Characterization of Sidewalk Trees and Their Mitigation Effect on Extreme Warm Temperatures in a Tropical City of Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sample Size Estimation
2.3. Field Data Measurements
2.4. Ecological Analysis
2.5. Statistical Analysis
3. Results
3.1. Sample Size
3.2. Tree Richness
3.3. The Dominant Species
3.4. Shade of Trees and General Characteristics of Urban Vegetation
3.5. Sanitary State of Urban Vegetation
3.6. Obstructions to Urban Vegetation
3.7. Weather Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amanollahi, J.; Tzanis, C.; Firuz, M.; Makmom, A. Urban Heat Evolution in a Tropical Area Utilizing Landsat Imagery. Atmos. Res. 2016, 167, 175–182. [Google Scholar] [CrossRef]
- Méndez-Lázaro, P.A.; Pérez-Cardona, C.M.; Rodríguez, E.; Martínez, O.; Taboas, M.; Bocanegra, A.; Méndez-Tejeda, R. Climate Change, Heat, and Mortality in the Tropical Urban Area of San Juan, Puerto Rico. Int. J. Biometeorol. 2018, 62, 699–707. [Google Scholar] [CrossRef]
- Zavaleta-Palacios, M.; Díaz-Nigenda, E.; Vázquez-Morales, W.; Morales-Iglesias, H.; Narcizo de Lima, G. Urbanization and Its Relationship with Urban Heat Island in Tuxtla Gutiérrez, Chiapas. Ecosistemas Recur. Agropecu. 2020, 7, 1–12. [Google Scholar] [CrossRef]
- McNeil, M.; Castellanos, S.; Ponce de León, D.; Sánchez, P. Mexico Space Cooling Electricity Impacts and Mitigation Strategies; United States Agency for International Development: Berkeley, CA, USA, 2018. [Google Scholar]
- Bajsanski, I.; Stojakovic, V.; Milosevic, D. Optimizing Trees Distances in Urban Streets for Insolation Mitigation. Geogr. Pannonica 2019, 23, 329–336. [Google Scholar] [CrossRef]
- Kephart, J.; Sánchez, B.; Moore, J.; Schinasi, L.; Bakhtsiyarava, M.; Ju, Y.; Gouvela, N.; Calafa, W.; Dronova, I.; Arunachalam, S. City-level impact of extreme temperatures and mortality in Latin America. Nat. Med. 2022, 28, 1700–1705. [Google Scholar] [CrossRef]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.A.; van den Bosch, M.; Bardekjian, A.C. Urban Trees and Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of Urban Heat Islands: Materials, Utility Programs, Updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Hwang, W.H.; Wiseman, P.E.; Thomas, V.A. Enhancing the Energy Conservation Benefits of Shade Trees in Dense Residential Developments Using an Alternative Tree Placement Strategy. Landsc. Urban Plan. 2017, 158, 62–74. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air Pollution Removal by Urban Trees and Shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Baldauf, R.W. Estimating Economic and Environmental Benefits of Urban Trees in Desert Regions. Front. Ecol. Evol. 2020, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bakshi, B.R.; Ramteke, M.; Kodamana, H. Quantifying Ecosystem Services from Trees by Using I-Tree with Low-Resolution Satellite Images. Ecosyst. Serv. 2024, 67, 101611. [Google Scholar] [CrossRef]
- Richards, D.R.; Thompson, B.S. Urban Ecosystems: A New Frontier for Payments for Ecosystem Services. People Nat. 2019, 1, 249–261. [Google Scholar] [CrossRef]
- Camacho-Cervantes, M.; Schondube, J.E.; Castillo, A.; MacGregor-Fors, I. How Do People Perceive Urban Trees? Assessing Likes and Dislikes in Relation to the Trees of a City. Urban Ecosyst. 2014, 17, 761–773. [Google Scholar] [CrossRef]
- Ping, X.; Yok, P.; Edwards, P.; Richards, D. The Economic Benefits and Costs Od Trees in Urban Forest Stewardship: A Systematic Review. Urban For. Urban Green. 2018, 29, 162–170. [Google Scholar] [CrossRef]
- Vazquez, W.; Jazcilevich, A.; Reynoso, A.G.; Caetano, E.; Gomez, G.; Bornstein, R.D. Influence of Green Roofs on Early Morning Mixing Layer Depths in Mexico City. J. Sol. Energy Eng. Trans. ASME 2016, 138, 061011. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Khalili, S.; Halios, C.H.; Sahani, J.; Aghamohammadi, N.; Andrade, M.d.F.; Athanassiadou, M.; Bhui, K.; Calvillo, N.; et al. Urban Heat Mitigation by Green and Blue Infrastructure: Drivers, Effectiveness, and Future Needs. Innovation 2024, 5, 100588. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Application of Green Blue Roof to Mitigate Heat Island Phenomena and Resilient to Climate Change in Urban Areas: A Case Study from Seoul, Korea. J. Water Land Dev. 2017, 33, 165–170. [Google Scholar] [CrossRef]
- Speak, A.; Montagnani, L.; Wellstein, C.; Zerbe, S. The Influence of Tree Traits on Urban Ground Surface Shade Cooling. Landsc. Urban Plan. 2020, 197, 103748. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The Effect of Tree Shade and Grass on Surface and Globe Temperatures in an Urban Area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Berry, R.; Livesley, S.J.; Aye, L. Tree Canopy Shade Impacts on Solar Irradiance Received by Building Walls and Their Surface Temperature. Build. Environ. 2013, 69, 91–100. [Google Scholar] [CrossRef]
- Meili, N.; Manoli, G.; Burlando, P.; Carmeliet, J.; Chow, W.T.L.; Coutts, A.M.; Roth, M.; Velasco, E.; Vivoni, E.R.; Fatichi, S. Tree Effects on Urban Microclimate: Diurnal, Seasonal, and Climatic Temperature Differences Explained by Separating Radiation, Evapotranspiration, and Roughness Effects. Urban For. Urban Green. 2021, 58, 126970. [Google Scholar] [CrossRef]
- Qiu, T.; Song, C.; Zhang, Y.; Liu, H.; Vose, J.M. Urbanization and Climate Change Jointly Shift Land Surface Phenology in the Northern Mid-Latitude Large Cities. Remote Sens. Environ. 2020, 236, 111477. [Google Scholar] [CrossRef]
- Crawford, B.; Kelsey, K.; Ibsen, P.; Rees, A.; Charobee, A. Intra-Urban Variations in Land Surface Phenology in a Semi-Arid Environment. Environ. Res. Lett. 2025, 20, 014036. [Google Scholar] [CrossRef]
- Sun, X.; Fang, P.; Huang, S.; Liang, Y.; Zhang, J.; Wang, J. Impact of Urban Green Space Morphology and Vegetation Composition on Seasonal Land Surface Temperature: A Case Study of Beijing’s Urban Core. Urban Clim. 2025, 60, 102367. [Google Scholar] [CrossRef]
- Huang, B.; He, B.J. Lawn and Irrigation Cooling from Ground Longwave Radiation Reduction: Understanding the Climate-Driven Variability in Cooling Performance. Urban Clim. 2025, 60, 102360. [Google Scholar] [CrossRef]
- Rasul, A.; Ibrahim, S.; Onojeghuo, A.R.; Balzter, H. A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land 2020, 9, 388. [Google Scholar] [CrossRef]
- Dyce, D.R.; Voogt, J.A. The Influence of Tree Crowns on Urban Thermal Effective Anisotropy. Urban Clim. 2016, 23, 91–113. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A Global Comparison between Station Air Temperatures and MODIS Land Surface Temperatures Reveals the Cooling Role of Forests. J. Geophys. Res. Biogeosci. 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-Dependent Interactions between Tree Canopy Cover and Impervious Surfaces Reduce Daytime Urban Heat during Summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef]
- Ballinas, M.; Barradas, V.L. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico City: A Simple Phenomenological Model. J. Environ. Qual. 2016, 45, 157–166. [Google Scholar] [CrossRef]
- Konarska, J.; Uddling, J.; Holmer, B.; Lutz, M.; Lindberg, F.; Pleijel, H.; Thorsson, S. Transpiration of Urban Trees and Its Cooling Effect in a High Latitude City. Int. J. Biometeorol. 2016, 60, 159–172. [Google Scholar] [CrossRef]
- Comin, S.; Fini, A.; Napoli, M.; Frangi, P.; Vigevani, I.; Corsini, D.; Ferrini, F. Effects of Severe Pruning on the Microclimate Amelioration Capacity and on the Physiology of Two Urban Tree Species. Urban For. Urban Green. 2025, 103, 128583. [Google Scholar] [CrossRef]
- Jauregui, E.; Luyando, E. Long-Term Association between Pan Evaporation and the Urban Heat Island in Mexico City. Atmosfera 1998, 11, 45–60. [Google Scholar]
- Li, X.X.; Liu, X. Effect of Tree Evapotranspiration and Hydrological Processes on Urban Microclimate in a Tropical City: A WRF/SLUCM Study. Urban Clim. 2021, 40, 101009. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Q.; Batkhishig, O.; Ouyang, Z. Relationship between Evapotranspiration and Land Surface Temperature under Energy- and Water-Limited Conditions in Dry and Cold Climates. Adv. Meteorol. 2016, 2016, 1835487. [Google Scholar] [CrossRef]
- Middel, A.; Chhetri, N.; Quay, R. Urban Forestry and Cool Roofs: Assessment of Heat Mitigation Strategies in Phoenix Residential Neighborhoods. Urban For. Urban Green. 2015, 14, 178–186. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The Cooling Efficiency of Urban Landscape Strategies in a Hot Dry Climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar] [CrossRef]
- García-Cueto, O.R.; Tejeda-Martínez, A.; Bojórquez-Morales, G. Urbanization Effects upon the Air Temperature in Mexicali, B.C., México. Atmosfera 2009, 22, 349–365. [Google Scholar]
- García-Cueto, O.R.; Jáuregui-Ostos, E.; Toudert, D.; Tejeda-Martinez, A. Detection of the Urban Heat Island in Mexicali, B.C., México and Its Relationship with Land Use. Atmosfera 2007, 20, 111–131. [Google Scholar]
- Rafael García-Cueto, O.; Ernesto López-Velázquez, J.; Bojórquez-Morales, G.; Santillán-Soto, N.; Flores-Jiménez, D.E. Trends in Temperature Extremes in Selected Growing Cities of Mexico Under a Non-Stationary Climate. Atmosfera 2021, 34, 233–254. [Google Scholar] [CrossRef]
- Tejeda-Martínez, A.; Jáuregui-Ostos, E. Surface Energy Balance Measurements in the México City Region: A Review. Atmosfera 2005, 18, 1–23. [Google Scholar]
- Jáuregui, E. Impact of Land-Use Changes on the Climate of the Mexico City Region Impacto Del Uso Del Suelo En El Clima de La Ciudad de México. Investig. Geogr. UNAM 2004, 55, 46–60. [Google Scholar]
- Jaureguı, E. Heat Island Development in Mexıco Cıty. Atmos. Environ. 1997, 31, 3821–3831. [Google Scholar] [CrossRef]
- Jáuregui, E. Possible Impact of Urbanization on the Thermal Climate of Some Large Cities in México. Atmosfera 2005, 18, 249–252. [Google Scholar]
- Colunga, M.L.; Cambrón-Sandoval, V.H.; Suzán-Azpiri, H.; Guevara-Escobar, A.; Luna-Soria, H. The Role of Urban Vegetation in Temperature and Heat Island Effects in Querétaro City, Mexico. Atmósfera 2015, 28, 205–218. [Google Scholar] [CrossRef]
- Palafox-Juárez, E.B.; López-Martínez, J.O.; Hernández-Stefanoni, J.L.; Hernández-Nuñez, H. Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico. ISPRS Int. J. Geoinf. 2021, 10, 76. [Google Scholar] [CrossRef]
- Lemoine-Rodríguez, R.; Inostroza, L.; Falfán, I.; MacGregor-Fors, I. Too Hot to Handle? On the Cooling Capacity of Urban Green Spaces in a Neotropical Mexican City. Urban For. Urban Green. 2022, 74, 127633. [Google Scholar] [CrossRef]
- Fernández-Álvarez, R.; Fernández-Nava, R. Adaptive Co-Management of Urban Forests: Monitoring Reforestation Programs in Mexico City. Polibotanica 2020, 49, 243–258. [Google Scholar] [CrossRef]
- WWF. Defining the Real Cost of Restoring Forests. Practical Steps Towards Improving Cost Estimates; WWF: Mikocheni, Tanzania, 2022. [Google Scholar]
- Ma, B.; Hauer, R.J.; Östberg, J.; Koeser, A.K.; Wei, H.; Xu, C. A Global Basis of Urban Tree Inventories: What Comes First the Inventory or the Program. Urban For. Urban Green. 2021, 60, 127087. [Google Scholar] [CrossRef]
- López Torrero, J.C.; Navarro Navarro, L.A. Inventario de Parques Urbanos Para El Cumplimiento de La Agenda 2030: El Caso de Hermosillo, Sonora. Front. Norte 2023, 35, 1–25. [Google Scholar] [CrossRef]
- ACTGZ. Reglamento de Áreas Verdes y Arborización 2017; Ayuntamiento Constitucional de Tuxtla Gutiérrez: Tuxtla Gutiérrez, Mexico, 2017. [Google Scholar]
- Vazquez, C.; Ibarra, M.; Galdámez, V.; Hernández, G.; May, D.; Ortíz, E.; Gutiérrez, I. Programa de Ordenamiento Ecológico Territorial de La Subcuenca Del Río Lagartero; Secretaría de Medio Ambiente y Vivienda: Tuxtla Gutiérrez, Mexico, 2009. [Google Scholar]
- CONAGUA. Plan de Gestión de La Cuenca Río Lagartero, Chiapas, México; CONAGUA: Tuxtla Gutiérrez, Mexico, 2008. [Google Scholar]
- SEDATU. Bases Para La Estandarización En La Elaboración de Atlas de Riesgos y Catálogo de Datos Geográficos Para Representar El Riesgo 2014; Secretaría de Desarrollo Agrario, Territorial y Urbano: Ciudad de México, Mexico, 2014. [Google Scholar]
- INEGI Censo de Población y Vivienda 2020, Chiapas. Available online: https://www.inegi.org.mx/programas/ccpv/2020/#datos_abiertos (accessed on 16 July 2025).
- Francisco López-Toledo, J.; Ignacio Valdez-Hernández, J.; Ángel Pérez-Farrera, M.; Víctor, Y.; Cetina-Alcalá, M. Tree Composition and Structure of a Seasonally Dry Tropical Forest at la Sepultura Biosphere Reserve. Rev. Mex. Cienc. For. 2012, 3, 43–56. [Google Scholar]
- Nowak, D.J.; Walton, J.T.; Baldwin, J.; Bond, J. Simple Street Tree Sampling. Arboric. Urban For. 2015, 41, 346–354. [Google Scholar] [CrossRef]
- Ahmed, S.K. How to Choose a Sampling Technique and Determine Sample Size for Research: A Simplified Guide for Researchers. Oral Oncol. Rep. 2024, 12, 100662. [Google Scholar] [CrossRef]
- McGhee, W.; Saigle, W.; Padonou, E.A.; Lykke, A.M. Methods for Calculating Tree Biomass and Carbon (Méthodes de Calcul de La Biomasse et Du Carbone Des Arbres En Afrique de l’Ouest). Ann. Des. Sci. Agron. 2016, 20, 79–98. [Google Scholar] [CrossRef]
- Pia, L. Biodiversidad: Inferencia Basada En El Índice de Shannon y La Riqueza. Interciencia 2006, 31, 583–590. [Google Scholar]
- Leps, J.; Smilauer, P. Biostatistics with R: An Introductory Guide for Field Biologists, 1st ed.; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Marín-Hernández, T.; Garza-López, P.; Velasco-Bautista, E.; Nepamuceno-Martínez, F.; Ramírez-Maldonado, H.; Ovando-Cruz, M. Variación Del Tamaño de Las Semillas de Azadirachta Indica A. Juss. de Dos Procedencias En México. Rev. Mex. Cienc. For. 2006, 31, 27–54. [Google Scholar]
- Kantún-Balam, J.; Salvador-Flores, J.; Tun-Garrido, J.; Navarro-Alberto, J.; Arias-Reyes, L.; Martínez-Castillo, J. Diversidad y Origen Geográfico Del Recurso Vegetal En Los Huertos Familiares de Quintana Roo, México. Polibotanica 2013, 36, 163–196. [Google Scholar]
- Bhat, R.; Bhat, S. Terminalia Catappa: A Review of Its Botanical Identity, Phytochemistry, and Clinical Potential. Int. J. Pharm. Sci. 2025, 3, 2892–2900. [Google Scholar] [CrossRef]
- Herrera, A.M.; Riera, R.; Rodríguez, R.A. Alpha Species Diversity Measured by Shannon’s H-Index: Some Misunderstandings and Underexplored Traits, and Its Key Role in Exploring the Trophodynamic Stability of Dynamic Multiscapes. Ecol. Indic. 2023, 156, 111118. [Google Scholar] [CrossRef]
- Baliton, R.S.; Landicho, L.D.; Cabahug, R.E.D.; Paelmo, R.F.; Laruan, K.A.; Rodriguez, R.S.; Visco, R.G.; Castillo, A.K.A. Ecological Services of Agroforestry Systems in Selected Upland Farming Communities in the Philippines. Biodiversitas 2020, 21, 707–717. [Google Scholar] [CrossRef]
- Santana-Baños, Y.; del Busto Concepción, A.; Rodríguez-Espinosa, F.L.; Díaz, S.C.; Sánchez, A.C.; Dueñas, Y.D. Allelopathic Effect of Aqueous Extracts of Azadirachta Indica on the Germination of Solanum Lycopersicum. Cienc. Tecnol. Agropecu. 2022, 23, e2734. [Google Scholar] [CrossRef]
- Ramanan, S.S.; Arunachalam, A.; Singh, R.; Verdiya, A. Tropical Almond (Terminalia Catappa): A Holistic Review. Heliyon 2025, 11, e41115. [Google Scholar] [CrossRef] [PubMed]
- Cattiaux, J.; Ribes, A.; Cariou, E. How Extreme Were Daily Global Temperatures in 2023 and Early 2024? Geophys. Res. Lett. 2024, 51, 1–9. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- ONU-Habitat. Guía Global Para El Espacio Público: De Principios Globales a Políticas y Prácticas Locales; ONU-Habitat: Nairobi, Kenya, 2019. [Google Scholar]
- Rahman, M.A.; Dervishi, V.; Moser-Reischl, A.; Ludwig, F.; Pretzsch, H.; Rötzer, T.; Pauleit, S. Comparative Analysis of Shade and Underlying Surfaces on Cooling Effect. Urban For. Urban Green. 2021, 63, 127223. [Google Scholar] [CrossRef]
- Ow, L.F.; Ghosh, S.; Lokman, M. The Benefits of Tree Shade and Turf on Globe and Surface Temperatures in an Urban Tropical Environment. Arboric. Urban For. 2000, 46, 228–244. [Google Scholar] [CrossRef]
- Sahana, M.; Ahmed, R.; Sajjad, H. Analyzing Land Surface Temperature Distribution in Response to Land Use/Land Cover Change Using Split Window Algorithm and Spectral Radiance Model in Sundarban Biosphere Reserve, India. Model. Earth Syst. Environ. 2016, 2, 81. [Google Scholar] [CrossRef]
- Tai, Z.; Su, X.; Shen, W.; Wang, T.; Gu, C.; He, J.; Huang, C. Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China. Remote Sens. 2024, 16, 3528. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Wang, Y.; He, Y.; Wang, J.; Wu, Y.; Lin, X.; Wu, S. Mitigation of Urban Heat Island in China (2000–2020) through Vegetation-Induced Cooling. Sustain. Cities Soc. 2024, 112, 105599. [Google Scholar] [CrossRef]
- Rivas-Arancibia, S.; Carrillo-Ruiz, H.; Bonilla, A. Cuando Las Hormigas Se Convierten En Plaga. Ciencia 2014, 58–63. [Google Scholar]
- van Kolfschoten, L.; Asantewaa, M.A.; Dück, L.; Segar, S.T.; Jandér, K.C. Specialist Fig-Consuming Lepidopterans Can Inflict Costs to Plant Reproductive Success That Are Mitigated by Ant Bodyguards. Acta Oecologica 2024, 124, 104016. [Google Scholar] [CrossRef]
- Reséndiz Martínez, J.F.; GuzmánDíaz, L.; Muñoz Viveros, A.L.; Olvera Coronel, L.P.; de Lourdes Pacheco Hernández, M.; Arriola Padilla, V.J. Phytophagous Mites and Insects in the Recreational and Cultural Tezozómoc Park Trees, Azcapotzalco, Mexico City. Rev. Mex. Cienc. For. 2019, 10, 149–173. [Google Scholar] [CrossRef]
- Baspİnar, H.; Doll, D.; Jhalendra Rijal, J.R. Pest Management in Organic Almond. In Handbook of Pest Management in Organic Farming; CAB International: Wallingford, UK, 2018; pp. 328–347. [Google Scholar]
- Lonsdale, D. Choosing the Time of Year to Prune Tress. The Tree Advice Trust. Arboric. J. 1993, 17, 1–4. [Google Scholar]
- Kaiser, C.A.; Witt, M.L.; Hartman, J.R.; Mcniel, R.E.; Dunwell, W.C. Warning: Topping Is Hazardous to Your Tree’s Health! J. Arboric. 1986, 12, 50–52. [Google Scholar] [CrossRef]
- Segura, R.; Krayenhoff, E.S.; Martilli, A.; Badia, A.; Estruch, C.; Ventura, S.; Villalba, G. How Do Street Trees Affect Urban Temperatures and Radiation Exchange? Observations and Numerical Evaluation in a Highly Compact City. Urban Clim. 2022, 46, 101288. [Google Scholar] [CrossRef]
- Cohen, F.; Dechezleprêtre, A. Mortality, Temperature, and Public Health Provision: Evidence from Mexico. Am. Econ. J. Econ. Policy 2020, 14, 161–192. [Google Scholar] [CrossRef]
- Schwarz, L.; Chen, C.; Castillo Quiñones, J.E.; Aguilar-Dodier, L.C.; Hansen, K.; Sanchez, J.R.; González, D.J.X.; McCord, G.; Benmarhnia, T. Heat-Related Mortality in Mexico: A Multi-Scale Spatial Analysis of Extreme Heat Effects and Municipality-Level Vulnerability. Environ. Int. 2025, 195, 109231. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Corbalá, R.; Slater, B.K. Soil Compaction Effects on the Establishment of Three Tropical Tree Species. Arboric. Urban For. 2010, 36, 164–170. [Google Scholar] [CrossRef]
Morphometric | |
---|---|
Diameter at breast height (DBH) | m |
Height | m |
Shape factor | N/A |
Crown width | m2 |
Leafiness | % |
Sanitary | |
Insect/Fungi at leaves and trunk | Presence/Absence |
Pruning intensity | Moderate/Severe |
Obstruction | |
Sidewalk damage | Presence/Absence |
Electrical wiring damage | Presence/Absence |
Weather | |
Air temperature at sidewalk in direct sun conditions (AT_Sun) | °C |
Surface temperature of sidewalk in direct sun conditions (ST_Sun) | °C |
Air temperature at sidewalk in tree shade conditions (AT_shade) | °C |
Surface temperature of sidewalk in tree shade conditions (ST_shade) | °C |
Solar radiation in direct sun conditions (SR_Sun) | Wm−2 |
Solar radiation in tree shade conditions (SR_shade) | Wm−2 |
Wind speed (WS) | ms−1 |
Relative humidity in direct sun conditions (RH_Sun) | % |
Relative humidity in tree shade conditions (RH_shade) | % |
Name | Family | Specie | Origin | Number of Individuals |
---|---|---|---|---|
Benjamin fig | Moraceae | Ficus benjamina L. | India | 18 |
Canary Island date palm | Arecaceae | Phoenix canariensis H. | Canary Islands | 3 |
Caribbean royal palm | Arecaceae | Roystonea oleracea (Jacq.) O.F. Cook | Antilles and South America | 4 |
Ciricote | Boraginaceae | Cordia dodecandra A. DC. | Mexico, Guatemala and Belice | 1 |
Guava | Myrtaceae | Psidium guajava L. | Mexico and Central America | 2 |
Country almond | Combretaceae | Terminalia catappa L. | India | 32 |
Lemon | Rutaceae | Citrus x aurantifolia (Christim.) Swingle | India and Southeast Asia | 1 |
Mango | Anacardaceae | Mangifera indica L. | India and Southeast Asia | 1 |
Neem | Meliaceae | Azadirachta indica Juss. | India and Southeast Asia | 54 |
Oriental thuja | Cupresaceae | Platycladus orientalis L. | China and North Korea | 1 |
Prarie acacia | Fabaceae | Acaciella sp. | Mexico and Central America | 3 |
White stick or Mauto | Fabaceae | Lysiloma divaricatum (Jacq.) J. F. Mcbr. | Mexico and Central America | 8 |
Yellow bells | Bignoniaceae | Tecoma stans (L.) Juss ex Knuth | North and Central America | 3 |
Surface Temperature (°C) | Air Temperature (°C) | Relative Humidity (%) | Solar Radiation (Wm−2) | Wind Speed (ms−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Tree Shade | Direct Sun | Tree Shade | Direct Sun | Tree Shade | Direct Sun | Tree Shade | Direct Sun | ||
Mean | 31.31 | 39.8 | 33.56 | 32.9 | 61.10 | 50.55 | 50.26 | 555.34 | 1.80 |
Maximum | 44.3 | 66.9 | 46.6 | 43 | 83.98 | 63.89 | 78.00 | 917.48 | 3.06 |
Minimum | 23.8 | 21.6 | 26 | 25.65 | 40.38 | 41.02 | 19.60 | 25.50 | 0.17 |
Rango | 20.5 | 45.3 | 20.6 | 17.35 | 43.61 | 22.87 | 58.40 | 891.98 | 2.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Mendoza, I.; Vázquez-Pérez, J.R.; Fonseca-Núñez, R.A.; Guzmán-López, C. Characterization of Sidewalk Trees and Their Mitigation Effect on Extreme Warm Temperatures in a Tropical City of Mexico. Forests 2025, 16, 1408. https://doi.org/10.3390/f16091408
Castro-Mendoza I, Vázquez-Pérez JR, Fonseca-Núñez RA, Guzmán-López C. Characterization of Sidewalk Trees and Their Mitigation Effect on Extreme Warm Temperatures in a Tropical City of Mexico. Forests. 2025; 16(9):1408. https://doi.org/10.3390/f16091408
Chicago/Turabian StyleCastro-Mendoza, Itzel, José Raúl Vázquez-Pérez, Roberto Antonio Fonseca-Núñez, and Carlos Guzmán-López. 2025. "Characterization of Sidewalk Trees and Their Mitigation Effect on Extreme Warm Temperatures in a Tropical City of Mexico" Forests 16, no. 9: 1408. https://doi.org/10.3390/f16091408
APA StyleCastro-Mendoza, I., Vázquez-Pérez, J. R., Fonseca-Núñez, R. A., & Guzmán-López, C. (2025). Characterization of Sidewalk Trees and Their Mitigation Effect on Extreme Warm Temperatures in a Tropical City of Mexico. Forests, 16(9), 1408. https://doi.org/10.3390/f16091408