Understanding Family Forest Landowners’ Preferences for Carbon Offset Programs in Central Appalachia
Abstract
1. Introduction
2. Theoretical Framework
3. Materials and Methods
3.1. Study Area
3.2. Survey Design and Data
3.3. Empirical Model
4. Results
4.1. Survey Results
4.2. Respondent Demographic and Ownership Characteristics
4.3. DCE Model Results
4.4. Willingness-to-Accept (WTA) Estimates for Program Attributes
5. Discussion
5.1. Theoretical Implications
5.2. Policy Implications
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCE | Discrete Choice Experiment |
FFLs | Family Forest Landowners |
FbCS | Forest-based Climate Solutions |
IFM | Improved Forest Management |
MRV | Measurement, Reporting and Verification |
WTA | Willingness-to-Accept |
WTP | Willingness-to-Pay |
References
- Butler, P.R.; Iverson, L.; Thompson, F.R., III; Brandt, L.; Handler, S.; Janowiak, M.; Shannon, P.D.; Swanston, C.; Karriker, K.; Bartig, J.; et al. Central Appalachians Forest Ecosystem Vulnerability Assessment and Synthesis: A Report from the Central Appalachians Climate Change Response Framework Project; General Technical Report NRS-146; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2015; p. 310.
- Boettner, F.; Clingerman, J.; Mcmoill, R.; Hansen, E.; Hartz, L.; Hereford, A.; Vanderberg, M.; Arano, K.; Deng, J.; Strager, J.; et al. An Assessment of Natural Assets in the Appalachian Region: Forest Resources; Appalachian Regional Commission: Washington, DC, USA, 2014.
- Wu, C.; Coffield, S.R.; Goulden, M.L.; Randerson, J.T.; Trugman, A.T.; Anderegg, W.R.L. Uncertainty in US forest carbon storage potential due to climate risks. Nat. Geosci. 2023, 16, 422–429. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Chegwidden, O.S.; Badgley, G.; Trugman, A.T.; Cullenward, D.; Abatzoglou, J.T.; Hicke, J.A.; Freeman, J.; Hamman, J.J. Future climate risks from stress, insects and fire across US forests. Ecol. Lett. 2022, 25, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Ju, W.; He, W.; Wu, M.; Wang, H.; Wang, J.; Jia, M.; Feng, S.; Zhang, L.; Chen, J.M. A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO 2 retrievals. Earth Syst. Sci. Data 2022, 14, 3013–3037. [Google Scholar] [CrossRef]
- Schwartzman, G. Climate rentierism after coal: Forests, carbon offsets, and post-coal politics in the Appalachian coalfields. J. Peasant Stud. 2022, 49, 924–944. [Google Scholar] [CrossRef]
- Shen, X.; Gatto, P.; Pagliacci, F. Unravelling the role of institutions in market-based instruments: A systematic review on forest carbon mechanisms. Forests 2023, 14, 136. [Google Scholar] [CrossRef]
- Koronka, J.; Ovando, P.; Vergunst, J. Understanding values beyond carbon in the woodland carbon code in Scotland. Trees For. People 2022, 9, 100320. [Google Scholar] [CrossRef]
- Streck, C. Who owns REDD? Carbon markets, carbon rights and entitlements to REDD finance. Forests 2020, 11, 959. [Google Scholar] [CrossRef]
- vonHedemann, N.; Schultz, C.A. U.S. family forest owners’ forest management for climate adaptation: Perspectives from extension and outreach specialists. Front. Clim. 2021, 3, 674718. [Google Scholar] [CrossRef]
- Sass, E.M.; Caputo, J.; Butler, J. United States family forest owners’ awareness of and participation in carbon sequestration programs: Initial findings from the USDA Forest Service national woodland owner survey. For. Sci. 2022, 68, 447–451. [Google Scholar] [CrossRef]
- Markowski-Lindsay, M.; Stevens, T.; Kittredge, D.B.; Butler, B.J.; Catanzaro, P.; Dickinson, B.J. Barriers to Massachusetts forest landowner participation in carbon markets. Ecol. Econ. 2011, 71, 180–190. [Google Scholar] [CrossRef]
- Miller, K.A.; Snyder, S.A.; Kilgore, M.A. An assessment of forest landowner interest in selling forest carbon credits in the Lake States, USA. For. Policy Econ. 2012, 25, 113–122. [Google Scholar] [CrossRef]
- Kelly, E.C.; Gokd, G.J.; Tommaso, J.D. The willingness of non-industrial private forest owners to enter California’s carbon offset market. Environ. Manage. 2017, 60, 882–895. [Google Scholar] [CrossRef] [PubMed]
- White, A.E.; Lutz, D.A.; Howarth, R.B.; Soto, J.R. Small-scale forestry and carbon offset markets: An empirical study of Vermont Current Use forest landowner willingness to accept carbon credit programs. PLoS ONE 2018, 13, e021967. [Google Scholar] [CrossRef] [PubMed]
- Graves, R.A.; Nilesen-Pincus, M.; Haugo, R.D.; Holz, A. Forest carbon incentive programs for non-industrial private forests in Oregon (USA): Impacts of program design on willingness to enroll and landscape-level program outcomes. For. Policy Econ. 2022, 141, 102778. [Google Scholar] [CrossRef]
- Kosenius, A.K. Forest owner attitudes and preferences for voluntary temporary forest conservation. Small-Scale For. 2024, 23, 493–513. [Google Scholar] [CrossRef]
- Juutinen, A.; Kurttila, M.; Pohjanmies, T.; Tolvanen, A.; Kuhlmey, K.; Skudnik, M.; Triplat, M.; Westin, K.; Mäkipaä, R. Forest owners’ preferences for contract-based management to enhance environmental values versus timber production. For. Policy Econ. 2021, 132, 102587. [Google Scholar] [CrossRef]
- Mariyam, D.; Puri, M.; Harihar, A.; Karanth, K.K. Benefits beyond borders: Assessing landowner willingness-to-accept for conservation outside protected areas. Front. Ecol. Evol. 2021, 9, 663043. [Google Scholar] [CrossRef]
- Robinson, C.J.; Renwick, A.R.; May, T.; Gerrard, E.; Foley, R.; Battaglia, M.; Possingham, H.; Griggs, D.; Walker, D. Indigenous benefits and carbon offset schemes: An Australian case study. Environ. Sci. Policy 2016, 56, 129–134. [Google Scholar] [CrossRef]
- Fouqueray, T.; Génin, L.; Trommetter, M.; Frascaria-Lacoste, N. Efficient, sustainable, and multifunctional carbon offsetting to boost forest management: A comparative case study. Forests 2021, 12, 386. [Google Scholar] [CrossRef]
- Pienkowski, T.; Freni Sterrantino, A.; Tedesco, A.M.; Clark, M.; Brancalion, P.H.S.; Jagadish, A.; Mendes, A.; Pugliese de Siqueira, L.; Mills, M. Spatial predictors of landowners’ engagement in the restoration of the Brazilian Atlantic Forest. People Nat. 2025, 7, e10765. [Google Scholar] [CrossRef]
- Bergkvist, J.; Nikoleris, A.; Fors, H.; Jönsson, A.M. Maintenance and enhancement of forest ecosystem services: A non-industrial private forest owner perspective. Eur. J. For. Res. 2024, 143, 169–185. [Google Scholar] [CrossRef]
- Dezember, R. Carbon Offset Market Opens to Small Southern Timberland Owners. Wall Str. J. 2023. Available online: https://www.wsj.com/business/energy-oil/carbon-offset-market-opens-to-small-southern-timberland-owners-2bb4de17?reflink=desktopwebshare_permalink (accessed on 15 July 2025).
- Haya, B.K.; Bernard, T.; Abayo, A.; Rong, X.; So, I.S.; Elias, M. Voluntary Registry Offsets Database v2025-06, Berkeley Carbon Trading Project, University of California, Berkeley. 2025. Available online: https://gspp.berkeley.edu/berkeley-carbon-trading-project/offsets-database (accessed on 25 August 2025).
- Soto, J.R.; Adams, D.C.; Escobedo, F.J. Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA. For. Policy Econ. 2016, 63, 35–42. [Google Scholar] [CrossRef]
- Sharma, S.; Kreye, M.M. Forest owner willingness to accept payment for forest carbon in the United States: A meta-analysis. Forests 2022, 13, 1346. [Google Scholar] [CrossRef]
- Tedersoo, L.; Sepping, J.; Morgunov, A.S.; Kiik, M.; Esop, K.; Rosenvald, R.; Hardwick, K.; Breman, E.; Purdon, R.; Groom, B.; et al. Towards a co-crediting system for carbon and biodiversity. Plants People Planet 2023, 5, e10405. [Google Scholar] [CrossRef]
- Thompson, D.W.; Hansen, E.N. Factors affecting the attitudes of nonindustrial private forest landowners regarding carbon sequestration and trading. J. For. 2012, 110, 129–137. [Google Scholar] [CrossRef]
- Alhassan, M.; Motallebi, M.; Song, B. South Carolina forestland owners’ willingness to accept compensations for carbon sequestration. For. Ecosyst. 2019, 6, 16. [Google Scholar] [CrossRef]
- Khanal, P.N.; Grebner, D.L.; Munn, I.A.; Grado, S.C.; Grala, R.K.; Henderson, J.E. Evaluating non-industrial forest landowner willingness to manage for forest carbon sequestration in the southern United States. For. Policy Econ. 2017, 75, 112–119. [Google Scholar] [CrossRef]
- Wahyudi, R.; Marjaka, W.; Silangen, C.; Fajar, M.; Dharmawan, I.W.S. Mariamah Effectiveness, Efficiency, and Equity in Jurisdictional REDD Benefit Distribution Mechanisms: Insights from Jambi Province, Indonesia. Trees For. People 2024, 18, 100726. [Google Scholar] [CrossRef]
- Adhikari, R.K.; Grala, R.K.; Petrolia, D.R.; Grado, S.C.; Grebner, D.L.; Shrestha, A. Landowner willingness to accept monetary compensation for managing forests for ecosystem services in the Southern United States. For. Sci. 2022, 68, 128–144. [Google Scholar] [CrossRef]
- Lou, J.; Hultman, N.; Patwardhan, A.; Qiu, Y.C. Integrating sustainability into climate finance by quantifying the co-benefits and market impact of carbon projects. Commun. Earth Environ. 2022, 3, 137. [Google Scholar] [CrossRef]
- Gazal, K.A.; Hwang, J.; Eastman, B. West Virginia forest landowners’ preferences for forest carbon offset programs. Trees For. People 2024, 18, 100683. [Google Scholar] [CrossRef]
- Stedman, R.C.; Armstrong, A.; Walsh, A.A.; Connelly, N. Private landowner willingness to manage their land for Carbon sequestration in New York state. J. For. 2024, 122, 373–382. [Google Scholar] [CrossRef]
- Johnson, F.R.; Lancsar, E.; Marshall, D.; Kilambi, V.; Mühlbacher, A.; Regier, D.A.; Bresnahan, B.W.; Kanninen, B.; Bridges, J.F.P. Constructing experimental designs for discrete-choice experiments: Report of the ISPOR conjoint analysis experimental design good research practices task force. Value Health 2013, 16, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Chandra, Y. An Overview of Stated Preference Methods: What and Why. In Discrete Choice Experiments Using R; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Chèze, B.; Collet, C.; Paris, A. Estimating Discrete Choice Experiments: Theoretical Fundamentals. 2021. Available online: https://ifp.hal.science/hal-03262187v1 (accessed on 26 August 2025).
- Lambooij, M.S.; Harmsen, I.A.; Veldwijk, J.; de Melker, H.; Mollema, L.; van Weert, Y.W.; de Wit, G.A. Consistency between stated and revealed preferences: A discrete choice experiment and a behavioural experiment on vaccination behaviour compared. BMC Med. Res. Methodol. 2015, 15, 19. [Google Scholar] [CrossRef]
- Mangham, L.J.; Hanson, K.; McPake, B. How to do (or not to do) … Designing a discrete choice experiment for application in a low-income country. Health Policy Plan. 2009, 24, 151–158. [Google Scholar] [CrossRef]
- Trapero-Bertran, M.; Rodríguez-Martín, B.; López-Bastida, J. What attributes should be included in a discrete choice experiment related to health technologies? A systematic literature review. PLoS ONE 2019, 14, e0219905. [Google Scholar] [CrossRef] [PubMed]
- Spinks, J.; Chaboyer, W.; Bucknall, T.; Tobiano, G.; Whitty, J.A. Patient and nurse preferences for nurse handover—Using preferences to inform policy: A discrete choice experiment protocol. BMJ Open 2015, 5, e008941. [Google Scholar] [CrossRef]
- Louviere, J.; Hensher, D.A. On the design and analysis of simulated choice or allocation experiments in travel choice modelling. Transp. Res. Rec. 1982, 890, 11–17. [Google Scholar]
- Louviere, J.; Woodworth, G. Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data. J. Mark. Res. 1983, 20, 350–367. [Google Scholar] [CrossRef]
- Zinay, D.; Cameron, R.; Naughton, F.; Whitty, J.A.; Brown, J.; Jones, A. Understanding Uptake of Digital Health Products: Methodology Tutorial for a Discrete Choice Experiment Using the Bayesian Efficient Design. J. Med. Internet Res. 2021, 23, e32365. [Google Scholar] [CrossRef]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. UC Berkley IURD Working Paper Series. 1972. Available online: https://escholarship.org/content/qt61s3q2xr/qt61s3q2xr.pdf (accessed on 2 June 2025).
- USDA Forest Service. Forests of Tennessee, 2017; Resource Update FS-262; U.S. Department of Agriculture, Forest Service: Asheville, NC, USA, 2020; p. 2. [CrossRef]
- USDA Forest Service. Forests of West Virginia, 2020; Resource Update FS-339; U.S. Department of Agriculture, Forest Service: Madison, WI, USA, 2021; p. 2. [CrossRef]
- USDA Forest Service. Forests of Ohio, 2020; Resource Update FS-341; U.S. Department of Agriculture, Forest Service: Madison, WI, USA, 2021; p. 2. [CrossRef]
- Krejcie, R.V.; Morgan, D.W. Determining sample size for research activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Orme, B. Sawtooth Software Sample Size Issues for Conjoint Analysis Studies; Research Paper Series; Sawtooth Software, Inc.: Sequim, WA, USA, 1998. [Google Scholar]
- Johnson, R.; Orme, B. Getting the Most from CBC; Sawtooth Software Research Paper Series; Sawtooth Software, Inc.: Sequim, WA, USA, 2003. [Google Scholar]
- Joshi, S.; Arano, K. Determinants of private forest management decisions: A study on West Virginia NIPF landowners. For Policy Econ. 2009, 11, 118–125. [Google Scholar] [CrossRef]
- Dillman, D.A. Mail and Internet Surveys—The Tailored Design Method; John Wiley and Sons: New York, NY, USA, 2000; p. 464. [Google Scholar]
- Ryan, M.; Kolstad, J.R.; Rockers, P.C.; Dolea, C. How to Conduct a Discrete Choice Experiment for Health Workforce Recruitment and Retention in Remote and Rural Areas: A User Guide with Case Studies (English); World Bank: Washington, DC, USA, 2012; Available online: https://documents1.worldbank.org/curated/en/586321468156869931/pdf/NonAsciiFileName0.pdf (accessed on 15 July 2025).
- Habesland, D.E.; Kilgore, M.A.; Becker, D.R.; Snyder, S.A.; Sjolic, H.K.; Lindstad, B.H. Norwegian family forest owners’ willingness to participate in carbon offset programs. For. Policy Econ. 2016, 70, 30–38. [Google Scholar] [CrossRef]
- Shin, S.; Yeo-Chan, Y. Perspectives of private forest owners toward investment in forest carbon offset projects: A case of Geumsan-Gun, South Korea. Forests 2019, 10, 21. [Google Scholar] [CrossRef]
- Gao, Z.; Schroeder, T.C. Effects of label information on consumer willingness-to-pay for food attributes. Am. J. Agric. Econ. 2009, 91, 795–809. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Khachatryan, H.; Suh, D.H.; Zhou, G.; Dukes, M. Sustainable urban landscaping: Consumer preferences and willingness to pay for turfgrass fertilizers. Can. J. Agr. Econ. 2016, 65, 385–407. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Y.; Gao, Z. Accounting for attribute non-attendance (ANA) in Chinese consumers’ away-from-home sustainable salmon consumption. Mar. Resour. Econ. 2020, 35, 263–284. [Google Scholar] [CrossRef]
- StataCorp. Stata 19; Statistical software; StataCorp LLC.: College Station, TX, USA, 2019. [Google Scholar]
- Krisnky, I.; Robb, A. On approximating the statistical properties of elasticities. Rev. Econ. Stat. 1986, 64, 715–719. [Google Scholar] [CrossRef]
- Lin, I.F.; Schaefer, N.C. Using survey participants to estimate the impact of nonparticipation. Public Opon. Q. 1995, 59, 236–258. [Google Scholar] [CrossRef]
- Butler, B.J.; Butler, S.M.; Caputo, J.; Dias, J.; Robillard, A.; Sass, E.M. Family Forest Ownerships of the United States, 2018: Results from the USDA Forest Service, National Woodland Owner Survey; General Technical Report NRS-199; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2021; p. 52. [CrossRef]
- Hovis, M. Estimating landowners’ willingness to accept payments for adopting nature-based solutions on their properties: Payment card contingent valuation. J. Soil Water Conserv. 2023, 78, 345–356. [Google Scholar] [CrossRef]
- Kilgore, M.A.; Frey, G.E.; Snyder, S.A.; Mihiar, C. Factors influencing a forest landowner’s choice of incentive program commitment length. For. Policy Econ. 2025, 177, 103513. [Google Scholar] [CrossRef]
- Chowdhury, P.K.; Brown, D.G. Modeling the effects of carbon payments and forest owner cooperatives on carbon storage and revenue in the Pacific Northwest forestlands. Land Use Policy 2023, 131, 106725. [Google Scholar] [CrossRef]
- Jayachandran, S.; De Laat, J.; Lambin, E.F.; Stanton, C.Y.; Audy, A.; Thomas, N.E. Cash for carbon: A randomized trail of payments for ecosystem services to reduce deforestation. Science 2017, 357, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, A.J. The optimal timber rotation: An option value approach. For. Sci. 1998, 44, 192–202. [Google Scholar] [CrossRef]
- Ekholm, T. Optimal forest rotation under carbon pricing and forest damage risk. For. Policy Econ. 2020, 115, 102131. [Google Scholar] [CrossRef]
- Kreye, M.; Kowalczyk, T.; Khanal, P.; Sharma, S. How Much Should I Be Paid to Manage for Forest Carbon? PennState Extension. 2023. Available online: https://extension.psu.edu/how-much-should-i-be-paid-to-manage-forest-carbon (accessed on 20 June 2025).
- Koirala, U.; Adams, D.C.; Susaeta, A.; Akande, E. Value of a Flexible Forest Harvest Decision with Short Period Forest Carbon Offsets: Application of a Binomial Option Model. Forests 2022, 13, 1785. [Google Scholar] [CrossRef]
- Sørensen, E.; Torfing, J. The ideational robustness of bureaucracy. Policy Soc. 2024, 43, 141–158. [Google Scholar] [CrossRef]
- Armstrong, J.; Oporto, G. Forest Resources in U.S. History, 2nd ed.; Kendal Hunt Publishing: Dubuque, IA, USA, 2024; 417p. [Google Scholar]
- Kilgore, M.A.; Greene, J.L.; Jacobson, M.G.; Straka, T.J.; Daniels, S.E. The influence of financial incentive programs in promoting sustainable forestry on the nation’s family forests. J. For. 2007, 105, 184–191. [Google Scholar] [CrossRef]
- Fletcher, L.S.; Kittredge, D., Jr.; Stevens, T. Forest landowners’ willingness to sell carbon credits: A pilot study. North. J. Appl. For. 2009, 26, 35–37. [Google Scholar] [CrossRef]
- Galik, C.S.; Murray, B.C.; Mercer, D.E. Where is the carbon? Carbon sequestration potential from private forestland in the southern United States. J. For. 2013, 111, 17–25. [Google Scholar] [CrossRef]
- Eastman, B.; Brzostek, E.R.; Cifelli, D.; Gazal, K.A.; Kannenberg, S.A.; Keck, M.; Kelly, C.N.; Kreye, M.; McGill, D.M.; Taylor, A.M.; et al. Building trust and efficacy in forest carbon programs: Lessons from stakeholder engagement in Central Appalachia. BioScience 2025, biaf098. [Google Scholar] [CrossRef]
- Mäntymaa, E.; Ovaskainen, V.; Juutinen, A.; Tyrväinen, L. Integrating nature-based tourism and forestry in private lands under heterogeneous visitor preferences for forest attributes. J. Environ. Plan. Manag. 2018, 61, 724–746. [Google Scholar] [CrossRef]
- Husa, M.; Kosenius, A.K. Non-industrial private forest owners’ willingness to manage for climate change and biodiversity. Scand. J. For. Res. 2021, 36, 614–625. [Google Scholar] [CrossRef]
- Nolan, C.J.; Field, C.B.; Mach, K.J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2021, 2, 436–446. [Google Scholar] [CrossRef]
- Reed, M.S.; Allen, K.; Attlee, A.; Dougill, A.A.; Evans, K.L.; Kenter, J.O.; Holy, J.; McNab, D.; Stead, S.M.; Twyman, C.; et al. A placed-based approach to payments for ecosystem services. Glob. Environ. Chang. 2017, 43, 92–106. [Google Scholar] [CrossRef]
- Mutandwa, E.; Grala, R.K.; Petrolia, D.R. Estimate of willingness to manage pine stands for ecosystem services. For. Policy Econ. 2019, 102, 75–85. [Google Scholar] [CrossRef]
Variable Name | Description | Attribute Levels |
---|---|---|
Revenue | Revenue payment ($/ha/yr) | $25 $123 $173 $247 |
Time | Contract length | 5 years (omitted category) 15 years (Time15) 40 years (Time40) 100 years (Time100) |
Harvest | Program harvest restriction | No harvest restriction (omitted category) 10-year increase to harvest cycle (Harvest2) Limited to 5% of timber (Harvest3) No harvesting allowed (Harvest4) |
Administrator | The type of entity that works with the landowner that develops the program and carry out the contract | Private (omitted category) Government (AdminGov) |
Variable Name | Description | Summary Statistics (Mean or Frequency or Distribution) |
---|---|---|
Timber | Importance of owning forest for timber production (Likert scale, 1 = Not Important, 5 = Very Important) | 2.31 |
Carbon | Importance of owning forest for carbon benefits (Likert scale, 1 = Not Important, 5 = Very Important) | 2.61 |
Harvest | Past timber harvest or sale (Dummy variable: Yes = 1; No = 0, omitted reference group) | Yes = 45%; No = 55% |
Important | Importance of keeping land in forest (Likert scale, 1 = Not Important, 5 = Very Important) | 3.97 |
Plan | Management plan available (Dummy variable: Yes = 1; No = 0, omitted reference group) | Yes = 25%; No = 75% |
FamiliarCO2 | Familiarity with carbon offset programs (Likert scale, 1 = Not Familiar, 5 = Very Familiar) | 1.35 |
Size | Ownership size in hectares | 644 |
Age | Landowner age (Dummy variable: Under 50 years old = 1; 50 years and over = 0, omitted reference group) | Under 50 years = 86%; over 50 years and over = 14% |
Education | Educational level (Dummy variable: At least college degree = 1; No college degree = 2, omitted reference group) | At least college = 75%; no college = 25% |
Income | Annual household income (Dummy variable: $100,000 and above = 1; Below $100,000 = 0, omitted reference group) | $100,000 and above = 36%; below $100,000 = 64% |
Gender | Gender (Dummy variable: Male = 1; Female = 2, omitted reference group) | Male = 76%; Female = 24% |
Variable Name | Coefficients (Standard Errors in Parenthesis) | Odds Ratio |
---|---|---|
Program-Specific Attributes | ||
Revenue | 0.0099 *** (0.0020) | 1.0099 |
Time15 | −1.0566 *** (0.3303) | 0.3476 |
Time40 | −2.2023 ***(0.3788) | 0.1105 |
Time100 | −3.9321 *** (0.6518) | 0.0196 |
Harvest2 | −1.6713 *** (0.3310) | 0.1879 |
Harvest3 | −1.0336 *** (0.2584) | 0.3557 |
Harvest4 | −1.7173 *** (0.3233) | 0.1795 |
AdminGov | −0.6492 *** (0.2470) | 0.5225 |
Landowner-Specific Attributes (Yes) | ||
Timber | 0.0854 (0.1457) | 1.0892 |
Carbon | 0.7436 *** (0.1260) | 2.1035 |
Harvest | 0.3229 (0.3523) | 1.3812 |
Important | −0.1400 (0.1922) | 0.8693 |
Plan | −0.6531 * (0.3782) | 0.5204 |
FamiliarCO2 | 0.0185 * (0.2397) | 1.0187 |
Size | −0.0056 *** (0.0021) | 0.9944 |
Age | 0.4267 (0.4342) | 1.5322 |
Education | 0.7836 ** (0.3964) | 2.1894 |
Income | 0.4361 (0.2331) | 1.5467 |
Gender | 0.3556 (0.3845) | 1.4270 |
Constant | −1.9888 ** (1.0527) | 0.1369 |
Landowner-Specific Attributes (No) | ||
Timber | 0.1562 (0.1355) | 1.1691 |
Carbon | 0.4635 *** (0.1132) | 1.5895 |
Harvest | −0.3957 (0.3161) | 0.6732 |
Important | −0.1087 (0.1736) | 0.8970 |
Plan | 0.5081 (0.3562) | 0.6016 |
FamiliarCO2 | 0.0865 (0.1987) | 1.0904 |
Size | 0.0000 (0.0000) | 1.0000 |
Age | 0.2811 (0.3941) | 1.3246 |
Education | 0.6107 * (0.3412) | 1.8418 |
Income | 0.7304 *** (0.3004) | 2.0760 |
Gender | 0.0021 (0.3487) | 1.0021 |
Constant | −1.4140 (0.9411) | 0.2431 |
Base Alternative (Neither) |
Program Attributes | Average WTA ($/ha/year) | Lower Limit ($/ha/yr) | Upper Limit ($/ha/year) |
---|---|---|---|
Time15 | $107.00 | $33.00 | $251.00 |
Time40 | $222.00 | $125.00 | $420.00 |
Time100 | $397.00 | $245.00 | $659.00 |
Harvest2 | $169.00 | $99.00 | $294.00 |
Harvest3 | $104.00 | $53.00 | $191.00 |
Harvest4 | $173.00 | $99.00 | $315.00 |
AdminGov | $66.00 | $19.00 | $129.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazal, K.; Eastman, B.; Cheye, S.; Arano, K.; Dahle, G. Understanding Family Forest Landowners’ Preferences for Carbon Offset Programs in Central Appalachia. Forests 2025, 16, 1415. https://doi.org/10.3390/f16091415
Gazal K, Eastman B, Cheye S, Arano K, Dahle G. Understanding Family Forest Landowners’ Preferences for Carbon Offset Programs in Central Appalachia. Forests. 2025; 16(9):1415. https://doi.org/10.3390/f16091415
Chicago/Turabian StyleGazal, Kathryn, Brooke Eastman, Stephen Cheye, Kathleen Arano, and Gregory Dahle. 2025. "Understanding Family Forest Landowners’ Preferences for Carbon Offset Programs in Central Appalachia" Forests 16, no. 9: 1415. https://doi.org/10.3390/f16091415
APA StyleGazal, K., Eastman, B., Cheye, S., Arano, K., & Dahle, G. (2025). Understanding Family Forest Landowners’ Preferences for Carbon Offset Programs in Central Appalachia. Forests, 16(9), 1415. https://doi.org/10.3390/f16091415