A Multiscale Investigation of Cross-Sectional Shrinkage in Bamboo Culms Using Natural-Speckle Digital Image Correlation During Drying
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Moisture Content (MC)
3.2. Shrinkage Behavior Measured Manually
3.3. Deformation Analysis by DIC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fahim, M.; Haris, M.; Khan, W.; Zaman, S. Bamboo as a Construction Material: Prospects and Challenges. Adv. Sci. Technol. Res. J. 2022, 16, 165–175. [Google Scholar] [CrossRef]
- Simi, A.; Shirehjini, R.M.; Shi, D.; Demartino, C.; Li, Z. A Review on Round Bamboo Structural Applications and Perspectives. In 2019 International Bamboo Construction Competition; Springer: Cham, Switzerland, 2022; pp. 29–40. ISBN 978-3-030-91990-0. [Google Scholar]
- Akinlabi, E.T.; Anane-Fenin, K.; Akwada, D.R. Applications of Bamboo. In Bamboo; Springer International Publishing: Cham, Switzerland, 2017; pp. 179–219. ISBN 978-3-319-56807-2. [Google Scholar]
- Chaowana, K.; Sungkaew, S.; Chaowana, P. Bamboo—A Sustainable Building Material. In Multifaceted Bamboo: Engineered Products and Other Applications; Md Tahir, P., Lee, S.H., Osman Al-Edrus, S.S., Uyup, M.K.A., Eds.; Springer Nature: Singapore, 2023; pp. 85–110. ISBN 978-981-19-9327-5. [Google Scholar]
- Hauptman, J.; Haghnazar, R.; Marggraf, G.; Ashjazadeh, Y. Lightly Modifying Thick-Walled Timber Bamboo: An Overview. In Bamboo and Sustainable Construction; Palombini, F.L., Nogueira, F.M., Eds.; Springer Nature: Singapore, 2023; pp. 157–183. ISBN 978-981-99-0232-3. [Google Scholar]
- Su, N.; Fang, C.; Yu, Z.; Zhou, H.; Wang, X.; Tang, T.; Zhang, S.; Fei, B. Effects of Rosin Treatment on Hygroscopicity, Dimensional Stability, and Pore Structure of Round Bamboo Culm. Constr. Build. Mater. 2021, 287, 123037. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y.; Ye, C.; Lin, X.; Su, N.; Fei, B. Improving the Dimensional Stability of Round Bamboo by Environment-Friendly Modified Rosin. Constr. Build. Mater. 2023, 365, 130078. [Google Scholar] [CrossRef]
- Lv, H.-F.; Ma, X.-X.; Zhang, B.; Chen, X.-F.; Liu, X.-M.; Fang, C.-H.; Fei, B.-H. Microwave-Vacuum Drying of Round Bamboo: A Study of the Physical Properties. Constr. Build. Mater. 2019, 211, 44–51. [Google Scholar] [CrossRef]
- Xu, J.; He, S.; Li, J.; Yu, H.; Zhao, S.; Chen, Y.; Ma, L. Effect of Vacuum Freeze-Drying on Enhancing Liquid Permeability of Moso Bamboo. BioResources 2018, 13, 4159–4174. [Google Scholar] [CrossRef]
- Chang, F.; Liu, Y.; Zhang, B.; Fu, W.; Jiang, P.; Zhou, J. Factors Affecting the Temperature Increasing Rate in Arc-Shaped Bamboo Pieces during High-Frequency Heating. BioResources 2020, 15, 2656–2667. [Google Scholar] [CrossRef]
- Xue, Z.; Sun, F.; Liu, C.; Shang, L.; Yang, S. Enhancing Bamboo Properties through Rapid Steam Heat Treatment: A Study on Physical and Mechanical Performance. Constr. Build. Mater. 2025, 473, 140990. [Google Scholar] [CrossRef]
- Sain, A.; Gaur, A.; Khichad, J.S.; Somani, P. Treatment of Bamboo for Sustainable Construction Practise: A Comprehensive Review. IOP Conf. Ser. Earth Environ. Sci 2024, 1326, 12049. [Google Scholar] [CrossRef]
- Eder, M.; Schäffner, W.; Burgert, I.; Fratzl, P. Wood and the Activity of Dead Tissue. Adv. Mater. 2021, 33, 2001412. [Google Scholar] [CrossRef]
- Garcia, R.A.; Rosero-Alvarado, J.; Hernández, R.E. Full-Field Moisture-Induced Strains of the Different Tissues of Tamarack and Red Oak Woods Assessed by 3D Digital Image Correlation. Wood Sci. Technol. 2020, 54, 139–159. [Google Scholar] [CrossRef]
- Zhan, T.; Lyu, J.; Eder, M. In Situ Observation of Shrinking and Swelling of Normal and Compression Chinese Fir Wood at the Tissue, Cell and Cell Wall Level. Wood Sci. Technol. 2021, 55, 1359–1377. [Google Scholar] [CrossRef]
- Patera, A.; Derome, D.; Griffa, M.; Carmeliet, J. Hysteresis in Swelling and in Sorption of Wood Tissue. J. Struct. Biol. 2013, 182, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Rafsanjani, A.; Derome, D.; Wittel, F.K.; Carmeliet, J. Computational Up-Scaling of Anisotropic Swelling and Mechanical Behavior of Hierarchical Cellular Materials. Compos. Sci. Technol. 2012, 72, 744–751. [Google Scholar] [CrossRef]
- Do Amaral, L.M.; Molari, L.; Savastano, H. Swelling and Shrinking Behaviour of Bamboo and Its Application on a Hygro-Mechanical Model. Wood Sci. Technol. 2025, 59, 36. [Google Scholar] [CrossRef]
- Chen, Q.; Fang, C.; Wang, G.; Ma, X.; Chen, M.; Zhang, S.; Dai, C.; Fei, B. Hygroscopic Swelling of Moso Bamboo Cells. Cellulose 2020, 27, 611–620. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, L.; Mi, B.; Lei, Y.; Yan, L.; Fei, B. Synergistic Effects of Bamboo Cells during Shrinkage Process. Ind. Crops Prod. 2023, 193, 116232. [Google Scholar] [CrossRef]
- Huang, B.; Wang, X.; Chen, L.; Su, N.; Liu, L.; Luan, Y.; Ma, X.; Fei, B.; Fang, C. Impact of the Natural Structure of Cortex and Pith Ring on Water Loss and Deformation in Bamboo Processing. Constr. Build. Mater. 2024, 411, 134396. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, Y.; Chen, K.; Peng, H.; Li, Z.; Jiang, J.; Lyu, J.; Zhan, T. Evaluation of Transverse Shrinking and Swelling of Bamboo Using Digital Image Correlation Technique. Ind. Crops Prod. 2024, 211, 118274. [Google Scholar] [CrossRef]
- Chen, Q.; He, Y.; Jiang, Y.; Qi, J.; Zhang, S.; Huang, X.; Chen, Y.; Xiao, H.; Jia, S.; Xie, J. Effect of Bamboo Nodes on Crack Generation of Round Bamboo and Bamboo-Based Composites during Drying. Eur. J. Wood Wood Prod. 2023, 81, 1201–1210. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Shang, L.; Liu, X.; Ma, J.; Ma, Q.; Tian, G. 3D Visualization of Bamboo Node’s Vascular Bundle. Forests 2021, 12, 1799. [Google Scholar] [CrossRef]
- Schreier, H.; Orteu, J.-J.; Sutton, M.A. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer: Boston, MA, USA, 2009; ISBN 978-0-387-78746-6. [Google Scholar]
- Garcia, R.A.; Rosero-Alvarado, J.; Hernández, R.E. Swelling Strain Assessment of Fiber and Parenchyma Tissues in the Tropical Hardwood Ormosia Coccinea. Wood Sci. Technol. 2020, 54, 1447–1461. [Google Scholar] [CrossRef]
- McKinley, P.; Sinha, A.; Kamke, F.A. Understanding the Effect of Weathering on Adhesive Bonds for Wood Composites Using Digital Image Correlation (DIC). Holzforschung 2019, 73, 155–164. [Google Scholar] [CrossRef]
- Li, L.; Gong, M.; Chui, Y.H.; Schneider, M.; Li, D. Measurement of the Elastic Parameters of Densified Balsam Fir Wood in the Radial-Tangential Plane Using a Digital Image Correlation (DIC) Method. J. Mater. Sci. 2013, 48, 7728–7735. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, H.; Lyu, J.; Zhan, T. Evaluation of Orthotropic Elasticity of Gradient-Structured Bamboo by Microtensile Testing Combined with Digital Image Correlation Technique. Ind. Crops Prod. 2023, 203, 117097. [Google Scholar] [CrossRef]
- Hu, M.; Johansson, M.; Olsson, A.; Oscarsson, J.; Enquist, B. Local Variation of Modulus of Elasticity in Timber Determined on the Basis of Non-Contact Deformation Measurement and Scanned Fibre Orientation. Eur. J. Wood Wood Prod. 2015, 73, 17–27. [Google Scholar] [CrossRef]
- Nagai, H.; Murata, K.; Nakano, T. Strain Analysis of Lumber Containing a Knot during Tensile Failure. J. Wood Sci. 2011, 57, 114–118. [Google Scholar] [CrossRef]
- Tinkler-Davies, B.; Shah, D.U. Digital Image Correlation Analysis of Laminated Bamboo under Transverse Compression. Mater. Lett. 2021, 283, 128883. [Google Scholar] [CrossRef]
- Dahle, G.A. Influence of Bark on the Mapping of Mechanical Strain Using Digital Image Correlation. Wood Sci. Technol. 2017, 51, 1469–1477. [Google Scholar] [CrossRef]
- Davim, J.P.; Campos Rubio, J.; Abrão, A.M. Delamination Assessment after Drilling Medium-Density Fibreboard (MDF) by Digital Image Analysis. Holzforschung 2007, 61, 294–300. [Google Scholar] [CrossRef]
- Hass, P.; Wittel, F.K.; McDonald, S.A.; Marone, F.; Stampanoni, M.; Herrmann, H.J.; Niemz, P. Pore Space Analysis of Beech Wood: The Vessel Network. Holzforschung 2010, 64. [Google Scholar] [CrossRef]
- Garcia, R.A.; Rosero-Alvarado, J.; Hernández, R.E. Moisture-Induced Strains in Earlywood and Latewood of Mature and Juvenile Woods in Jack Pine from 3D-DIC Measurements. Wood Mater. Sci. Eng. 2023, 18, 570–579. [Google Scholar] [CrossRef]
- Peng, M.; Ho, Y.-C.; Wang, W.-C.; Chui, Y.H.; Gong, M. Measurement of Wood Shrinkage in Jack Pine Using Three Dimensional Digital Image Correlation (DIC). Holzforschung 2012, 66, 639–643. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, Z.; Zhou, Y.; Gao, X.; Zhou, F.; Cao, H. Moisture-Related Shrinkage Behavior of Wood at Macroscale and Cellular Level. Polymers 2022, 14, 5045. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Liu, H.; Zhu, J.; Sun, F.; Peng, H.; Lyu, J. A Close-up View of the Intra-Ring Variation of Transverse Shrinking and Swelling in Chinese Fir Using Digital Image Correlation without Artificial Speckle Pattern. Wood Sci. Technol. 2023, 57, 1369–1383. [Google Scholar] [CrossRef]
- GB/T 15780-1995; Testing Methods for Physical and Mechanical Properties of Bamboos. Standards Press of China: Beijing, China, 1995.
- Derome, D.; Griffa, M.; Koebel, M.; Carmeliet, J. Hysteretic Swelling of Wood at Cellular Scale Probed by Phase-Contrast X-Ray Tomography. J. Struct. Biol. 2011, 173, 180–190. [Google Scholar] [CrossRef]
- Ramful, R.; Sunthar, T.P.M.; Zhu, W.; Pezzotti, G. Investigating the Underlying Effect of Thermal Modification on Shrinkage Behavior of Bamboo Culm by Experimental and Numerical Methods. Materials 2021, 14, 974. [Google Scholar] [CrossRef]
- Darwis, A.; Iswanto, A.H.; Jeon, W.-S.; Kim, N.-H.; Wirjosentono, B.; Susilowati, A.; Hartono, R. Variation of Quantitative Anatomical Characteristics in the Culm of Belangke Bamboo (Gigantochloa pruriens). BioResources 2020, 15, 6617–6626. [Google Scholar] [CrossRef]
- Nogata, F.; Takahashi, H. Intelligent Functionally Graded Material: Bamboo. Compos. Eng. 1995, 5, 743–751. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, M.; Keten, S.; Coasne, B.; Derome, D.; Carmeliet, J. Hygromechanical Mechanisms of Wood Cell Wall Revealed by Molecular Modeling and Mixture Rule Analysis. Sci. Adv. 2021, 7, eabi8919. [Google Scholar] [CrossRef]
- Huang, P.; Chang, W.-S.; Ansell, M.P.; Chew, Y.M.J.; Shea, A. Density Distribution Profile for Internodes and Nodes of Phyllostachys Edulis (Moso Bamboo) by Computer Tomography Scanning. Constr. Build. Mater. 2015, 93, 197–204. [Google Scholar] [CrossRef]
- Chen, S.-M.; Zhang, S.-C.; Gao, H.-L.; Wang, Q.; Zhou, L.; Zhao, H.-Y.; Li, X.-Y.; Gong, M.; Pan, X.-F.; Cui, C.; et al. Mechanically Robust Bamboo Node and Its Hierarchically Fibrous Structural Design. Natl. Sci. Rev. 2023, 10, nwac195. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Li, J.; Wang, H. Unraveling the Inhibition of Bamboo Node on Dry Shrinkage: Insights from the Specific Vascular Structure of Bamboo Node. Ind. Crops Prod. 2024, 211, 118193. [Google Scholar] [CrossRef]
Sample | 0 h (M ± SD, n) 1 | 2 h (M ± SD, n) | 6 h (M ± SD, n) | 12 h (M ± SD, n) |
---|---|---|---|---|
NR | 68.35 ± 2.08, 18 | 21.35 ± 3.63, 18 | 0.69 ± 0.23, 18 | 0.17 ± 0.21, 18 |
TZ | 60.24 ± 1.04, 17 | 7.95 ± 1.87, 17 | 0.55 ± 0.24, 17 | 0.07 ± 0.33, 17 |
IR | 58.74 ± 1.22, 18 | 14.73 ± 2.08, 18 | 0.66 ± 0.33, 18 | 0.04 ± 0.30, 18 |
Total | 62.48 ± 4.54, 53 | 14.80 ± 6.08, 53 | 0.63 ± 0.27, 53 | 0.09 ± 0.28, 53 |
Duration | Welch’s F 1 | df1 | df2 | p-Value | Post Hoc Comparisons (Games-Howell) |
---|---|---|---|---|---|
0 h | 143.467 | 2 | 31.965 | 0.000 | NR > TZ > IR ** |
2 h | 112.220 | 2 | 32.043 | 0.000 | NR > IR > TZ ** |
6 h | 1.751 | 2 | 32.744 | 0.189 | n.s. |
12 h | 1.243 | 2 | 32.569 | 0.302 | n.s. |
Section | Layer | 2 h (M ± SD, n) * | 6 h (M ± SD, n) | 12 h (M ± SD, n) | 24 h (M ± SD, n) |
---|---|---|---|---|---|
NR | External | −5.30 ± 0.45, 11 | −8.73 ± 0.35, 11 | −8.19 ± 0.33, 11 | −8.32 ± 0.35, 11 |
Middle | −4.59 ± 0.47, 11 | −6.27 ± 0.46, 11 | −6.37 ± 0.44, 11 | −6.46 ± 0.41, 11 | |
Internal | −4.50 ± 0.71, 11 | −5.40 ± 0.77, 11 | −5.43 ± 0.75, 11 | −5.50 ± 0.77, 11 | |
TZ | External | −6.27 ± 0.31, 14 | −8.28 ± 0.33, 14 | −7.85 ± 0.31, 14 | −7.97 ± 0.30, 14 |
Middle | −4.13 ± 0.16, 14 | −4.91 ± 0.21, 14 | −5.04 ± 0.25, 14 | −5.12 ± 0.22, 14 | |
Internal | −3.18 ± 0.48, 14 | −3.46 ± 0.56, 14 | −3.45 ± 0.57, 14 | −3.54 ± 0.59, 14 | |
IR | External | −5.67 ± 0.21, 12 | −8.47 ± 0.28, 12 | −8.04 ± 0.27, 12 | −8.18 ± 0.26, 12 |
Middle | −3.77 ± 0.32, 12 | −4.85 ± 0.27, 12 | −5.05 ± 0.33, 12 | −5.18 ± 0.30, 12 | |
Internal | −2.31 ± 0.21, 12 | −2.86 ± 0.21, 12 | −2.95 ± 0.24, 12 | −3.02 ± 0.27, 12 |
Duration | Welch’s F | df1 1 | df2 | p-Value | Post Hoc Comparisons (Games-Howell) |
---|---|---|---|---|---|
External | 0.016 | 2 | 85.303 | 0.984 | NR > TZ > IR |
Middle | 32.085 | 2 | 82.998 | <0.01 | NR > TZ **, NR > IR **, TZ > IR |
Internal | 161.740 | 2 | 85.728 | <0.01 | NR > TZ > IR ** |
Duration | Welch’s F | df1 1 | df2 | p-Value | Post Hoc Comparisons (Games-Howell) |
---|---|---|---|---|---|
NR | 47.239 | 2 | 82.926 | <0.01 | External > Middle > Internal ** |
TZ | 481.817 | 2 | 104.709 | <0.01 | External > Middle > Internal ** |
IZ | 476.058 | 2 | 80.763 | <0.01 | External > Middle > Internal ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Bao, Y.; Li, N.; Hou, J. A Multiscale Investigation of Cross-Sectional Shrinkage in Bamboo Culms Using Natural-Speckle Digital Image Correlation During Drying. Forests 2025, 16, 1444. https://doi.org/10.3390/f16091444
Huang C, Bao Y, Li N, Hou J. A Multiscale Investigation of Cross-Sectional Shrinkage in Bamboo Culms Using Natural-Speckle Digital Image Correlation During Drying. Forests. 2025; 16(9):1444. https://doi.org/10.3390/f16091444
Chicago/Turabian StyleHuang, Chengjian, Yongjie Bao, Neng Li, and Junfeng Hou. 2025. "A Multiscale Investigation of Cross-Sectional Shrinkage in Bamboo Culms Using Natural-Speckle Digital Image Correlation During Drying" Forests 16, no. 9: 1444. https://doi.org/10.3390/f16091444
APA StyleHuang, C., Bao, Y., Li, N., & Hou, J. (2025). A Multiscale Investigation of Cross-Sectional Shrinkage in Bamboo Culms Using Natural-Speckle Digital Image Correlation During Drying. Forests, 16(9), 1444. https://doi.org/10.3390/f16091444