline About Biochar Application on Forest Soil Carbon Sequestration
3.1.3. Countries and Global Publication Count
3.2. Biochar Application on Greenhouse Gas Emission of Forest Ecosystem
3.2.1. Research Hotspot and Trend
3.2.2. Timeline About Biochar Application on Forest Soil GHGs Mitigation
3.2.3. Countries/Regions and Institution Analysis
4. Discussion
4.1. Future Research Hotspots and Emerging Trends
4.2. Country and Institution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Thomson, J.R.; de Barros Ferraz, S.F.; Louzada, J.; Oliveira, V.H.F. Anthropogenic Disturbance in Tropical Forests Can Double Biodiversity Loss from Deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef]
- Reygadas, Y.; Spera, S.A.; Salisbury, D.S. Effects of Deforestation and Forest Degradation on Ecosystem Service Indicators across the Southwestern Amazon. Ecol. Indic. 2023, 147, 109996. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; van Diemen, R.; McCollum, D.; Pathak, M.; Some, S.; Vyas, P.; Fradera, R. Climate change 2022: Mitigation of climate change. Contrib. Work. Group III Sixth Assess. Rep. Intergov. Panel Clim. Chang. 2022, 10, 9781009157926. [Google Scholar]
- Erb, K.-H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M. Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef]
- Yu, Z.; You, W.; Agathokleous, E.; Zhou, G.; Liu, S. Forest Management Required for Consistent Carbon Sink in China’s Forest Plantations. For. Ecosyst. 2021, 8, 54. [Google Scholar] [CrossRef]
- De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Carnicelli, S. Benchmark Values for Forest Soil Carbon Stocks in Europe: Results from a Large Scale Forest Soil Survey. Geoderma 2015, 251, 33–46. [Google Scholar] [CrossRef]
- Pan, B.; Zhang, Y.; Xia, L.; Lam, S.K.; Hu, H.-W.; Chen, D. Nitrous Oxide Production Pathways in Australian Forest Soils. Geoderma 2022, 420, 115871. [Google Scholar] [CrossRef]
- Mäkipää, R.; Abramoff, R.; Adamczyk, B.; Baldy, V.; Biryol, C.; Bosela, M.; Casals, P.; Yuste, J.C.; Dondini, M.; Filipek, S. How Does Management Affect Soil C Sequestration and Greenhouse Gas Fluxes in Boreal and Temperate Forests?—A Review. For. Ecol. Manag. 2023, 529, 120637. [Google Scholar] [CrossRef]
- Siljanen, H.M.P.; Welti, N.; Voigt, C.; Heiskanen, J.; Biasi, C.; Martikainen, P.J. Atmospheric Impact of Nitrous Oxide Uptake by Boreal Forest Soils Can Be Comparable to That of Methane Uptake. Plant Soil 2020, 454, 121–138. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, T.; Yang, X.; Zhou, X.; Li, X.; Cong, R.; Lu, J. Biochar Return in the Rice Season and Straw Mulching in the Oilseed Rape Season Achieve High Nitrogen Fertilizer Use Efficiency and Low Greenhouse Gas Emissions in Paddy-Upland Rotations. Eur. J. Agron. 2023, 148, 126869. [Google Scholar] [CrossRef]
- Lee, J.; Oh, Y.; Lee, S.T.; Seo, Y.O.; Yun, J.; Yang, Y.; Kim, J.; Zhuang, Q.; Kang, H. Soil Organic Carbon Is a Key Determinant of CH4 Sink in Global Forest Soils. Nat. Commun. 2023, 14, 3110. [Google Scholar] [CrossRef]
- Ming, A.; Yang, Y.; Liu, S.; Wang, H.; Li, Y.; Li, H.; Nong, Y.; Cai, D.; Jia, H.; Tao, Y. Effects of near Natural Forest Management on Soil Greenhouse Gas Flux in Pinus massoniana (Lamb.) and Cunninghamia lanceolata (Lamb.) Hook. Plantations. Forests 2018, 9, 229. [Google Scholar] [CrossRef]
- Liu, S.; Lin, F.; Wu, S.; Ji, C.; Sun, Y.I.; Jin, Y.; Li, S.; Li, Z.; Zou, J. A Meta-analysis of Fertilizer-induced Soil NO and Combined NO+ N2O Emissions. Glob. Change Biol. 2017, 23, 2520–2532. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Routledge: London, UK, 2012; ISBN 1136571205. [Google Scholar]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Xu, Z.; Bai, Y.; Bai, S.H. Biochar Application for Enhancing Water and Nitrogen Use Efficiency of Understory Acacia Species in a Suburban Native Forest Subjected to Nitrogen Deposition in Southeast Queensland. Plant Soil 2024, 504, 607–624. [Google Scholar] [CrossRef]
- Ghosh, D.; Page-Dumroese, D.S.; Han, H.; Anderson, N. Role of Biochar Made from Low-value Woody Forest Residues in Ecological Sustainability and Carbon Neutrality. Soil Sci. Soc. Am. J. 2025, 89, e20793. [Google Scholar] [CrossRef]
- Horák, J.; Tuf, I.H.; Mock, A.; Rada, P.; Tejnecký, V.; Marečková, M. Legacy of Traditional Forest Management: The Impact of Historical Charcoal Burning on Soil Biodiversity after Centuries. For. Ecol. Manag. 2024, 572, 122299. [Google Scholar] [CrossRef]
- Gogoi, L.; Narzari, R.; Gogoi, N.; Farooq, M.; Kataki, R. Biochar Production and Application in Forest Soils—A Critical Review. Phyton 2019, 88, 349–365. [Google Scholar] [CrossRef]
- Weng, Z.; Van Zwieten, L.; Singh, B.P.; Tavakkoli, E.; Joseph, S.; Macdonald, L.M.; Rose, T.J.; Rose, M.T.; Kimber, S.W.L.; Morris, S. Biochar Built Soil Carbon over a Decade by Stabilizing Rhizodeposits. Nat. Clim. Change 2017, 7, 371–376. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in Climate Change Mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of Soil Carbon Sequestration to Climate-smart Agriculture Practices: A Meta-analysis. Glob. Change Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Thomas, S.C.; Gale, N. Biochar and Forest Restoration: A Review and Meta-Analysis of Tree Growth Responses. New For. 2015, 46, 931–946. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Sun, X.; Eufrade-Junior, H.d.J. Biochar Impact on Soil Health and Tree-Based Crops: A Review. Biochar 2025, 7, 51. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, T.; Pumpanen, J.; Palviainen, M.; Zhou, X.; Kulmala, L.; Bruckman, V.J.; Köster, E.; Köster, K.; Aaltonen, H. Short-Term Effects of Biochar on Soil CO2 Efflux in Boreal Scots Pine Forests. Ann. For. Sci. 2020, 77, 59. [Google Scholar] [CrossRef]
- Hawthorne, I.; Johnson, M.S.; Jassal, R.S.; Black, T.A.; Grant, N.J.; Smukler, S.M. Application of Biochar and Nitrogen Influences Fluxes of CO2, CH4 and N2O in a Forest Soil. J. Environ. Manag. 2017, 192, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Sarauer, J.L.; Page-Dumroese, D.S.; Coleman, M.D. Soil Greenhouse Gas, Carbon Content, and Tree Growth Response to Biochar Amendment in Western United States Forests. GCB Bioenergy 2019, 11, 660–671. [Google Scholar] [CrossRef]
- Grau-Andrés, R.; Pingree, M.R.A.; Öquist, M.G.; Wardle, D.A.; Nilsson, M.; Gundale, M.J. Biochar Increases Tree Biomass in a Managed Boreal Forest, but Does Not Alter N2O, CH4, and CO2 Emissions. GCB Bioenergy 2021, 13, 1329–1342. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Q.; Liu, G.; Cowie, A.L.; Bei, Q.; Liu, B.; Wang, X.; Ma, J.; Zhu, J.; Xie, Z. Effects of Different Biochars on Pinus Elliottii Growth, N Use Efficiency, Soil N2O and CH4 Emissions and C Storage in a Subtropical Area of China. Pedosphere 2017, 27, 248–261. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Wang, H.; Singh, B.P.; Hu, S.; Luo, Y.; Li, J.; Xiao, Y.; Cai, X.; Li, Y. Responses of Soil Greenhouse Gas Emissions to Different Application Rates of Biochar in a Subtropical Chinese Chestnut Plantation. Agric. For. Meteorol. 2019, 271, 168–179. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, B.; Ren, M.; Wang, Y.; Hu, Y.; Liu, X. Biochar Produced at High Temperature Mitigates N2O Emission and Promotes Nitrogen Retention in Subtropical Forest Soils. GCB Bioenergy 2024, 16, e13132. [Google Scholar] [CrossRef]
- Sackett, T.E.; Basiliko, N.; Noyce, G.L.; Winsborough, C.; Schurman, J.; Ikeda, C.; Thomas, S.C. Soil and Greenhouse Gas Responses to Biochar Additions in a Temperate Hardwood Forest. GCB Bioenergy 2015, 7, 1062–1074. [Google Scholar] [CrossRef]
- Mukherjee, D.; Lim, W.M.; Kumar, S.; Donthu, N. Guidelines for Advancing Theory and Practice through Bibliometric Research. J. Bus. Res. 2022, 148, 101–115. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Zhao, R. Bibliometric Analysis of Research on Soil Health from 1999 to 2018. J. Soils Sediments 2020, 20, 1513–1525. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Zhang, Y. Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022. Agriculture 2023, 13, 1248. [Google Scholar] [CrossRef]
- Abrar, M.M.; Waqas, M.A.; Mehmood, K.; Fan, R.; Memon, M.S.; Khan, M.A.; Siddique, N.; Xu, M.; Du, J. Organic Carbon Sequestration in Global Croplands: Evidenced through a Bibliometric Approach. Front. Environ. Sci. 2025, 13, 1495991. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, Y.; Chen, J.; Yang, L.; Zeng, S.; Su, Y.; Li, J.; He, Q.; Qiu, Q. Global Bibliometric Analysis of Research on the Application of Biochar in Forest Soils. Forests 2023, 14, 2238. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Cocitation Clusters: A Multiple-perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Li, J.; Xu, H.; Ren, M.; Duan, J.; You, W.; Zhou, Y. Knowledge Mapping of Cultural Ecosystem Services Applied on Blue-Green Infrastructure—A Scientometric Review with CiteSpace. Forests 2024, 15, 1736. [Google Scholar] [CrossRef]
- Sun, Y.; Li, L.; Yang, Q.; Zong, B. Visualization of Forest Education Using CiteSpace: A Bibliometric Analysis. Forests 2025, 16, 985. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The Effect of Fire on Soil Organic Matter—A Review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef] [PubMed]
- De Coninck, H.; Revi, A.; Babiker, M.; Bertoldi, P.; Buckeridge, M.; Cartwright, A.; Dong, W.; Ford, J.; Fuss, S.; Hourcade, J.-C. Strengthening and Implementing the Global Response. In Global Warming of 1.5 C: Summary for Policy Makers; IPCC—The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; pp. 313–443. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 1–13. [Google Scholar]
- Sherman, L.A.; Page-Dumroese, D.S.; Coleman, M.D. Idaho Forest Growth Response to Post-thinning Energy Biomass Removal and Complementary Soil Amendments. GCB Bioenergy 2018, 10, 246–261. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar Stability in Soil: Meta-analysis of Decomposition and Priming Effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, Y.; Luo, Y.; Li, Y.; Ge, T.; Wang, Y.; Wang, H.; Yu, B.; Song, X.; Chen, J. Linking Soil Carbon Availability, Microbial Community Composition and Enzyme Activities to Organic Carbon Mineralization of a Bamboo Forest Soil Amended with Pyrogenic and Fresh Organic Matter. Sci. Total Environ. 2021, 801, 149717. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, A.J.; Soong, R.; Schurman, J.S.; Thomas, S.C.; Simpson, M.J. Biochar Amendment and Phosphorus Fertilization Altered Forest Soil Microbial Community and Native Soil Organic Matter Molecular Composition. Biogeochemistry 2016, 130, 227–245. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, A.J.; Soong, R.; Simpson, M.J. Shifts in Microbial Community and Water-Extractable Organic Matter Composition with Biochar Amendment in a Temperate Forest Soil. Soil Biol. Biochem. 2015, 81, 244–254. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, H.; Chu, M.; Zhang, C.; Tang, J.; Chang, S.X.; Mašek, O.; Ok, Y.S. Biochar Affects Greenhouse Gas Emissions in Various Environments: A Critical Review. Land Degrad. Dev. 2022, 33, 3327–3342. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Chang, S.X.; Yang, Y.; Fu, S.; Jiang, P.; Luo, Y.; Yang, M.; Chen, Z.; Hu, S. Biochar Reduces Soil Heterotrophic Respiration in a Subtropical Plantation through Increasing Soil Organic Carbon Recalcitrancy and Decreasing Carbon-Degrading Microbial Activity. Soil Biol. Biochem. 2018, 122, 173–185. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of Microbial Communities to Biochar-Amended Soils: A Critical Review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Xie, Y.; Zeng, Y.; Li, K.; Hu, L. Improving Soil Carbon Sequestration Stability in Siraitia Grosvenorii Farmland through Co-Application of Rice Straw and Its Biochar. Front. Plant Sci. 2024, 15, 1470486. [Google Scholar] [CrossRef]
- Xu, L.; Deng, X.; Ying, J.; Zhou, G.; Shi, Y. Silicate Fertilizer Application Reduces Soil Greenhouse Gas Emissions in a Moso Bamboo Forest. Sci. Total Environ. 2020, 747, 141380. [Google Scholar] [CrossRef] [PubMed]
- Aponte, H.; Meli, P.; Butler, B.; Paolini, J.; Matus, F.; Merino, C.; Cornejo, P.; Kuzyakov, Y. Meta-Analysis of Heavy Metal Effects on Soil Enzyme Activities. Sci. Total Environ. 2020, 737, 139744. [Google Scholar] [CrossRef]
- Elzobair, K.A.; Stromberger, M.E.; Ippolito, J.A.; Lentz, R.D. Contrasting Effects of Biochar versus Manure on Soil Microbial Communities and Enzyme Activities in an Aridisol. Chemosphere 2016, 142, 145–152. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar Increases Soil Microbial Biomass with Changes in Extra-and Intracellular Enzyme Activities: A Global Meta-Analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Zhao, Y.; Zhang, C.; Jin, Z.; Shan, S.; Ping, L. Effects of Biochar Application on Enzyme Activities in Tea Garden Soil. Front. Bioeng. Biotech. 2021, 9, 728530. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldívar, R. Soil Carbon Sequestration–An Interplay between Soil Microbial Community and Soil Organic Matter Dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Kan, Z.; Liu, W.; Liu, W.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H. Mechanisms of Soil Organic Carbon Stability and Its Response to No-till: A Global Synthesis and Perspective. Glob. Change Biol. 2022, 28, 693–710. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, S.B.; Van Groenigen, K.J.; Allison, S.D.; Hungate, B.A.; Schwartz, E.; Koch, G.W.; Kolka, R.K.; Dijkstra, P. Accelerated Microbial Turnover but Constant Growth Efficiency with Warming in Soil. Nat. Clim. Change 2014, 4, 903–906. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of Mechanisms and Quantification of Priming Effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Liu, H.; Miao, Y.; Chen, Y.; Shen, Y.; You, Y.; Wang, Z.; Gang, C. Responses of Soil Greenhouse Gas Fluxes to Land Management in Forests and Grasslands: A Global Meta-Analysis. Sci. Total Environ. 2025, 967, 178773. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, Y.; Zhou, G.; Shi, Y. Biochar-Based Compound Fertilizers Enhances Carbon Sequestration and Mitigates Greenhouse Gas Emissions in Moso Bamboo Forests. GCB Bioenergy 2025, 17, e70056. [Google Scholar] [CrossRef]
- Zhou, J.; Delgado-Baquerizo, M.; Vancov, T.; Liu, Y.; Zhou, X.; Chen, J.; Fang, Y.; Liu, S.; Yu, B.; Zhou, G. Biochar Mitigates Nitrogen Deposition-Induced Enhancement of Soil N2O Emissions in a Subtropical Forest. Biol. Fertil. Soils 2025. [Google Scholar] [CrossRef]
- Sun, N.; Sarkar, B.; Li, S.; Tian, Y.; Sha, L.; Gao, Y.; Luo, X.; Yang, X. Biochar Addition Increased Soil Carbon Storage but Did Not Exacerbate Soil Carbon Emission in Young Subtropical Plantation Forest. Forests 2024, 15, 917. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, C.; Kuzyakov, Y.; Vancov, T.; Fang, Y.; Song, X.; Zhou, X.; Jiang, Z.; Ge, T.; Xu, L. Biochar-Based Urea Increases Soil Methane Uptake in a Subtropical Forest. Geoderma 2024, 449, 116994. [Google Scholar] [CrossRef]
- Li, Q.; Cui, K.; Lv, J.; Zhang, J.; Peng, C.; Li, Y.; Gu, Z.; Song, X. Biochar Amendments Increase Soil Organic Carbon Storage and Decrease Global Warming Potentials of Soil CH4 and N2O under N Addition in a Subtropical Moso Bamboo Plantation. For. Ecosyst. 2022, 9, 100054. [Google Scholar] [CrossRef]
- Xu, L.; Fang, H.; Deng, X.; Ying, J.; Lv, W.; Shi, Y.; Zhou, G.; Zhou, Y. Biochar Application Increased Ecosystem Carbon Sequestration Capacity in a Moso Bamboo Forest. For. Ecol. Manag. 2020, 475, 118447. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Chen, J.; Müller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of Biochar Application in Forest Ecosystems on Soil Properties and Greenhouse Gas Emissions: A Review. J. Soils Sediments 2018, 18, 546–563. [Google Scholar] [CrossRef]
- Sarre, A. Global Forest Resources Assessment, 2020: Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; ISBN 9251329745. [Google Scholar]
- Lehmann, J.; Pereira da Silva, J., Jr.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient Availability and Leaching in an Archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Wang, B.; Gao, B.; Fang, J. Recent Advances in Engineered Biochar Productions and Applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2158–2207. [Google Scholar] [CrossRef]
- Johnson Jeyaraj, N.; Sankararajan, V. Water Hyacinth Biomass-Based Biochar: Preparation and Characterizations for Sustainable Soil Amendment. Int. Rev. Appl. Sci. Eng. 2025, 16, 182–192. [Google Scholar] [CrossRef]
- Gaur, L.; Pooniat, P. Optimization, Characterisation and Evaluation of Biochar Obtained from Biomass of Invasive Weed Crotalaria Burhia. Nat. Environ. Pollut. Technol. 2024, 23, 1995–2008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Cao, Z.; Guo, Y.; Li, T.; Jiao, L.; Bai, Y.; Liu, C. Biochar Application for Soil Carbon Sequestration and Greenhouse Gas Mitigation in Forest Ecosystems: A Bibliometric Analysis Using CiteSpace. Forests 2025, 16, 1454. https://doi.org/10.3390/f16091454
Xu X, Cao Z, Guo Y, Li T, Jiao L, Bai Y, Liu C. Biochar Application for Soil Carbon Sequestration and Greenhouse Gas Mitigation in Forest Ecosystems: A Bibliometric Analysis Using CiteSpace. Forests. 2025; 16(9):1454. https://doi.org/10.3390/f16091454
Chicago/Turabian StyleXu, Xiangrui, Zeyu Cao, Yang Guo, Tong Li, Linshen Jiao, Yu Bai, and Cheng Liu. 2025. "Biochar Application for Soil Carbon Sequestration and Greenhouse Gas Mitigation in Forest Ecosystems: A Bibliometric Analysis Using CiteSpace" Forests 16, no. 9: 1454. https://doi.org/10.3390/f16091454
APA StyleXu, X., Cao, Z., Guo, Y., Li, T., Jiao, L., Bai, Y., & Liu, C. (2025). Biochar Application for Soil Carbon Sequestration and Greenhouse Gas Mitigation in Forest Ecosystems: A Bibliometric Analysis Using CiteSpace. Forests, 16(9), 1454. https://doi.org/10.3390/f16091454