Predicting the Dynamic Modulus of Elasticity of Logs at the Standing Tree Stage: A Site-Specific Approach to Streamline Log Trading
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Data Collection
2.2.1. Tree and Log Data
2.2.2. Site Condition Data
2.3. Method of Analysis
2.3.1. Detailed Site Conditions, Growth Indicators, and
2.3.2. Developing a Model to Predict the of Logs in Order to Select the Optimal Tree for Harvesting and Determine Sales Destination Before Harvest
3. Results
3.1. Detailed Site Conditions, Growth Indicators, and
3.2. Developing a Model to Predict the of Logs in Order to Select the Optimal Tree for Harvesting and Determine Sales Destination Before Harvest
4. Discussion
4.1. Detailed Site Conditions, Growth Indicators, and
4.2. Developing a Model to Predict the of Logs in Order to Select the Optimal Tree for Harvesting and Determine Sales Destination Before Harvest
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenz, P.; Bernier-Cardou, M.; MacKay, J.; Beaulieu, J. Can wood properties be predicted from the morphological traits of a tree? A canonical correlation study of plantation-grown white spruce. Can. J. For. Res. 2012, 42, 1518–1529. [Google Scholar] [CrossRef]
- Aoki, K. Current State and Future Tasks of Timber and Wood-Based Materials for Engineered Wood Products. J. Jpn. Wood Res. Soc. 2015, 61, 169–173. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF). Japanese Agricultural Standards; Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2012. Available online: https://www.maff.go.jp/j/jas/jas_kikaku/pdf/kikaku_55.pdf (accessed on 24 June 2025).
- Wagner, L.; Bader, T.K.; Auty, D.; Grabner, M.; Evans, R. Key Parameters Controlling Stiffness Variability within Trees: A Multiscale Experimental–Numerical Approach. Trees 2013, 27, 321–336. [Google Scholar] [CrossRef]
- Kishi, K.; Kojiro, K.; Akashi, H.; Adachi, W.; Fuchigami, Y.; Furuta, Y. Development of a simple strength grade prediction method for lumber products at the log stage: Verification of the effectiveness of prediction method and log measurement cost when manufacturing lamina from logs produced in Kyoto Prefecture. J. Wood Sci. 2022, 68, 124–131. [Google Scholar] [CrossRef]
- Hassegawa, M.; Savard, M.; Lenz, P.R.N.; Duchateau, E.; Gélinas, N.; Bousquet, J.; Achim, A. White spruce wood quality for lumber products: Priority traits and their enhancement through tree improvement. Forestry 2020, 93, 16–37. [Google Scholar] [CrossRef]
- Sasaki, H.; Sumiya, K.; Takino, S.P. Mechanical Properties of Thirty-six Varieties of Cryptomeria. Mokuzai Kenkyu Shiryo 1983, 17, 192–205. [Google Scholar]
- Ikeda, K.; Arima, K. Quality evaluation of standing trees by a stress-wave propagation method and its application II: Evaluation of Sugi stands and application to production of Sugi (Cryptomeria japonica D. Don) structural square sawn timber. J. Wood Sci. 2000, 46, 189–196. [Google Scholar]
- Moore, J.R.; Lyon, A.J.; Searles, G.J.; Vihermaa, L.E. The effects of site and stand factors on the tree and wood quality of sitka spruce growing in the United Kingdom. Silva Fenn. 2009, 43, 195. [Google Scholar] [CrossRef]
- Butler, M.A.; Dahlen, J.; Eberhardt, T.L.; Clark, A.; Anthony, R.W.; Daniels, R.F. Acoustic evaluation of Loblolly pine tree- and lumber-length logs allows for segregation of lumber modulus of elasticity, not for modulus of rupture. Ann. For. Sci. 2017, 74, 20. [Google Scholar] [CrossRef]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef]
- Wessels, C.B.; Malan, F.S.; Rypstra, T. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur. J. For. Res. 2011, 130, 881–893. [Google Scholar] [CrossRef]
- Bucur, V. A review on acoustics of wood as a tool for quality assessment. Forests 2023, 14, 1545. [Google Scholar] [CrossRef]
- Auty, D.; Achim, A.; Macdonald, E.; Cameron, A.D.; Gardiner, B.A. Models for predicting clearwood mechanical properties of Scots pine. For. Sci. 2016, 62, 403–413. [Google Scholar] [CrossRef]
- Viguier, J.; Jehl, A.; Collet, R.; Bleron, L.; Meriaudeau, F. Improving Strength Grading of Timber by Grain Angle Measurement and Mechanical Modeling. Wood Mater. Sci. Eng. 2014, 10, 145–156. [Google Scholar] [CrossRef]
- Harada, K.; Nakata, Y.; Nakazawa, M.; Kojiro, K.; Nagashima, K. Empirical relationships of the characteristics of standing trees with the dynamic modulus of elasticity of Japanese Cedar (Cryptomeria japonica) logs: Case study in the Kyoto Prefecture. Forests 2025, 16, 244. [Google Scholar] [CrossRef]
- Teraoka, Y.; Takata, K.; Koga, S. Use of trunk-MOE of Japanese Cedar as forestry management information. J. For. Plan. 2001, 35, 21–29. [Google Scholar] [CrossRef]
- Tsushima, S.; Koga, S.; Oda, K.; Shiraishi, S. Effects of initial spacing on growth and wood properties of Sugi (Cryptomeria japonica) cutting cultivars. J. Wood Sci. 2006, 52, 196–205. [Google Scholar] [CrossRef]
- Burawska-Kupniewska, I.; Mańkowski, P.; Krzosek, S. Mechanical properties of machine stress graded sawn timber depending on the log type. Forests 2021, 12, 532. [Google Scholar] [CrossRef]
- Kijidani, Y.; Kitahara, R. Vertical variation in wood properties of the Obi-Sugi (Cryptomeria japonica) cultivar. J. Wood Sci. 2009, 55, 198–206. [Google Scholar] [CrossRef]
- Krenn, T.; Berthold, D.; Ritter, N.; Kietz, B. Effects of growth and treatment conditions on the quality of Norway Spruce (Picea abies L.) sawn timber. Forests 2024, 15, 1588. [Google Scholar] [CrossRef]
- Nakao, K.; Kabeya, D.; Awaya, Y.; Yamasaki, S.; Tsuyama, I.; Yamagawa, H.; Miyamoto, K.; Araki, M.G. Assessing the regional-scale distribution of height growth of Cryptomeria japonica stands using airborne LiDAR, forest GIS database and machine learning. For. Ecol. Manag. 2022, 506, 119953. [Google Scholar] [CrossRef]
- Teraoka, Y.; Masutani, T.; Imada, M. Site index estimation method for forest management: Estimating tree height using topographic factors readable from topographic maps. J. Fac. Agric. Kyushu Univ. 1991, 45, 125–133. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Japan Meteorological Agency. Transport and Tourism. Annual Climate Data for Kyoto Prefecture for the Year 2023. Available online: https://www.data.jma.go.jp/obd/stats/etrn/view/annually_s.php?prec_no=61&block_no=47759&year=2023&month=&day=&view= (accessed on 18 June 2025).
- Forestry Agency. Annual Report on Forest and Forestry in Japan, Fiscal Year 2023 (R5); Forestry Agency, Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2024. Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/r5hakusyo/attach/pdf/zenbun-8.pdf (accessed on 18 June 2025).
- Ministry of Agriculture, Forestry and Fisheries. Lumber Statistics Survey, 2023 (R5); e-Stat, Government of Japan: Tokyo, Japan, 2024. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00500217&tstat=000001014476&cycle=7&year=20230&month=0&tclass1=000001014477&tclass2=000001215720 (accessed on 18 June 2025).
- Koizumi, A. Variation in Modulus of Elasticity in Coniferous Plantation Timber. Mokuzai Kogyo 1998, 53, 206–211. [Google Scholar]
- Wang, X. Acoustic measurements on trees and logs: A review and analysis. Wood Sci. Technol. 2013, 47, 965–975. [Google Scholar] [CrossRef]
- Gallego, A.; Ripoll, M.A.; Timbolmas, C.; Rescalvo, F.; Suarez, E.; Valverde, I.; Rodríguez, M.; Navarro, F.B.; Merlo, E. Modulus of elasticity of I-214 young poplar wood from standing trees to sawn timber: Influence of the age and stand density. Eur. J. Wood Prod. 2021, 79, 1225–1239. [Google Scholar] [CrossRef]
- Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. Scots Pine and Norway Spruce wood properties at sites with different stand densities. Forests 2020, 11, 587. [Google Scholar] [CrossRef]
- Esri. Curvature Function—ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/curvature-function.htm (accessed on 1 July 2025).
- Nagashima, K. Forest management based on site suitability: A case study of Odai Town, Mie Prefecture. In Landscape Ecology for Sustainable Society; Hong, S.K., Nakagoshi, N., Eds.; Springer: Tokyo, Japan, 2017; pp. 181–196. [Google Scholar]
- Bauer, D.F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 1972, 67, 687–690. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods, 3rd ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Steel, R.G.D. Some rank sum multiple comparison tests. Biometrics 1961, 17, 539–552. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ishiguri, F.; Kasai, S.; Yokota, S.; Iizuka, K.; Yoshizawa, N. Wood quality of Sugi (Cryptomeria japonica) grown at four initial spacings. IAWA J. 2005, 26, 375–386. [Google Scholar] [CrossRef]
- Sharma, R.P.; Štefančík, I.; Vacek, Z.; Vacek, S. Generalized nonlinear mixed-effects individual tree diameter increment models for beech forests in Slovakia. Forests 2019, 10, 451. [Google Scholar] [CrossRef]
- Zobel, B.J.; Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer Series in Wood Science; Springer: Berlin, Germany, 1989. [Google Scholar]
- Kollmann, F.F.P.; Côté, W.A., Jr. Principles of Wood Science and Technology: I Solid Wood, 1st ed.; Springer: Berlin, Germany, 1968. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Ahmed, S.; Hilmers, T.; Uhl, E.; Tupinambá-Simões, F.; Bravo, F.; del Río, M.; Pretzsch, H. Crown structure indicates tree secondary growth, competition legacy, and growth potential of dominant species in Europe. Ecol. Indic. 2025, 170, 113074. [Google Scholar] [CrossRef]
- Irwin, L.A.K.; Coops, N.C.; Riofrío, J.; Grubinger, S.G.; Barbeito, I.; Achim, A.; Roeser, D. Prioritizing Commercial thinning: Quantification of growth and competition with high-density drone laser scanning. Forestry 2025, 98, 293–307. [Google Scholar] [CrossRef]
- Cardona, L.; Couillard, P.-L.; Achim, A. Lower wood stiffness in old-growth than in post-cut and post-fire stands indicates forest structure is a key driver of wood properties in Black Spruce. Can. J. For. Res. 2024, 54, 749–761. [Google Scholar] [CrossRef]
- Moore, J.; Achim, A.; Lyon, A.; Mochan, S.; Gardiner, B. Effects of early re-spacing on the physical and mechanical properties of Sitka Spruce structural timber. Forest Ecol. Manag. 2009, 258, 1174–1180. [Google Scholar] [CrossRef]
- Fukatsu, E. Past, present and future of forest tree breeding in Japan: (2) Japanese Cedar—2. Inheritance and acquisition of growth-related traits. J. Jpn. Soc. For. Genet. Tree Breed. 2023, 12, 4. [Google Scholar] [CrossRef]
- Fukuchi, S.; Yoshida, S.; Mizoue, N.; Murakami, T.; Kajisa, T.; Ota, T.; Nagashima, K. Analysis of the planting density toward low-cost forestry: A result from the experimental plots of Obi-Sugi planting density. J. Jpn. For. Soc. 2011, 93, 303–308. [Google Scholar] [CrossRef]
- Barrette, J.; Achim, A.; Auty, D. Impact of intensive forest management practices on wood quality from conifers: Literature review and reflection on future challenges. Curr. For. Rep. 2023, 9, 101–130. [Google Scholar] [CrossRef]
Fixed Effects | Random Effects | ||||||
---|---|---|---|---|---|---|---|
AIC | R2 Fix | R2 Ran | Estimated Coefficients | site index class | bucking position | ||
(Standard Error) | |||||||
Intercept | Scale DBH growth | ||||||
best model | 325 | 0.04 | 0.651 | 8.88 ** (1.02) | −0.360 ** (0.112) | A: −0.596 | Bottom: −0.762 |
B: 0.596 | Top: 0.762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harada, K.; Nakata, Y.; Nakazawa, M.; Kojiro, K.; Nagashima, K. Predicting the Dynamic Modulus of Elasticity of Logs at the Standing Tree Stage: A Site-Specific Approach to Streamline Log Trading. Forests 2025, 16, 1438. https://doi.org/10.3390/f16091438
Harada K, Nakata Y, Nakazawa M, Kojiro K, Nagashima K. Predicting the Dynamic Modulus of Elasticity of Logs at the Standing Tree Stage: A Site-Specific Approach to Streamline Log Trading. Forests. 2025; 16(9):1438. https://doi.org/10.3390/f16091438
Chicago/Turabian StyleHarada, Kiichi, Yasutaka Nakata, Masahiko Nakazawa, Keisuke Kojiro, and Keiko Nagashima. 2025. "Predicting the Dynamic Modulus of Elasticity of Logs at the Standing Tree Stage: A Site-Specific Approach to Streamline Log Trading" Forests 16, no. 9: 1438. https://doi.org/10.3390/f16091438
APA StyleHarada, K., Nakata, Y., Nakazawa, M., Kojiro, K., & Nagashima, K. (2025). Predicting the Dynamic Modulus of Elasticity of Logs at the Standing Tree Stage: A Site-Specific Approach to Streamline Log Trading. Forests, 16(9), 1438. https://doi.org/10.3390/f16091438