Effects on Soil Organic Carbon Stock in the Context of Urban Expansion in the Andes: Quito City Case
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area: Quito
2.2. Methodological Stages
2.2.1. Soil Organic Carbon Stock and Variations in Soil Attributes
2.2.2. Data Analysis
2.2.3. Inventory and Forest Structure
3. Results
3.1. Soil Organic Carbon Stock and Soil Attribute Variations
3.2. Structure and Diversity of the Montane Forest
4. Discussion
4.1. Soil Organic Carbon Stock and Soil Attributes
4.2. Montane Forest
4.3. Interrelationship Between Vegetation and Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Angel, S.; Civco, D. The Persistent Decline in Urban Densities: Global and Historical Evidence of “Sprawl”. Lincoln Institute of Land Policy. 2010. Available online: https://www.lincolninst.edu/app/uploads/2024/04/1834_1085_angel_final_1.pdf (accessed on 25 March 2025).
- Bonilla-Bedoya, S.; Estrella, A.; Santos, F.; Herrera, M.Á. Forests and Urban Green Areas as Tools to Address the Challenges of Sustainability in Latin American Urban Socio-Ecological Systems. Appl. Geogr. 2020, 125, 102343. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B. Urban Growth in Developing Countries: A Review of Current Trends and a Caution Regarding Existing Forecasts. World Dev. 2004, 32, 23–51. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects 2019 Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Acuto, M.; Parnell, S.; Seto, K.C. Building a Global Urban Science. Nat. Sustain. 2018, 1, 2–4. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Angel, S.; Sheppard, S.; Civco, D. The Dynamics of Global Urban Expansion; Transport and Urban Development Department, The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban Land Teleconnections and Sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef]
- UN-Habitat. Urbanization and Development—Emerging Futures. 2016. Available online: https://unhabitat.org/world-cities-report-2016 (accessed on 1 May 2022).
- Sist, P.; Mazzei, L.; Blanc, L.; Rutishauser, E. Large Trees as Key Elements of Carbon Storage and Dynamics after Selective Logging in the Eastern Amazon. For. Ecol. Manag. 2014, 318, 103–109. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural Expansion and Its Impacts on Tropical Nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.-J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.-P. Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- IUCN. World Conservation Congress 2020; IUCN: Gland, Switzerland, 2020. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological Functions of Tropical Forests: Not Seeing the Soil for the Trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion Processes in Steep Terrain—Truths, Myths, and Uncertainties Related to Forest Management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- García-Sánchez, M.; Taušnerová, H.; Hanč, A.; Tlustoš, P. Stabilization of Different Starting Materials through Vermicomposting in a Continuous-Feeding System: Changes in Chemical and Biological Parameters. Waste Manag. 2017, 62, 33–42. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A.; Kappelle, M.; Mulligan, M.; Scatena, F.N. Tropical Montane Cloud Forests: State of Knowledge and Sustainability Perspectives in a Changing World. In Tropical Montane Cloud Forests: Science for Conservation and Management; Cambridge University Press: Cambridge, UK, 2010; pp. 691–740. [Google Scholar] [CrossRef]
- Castilho-Balbinot, L.; Marques, R.; Tonello, K.C.; Berguetti, Á.L.P.; Larsen, J.G. Recent insights in soil nutrient cycling: Perspectives from forests of Pinus and Eucalyptus species. iForest 2024, 17, 394–404. [Google Scholar] [CrossRef]
- Carrión-Paladines, V.; Crespo, P.; Buytaert, W.; Célleri, R. Conversion of Andean montane forest to exotic forest plantation modifies soil physicochemical properties in the buffer zone of Ecuador’s Podocarpus National Park. Sci. Rep. 2022, 12, 20644. [Google Scholar] [CrossRef]
- Ortiz, J.; Panichini, M.; Neira, P.; Henríquez-Castillo, C.; Jara, R.E.G.; Rodriguez, R.; Mutis, A.; Ramos, C.; Espejo, W.; Puc-Kauil, R.; et al. How Natural Regeneration After Severe Disturbance Affects Ecosystem Services Provision of Andean Forest Soils at Contrasting Timescales. Forests 2025, 16, 456. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [PubMed]
- Marian, F.; Castillo, P.R.; Armijos, C.I.; Günter, S.; Maraun, M.; Scheu, S. Conversion of Andean montane forests into plantations: Effects on litter layer thickness, pH, water content, and C-to-N ratio. Biotropica 2020, 52, 1142–1154. [Google Scholar] [CrossRef]
- Wang, N.; Xia, L.; Goodale, C.L.; Butterbach-Bahl, K.; Kiese, R. Climate Change Can Accelerate Depletion of Montane Grassland Carbon. Glob. Biogeochem. Cycles 2021, 35, e2020GB006792. [Google Scholar] [CrossRef]
- Jiang, Z.; Ma, H.; Li, S.; Zheng, C.; Bai, E. Grasslands contain approximately 525 Pg C, which accounts for 16% to 19% of total organic carbon in terrestrial ecosystems. Ecol. Process. 2025, 14, 54. [Google Scholar] [CrossRef]
- Dube, T.; Chiduza, C.; Muchaonyerwa, P. Effect of management strategies on soil organic carbon fractions and stocks in grasslands: A review. J. Soils Sediments 2014, 14, 1581–1595. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Li, G.; Cao, Y.; He, Z.; He, J.; Cao, Y.; Wang, J.; Fang, X. Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China. Remote Sens. 2021, 13, 2373. [Google Scholar] [CrossRef]
- Santamouris, M. Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Turner, R.K.; Daily, G.C. The Ecosystem Services Framework and Natural Capital Conservation. Environ. Resour. Econ. 2008, 39, 25–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Yuan, D.; Cui, J.; Li, Y.; Yang, J.; Cao, M. Source and Flux of Anthropogenically Enhanced Dissolved Inorganic Carbon: A Comparative Study of Urban and Forest Karst Catchments in Southwest China. Sci. Total Environ. 2020, 725, 138255. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, F.; Agoston, P.; Minx, J.C.; Canadell, J.G.; Andrew, R.M.; le Quéré, C.; Peters, G.P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Urban Infrastructure Choices Structure Climate Solutions. Nat. Clim. Change 2016, 6, 1054–1056. [Google Scholar] [CrossRef]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havránek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, A.; Mendez, G.V. Greenhouse Gas Emissions from Global Cities. Environ. Sci. Technol. 2009, 43, 7297–7302. [Google Scholar] [CrossRef]
- EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
- Liu, S.; Deng, Y.; Jiang, Z.; Wu, Y.; Huang, X.; Macreadie, P.I. Nutrient Loading Diminishes the Dissolved Organic Carbon Drawdown Capacity of Seagrass Ecosystems. Sci. Total Environ. 2020, 740, 140185. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems Impacted by Climate Change and Anthropogenic Nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef]
- Konrad, C.P.; Olden, J.D.; Lytle, D.A.; Melis, T.S.; Schmidt, J.C.; Bray, E.N.; Freeman, M.C.; Gido, K.B.; Hemphill, N.P.; Kennard, M.J.; et al. Large-Scale Flow Experiments for Managing River Systems. BioScience 2011, 61, 948–959. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, M.; Groffman, P.M.; Band, L.E.; Boone, C.G.; Burch, W.R.; Grimmond, S.B.; Hom, J.; Jenkins, J.; et al. Beyond Urban Legends: An Emerging Framework of Urban Ecology, as Illustrated by the Baltimore Ecosystem Study. BioScience 2008, 58, 139–150. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, Y.; Yu, G.; He, N.; Zhang, L.; Zhu, B.; Wang, Y. Anthropogenic Reactive Nitrogen Deposition and Associated Nutrient Limitation Effect on Gross Primary Productivity in Inland Water of China. J. Clean. Prod. 2019, 208, 530–540. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution Exacerbates China’s Water Scarcity and Its Regional Inequality. Nat. Commun. 2020, 11, 536. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Mora, A.; Vaca, A.; Estrella, A.; Herrera, M.Á. Modelling the Relationship between Urban Expansion Processes and Urban Forest Characteristics: An Application to the Metropolitan District of Quito. Comput. Environ. Urban Syst. 2019, 79, 101420. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Herrera, M.Á.; Vaca, A.; Salazar, L.; Zalakeviciute, R.; Mejía, D.; López-Ulloa, M. Urban Soil Management in the Strategies for Adaptation to Climate Change of Cities in the Tropical Andes. Geoderma 2022, 417, 115840. [Google Scholar] [CrossRef]
- Lal, R. Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s Soils Are Under Threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef]
- SHAH. Informe Nacional del Ecuador Tercera Conferencia de las Naciones Unidas sobre la Vivienda y el Desarrollo Urbano Sostenible Habitat III; Ministerio de Desarrollo Urbano y Vivienda: Quito, Ecuador, 2015.
- MIDUVI. Agenda Hábitat Sostenible 2036; Ministerio de Desarrollo Urbano y Vivienda: Quito, Ecuador, 2020.
- Forman, R.T.T. Urban Ecology; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bonilla-Bedoya, S.; Estrella, A.; Vaca Yánez, A.; Herrera, M.Á. Urban Socio-Ecological Dynamics: Applying the Urban-Rural Gradient Approach in a High Andean City. Landsc. Res. 2020, 45, 327–345. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Zalakeviciute, R.; Coronel, D.M.; Durango-Cordero, J.; Molina, J.R.; Macedo-Pezzopane, J.E.; Herrera, M.Á. Spatiotemporal Variation of Forest Cover and Its Relation to Air Quality in Urban Andean Socio-Ecological Systems. Urban For. Urban Green. 2021, 59, 127008. [Google Scholar] [CrossRef]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Carrión, F.; Erazo Espinosa, J. La Forma Urbana de Quito: Una Historia de Centros y Periferias. Bulletin de l’Institut Français d’études Andines 2012, 41, 503–522. [Google Scholar] [CrossRef]
- Carrera, M.; Bustamante, M.; Sáenz, M. Las Áreas Protegidas del Distrito Metropolitano de Quito. 2016. Available online: https://condesan.org/wp-content/uploads/2017/07/Libro1.pdf (accessed on 1 July 2022).
- Secretaría de Ambiente. Plan Estratégico del Área de Intervención Especial y Recuperación del Pichincha-Atacazo y Bosque Protector Flanco Oriental del Volcán Pichincha; Secretaría de Ambiente: Quito, Ecuador, 2012. [Google Scholar]
- Instituto Nacional de Meteorología e Hidrología. Anuario Meteorológico; INAMHI: Quito, Ecuador, 2017. [Google Scholar]
- Sanchez, Z. Los Bosques del Ecuador. 2020. Available online: https://www.academia.edu/44163908/LOS_BOSQUES_DEL_ECUADOR (accessed on 23 January 2022).
- Ross, C.E.; Munro, N.T.; Barton, P.S.; Evans, M.J.; Gillen, J.; Macdonald, B.C.T.; McIntyre, S.; Cunningham, S.A.; Manning, A.D. Effects of Digging by a Native and Introduced Ecosystem Engineer on Soil Physical and Chemical Properties in Temperate Grassy Woodland. PeerJ 2019, 7, e7506. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Agriculture Handbook No. 436; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 1999.
- Bonilla-Bedoya, S.; López-Ulloa, M.; Vanwalleghem, T.; Herrera-Machuca, M.Á. Effects of Land Use Change on Soil Quality Indicators in Forest Landscapes of the Western Amazon. Soil Sci. 2017, 182, 128–136. [Google Scholar] [CrossRef]
- Dabadie, M.; Pérez, C.; Arturi, M.; Goya, J.; Sandoval, M. Calibración del Método de Pérdida de Peso por Ignición para la Estimación de Carbono Orgánico en Inceptisoles del NE de Entre Ríos. Rev. Fac. Agron. 2018, 117, 157–162. [Google Scholar]
- Heaton, L.; Fullen, M.A.; Bhattacharyya, R., II. Critical Analysis of the Van Bemmelen Conversion Factor Used to Convert Soil Organic Matter Data to Soil Organic Carbon Data: Comparative Analyses in a UK Loamy Sand Soil. Espaço Abierto 2016, 1, 35–44. [Google Scholar] [CrossRef]
- Barančíková, G.; Halás, J.; Gutteková, M.; Makovníková, J.; Nováková, M.; Skalský, R.; Tarasovičová, Z. Application of Roth C Model to Predict Soil Organic Carbon Stock on Agricultural Soils of Slovakia. Soil Water Res. 2010, 5, 1–9. [Google Scholar] [CrossRef]
- Dincă, L.C.; Dincă, M.; Vasile, D.; Spârchez, G.; Holonec, L. Calculating Organic Carbon Stock from Forest Soils. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 568–575. [Google Scholar] [CrossRef]
- Fox, J.; Marquez, M.M.; Bouchet-Valat, M. Rcmdr: R Commander. R Package Version 2.9-5. 2024. Available online: https://github.com/RCmdr-Project/rcmdr (accessed on 27 May 2023).
- Fox, J.S.; Weisberg, D.; Adler, D.; Bates, G.; Boud-Bovy, S.; Ellison, M.; Friendly, M. R-Package “car”. Version 3.1-2. 2015. Available online: https://cran.r-project.org/web/packages/car/index.html (accessed on 27 May 2023).
- Yeo, I.; Johnson, R.A. A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika 2000, 87, 949–959. Available online: http://biomet.oxfordjournals.org/ (accessed on 27 May 2023). [CrossRef]
- Bonilla-Bedoya, S.; Lugo-Salinas, L.; Mora-Garcés, A.; Villarreal, A.; Arends, E.; Herrera, M. Piaroa Shifting Cultivation: Temporal Variability of Soil Characteristics and Spatial Distribution of Crops in the Venezuelan Orinoco. Agrofor. Syst. 2013, 87, 1189–1199. [Google Scholar] [CrossRef]
- Mulla, D.J.; McBratney, A.B. Soil Spatial Variability; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Lozano, Z.; Bravo, C.; Ovalles, F.; Hernández, R.M.; Moreno, B.; Piñango, L.; Villanueva, J.G. Selección de un Diseño de Muestreo en Parcelas Experimentales a Partir del Estudio de la Variabilidad Espacial de los Suelos. Bioagro 2004, 16, 61–72. [Google Scholar]
- Rossiter, D. Technical Note: Co-kriging with the gstat Package of the R Environment for Statistical Computing. 2012. Available online: https://www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/CoKrigeR.pdf (accessed on 27 May 2023).
- Aguirre, Z.; Reyes, B.; Quizhpe, W.; Cabrera, A. Composición Florística, Estructura y Endemismo del Componente Leñoso de un Bosque Montano en el Sur del Ecuador. Arnaldoa 2017, 24, 543–556. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Chave, J. Measuring Wood Density for Tropical Forest Trees: A Field and Analysis Manual. Global Wood Density Database. 2005. Available online: https://afritron.org/upload/en/manuals/wood_density_english[1].pdf (accessed on 30 June 2025).
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Change Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Chen, H.; Tian, D.; Liu, X.; Fang, J. Impacts of land-use change on soil organic carbon stocks: A global synthesis. Glob. Change Biol. 2022, 28, 4743–4756. [Google Scholar] [CrossRef]
- Hofstede, R.; Groenendijk, J.P.; Coppus, R.; Fehse, J.C.; Sevink, J. Impact of Pine Plantations on Soils and Vegetation in the Ecuadorian High Andes. Mt. Res. Dev. 2002, 22, 159–167. [Google Scholar] [CrossRef]
- Najera González, O.; Murray Núñez, R.M.; Orozco Benitez, M.G.; Bojorquez Serrano, J.I. Cambios en Carbono Orgánico en Suelos Cambisoles, Solonetz y Arenosoles. Rev. Iberoam. Cienc. Biol. Agropecu. 2015, 2007, 9990. [Google Scholar]
- Rosero, J.D.M.; Rincón, E.C.; Oviedo, F.H.; López, P.A.P.; Pastrana, Á.M.C. Cultivo y Ensilaje de Avena (Avena sativa L.) en el Trópico Alto del Departamento de Nariño; AGROSAVIA Editorial: Nariño, Colombia, 2022. [Google Scholar]
- Otero, J.D.; Figueroa, A.; Muñoz, F.A.; Peña, M.R. Loss of soil and nutrients by surface runoff in two agro-ecosystems within an Andean paramo area. Ecol. Eng. 2011, 37, 2035–2043. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Ma, J.; Chen, H.; Lai, R. Global patterns and drivers of soil organic carbon change following forest conversion to agriculture. Glob. Change Biol. 2023, 29, 2413–2428. [Google Scholar] [CrossRef]
- Quichimbo, P.; Tenorio, G.; Borja, P.; Cárdenas, I.; Crespo, P.; Célleri, R. Efectos sobre las propiedades físicas y químicas de los suelos por el cambio de la cobertura vegetal y uso del suelo: Páramo de Quimsacocha al sur del Ecuador. Suelos Ecuat. 2012, 42, 138–153. [Google Scholar]
- Vigo, C.; Oclocho, F. Influencia de las Plantaciones de Eucalipto (Eucalyptus globulus) en las Características del suelo a Diferentes Pisos Altitudinales, Distritos de Magdalena, Tingo y San Isidro del Maino, Amazonas; Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas: Amazonas, Peru, 2017; Available online: https://repositorio.untrm.edu.pe/handle/20.500.14077/1195 (accessed on 30 May 2023).
- Hernández, A.; Vera, L.; Naveda, C.A.; Guzmán, Á.M.; Vivar, M.; Zambrano, T.; López Alava, G.A. Variaciones en Algunas Propiedades del Suelo por el Cambio de Uso de la Tierra, en las Partes Media y Baja de la Microcuenca Membrillo, Manabí, Ecuador. Cult. Trop. 2017, 38, 50–56. [Google Scholar]
- Cantera, B.; Ihlenfeld, S. Efecto de la Fertilización y Aplicación de Bioestimulantes en el Desarrollo Inicial de Plantaciones de Eucalyptus globulus Sobre Suelos de Lavalleja. 2014. Available online: https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/8808 (accessed on 5 May 2023).
- Behan, M. Soil-Plant-Water Relationships; FACE Foundation: Arnhem, The Netherlands, 1992. [Google Scholar]
- Fox, T.R. The Influence of Low-Molecular-Weight Organic Acids on Properties and Processes in Forest Soils. In Carbon Forms and Functions in Forest Soils; Soil Science Society of America: Madison, WI, USA, 1995; pp. 43–62. [Google Scholar]
- Anón. Eucalypts: Curse or Cure? In The Impacts of Australia’s World Tree in Other Countries; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 1992. [Google Scholar]
- Cordero-Rivera, A.; Martínez Álvarez, A.; Álvarez, M. Eucalypt Plantations Reduce the Diversity of Macroinvertebrates in Small Forested Streams. 2017. Available online: https://museucienciesjournals.cat/en/abc/issue/40-1-2017-abc/eucalypt-plantations-reduce-the-diversity-of-macroinvertebrates-in-small-forested-streams?lang=en (accessed on 15 May 2023).
- Cuvi, M.; Caranqui, J. Estudio de la Diversidad Florística en Diferente Gradiente Altitudinal en el Bosque Montano Alto Llucud, Cantón Chambo, Provincia de Chimborazo. Bachelor’s Thesis, Escuela Superior Politécnica de Chimborazo, Facultad de Recursos Naturales, Escuela de Ingeniería Forestal, Riobamba, Ecuador, 2010. Available online: https://rraae.cedia.edu.ec/vufind/Record/ESPOCH_dc3abdbb60c64b91875ab8a9a482c4ea?sid=5967454 (accessed on 1 July 2023).
- Homeier, J.; Englert, F.; Leuschner, C.; Weigelt, P.; Unger, M. Factors Controlling the Abundance of Lianas along an Altitudinal Transect of Tropical Forests in Ecuador. Forest Ecol. Manag. 2010, 259, 1399–1405. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.; Mitchard, E.T.A.; Gloor, E. Perturbations in the carbon budget of the tropics. Glob. Change Biol. 2014, 20, 3238–3255. [Google Scholar] [CrossRef]
- Arturi, M.F.; Grau, H.R.; Aceñolaza, P.G.; Brown, A.D. Estructura y sucesión en bosques montanos del Noroeste de Argentina. Rev. Biol. Trop. 1998, 46, 525–532. [Google Scholar] [CrossRef]
- Burga-Cieza, A.M.; Burga Cieza, J.; Iglesias-Osores, S.; Alcalde-Alfaro, V.W.; Martínez-Sovero, G.; Dávila-Estela, L.; Villena-Velásquez, J.J. Estructura, diversidad y endemismo de la flora del relicto Los Lanches del bosque montano Las Palmas, Cajamarca, Perú. Cienc. Amaz. (Iquitos) 2021, 9, 43–58. [Google Scholar] [CrossRef]
- León-Yánez, S.; Valencia, R.; Pitman, N.; Endara, L.; Ulloa, C.; Navarrete, H. Libro Rojo de las Plantas Endémicas del Ecuador, 2nd ed.; Herbario QCA, Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2011. [Google Scholar]
- Curipoma, S.; Cevallos, D.; Pérez, Á.J. Composición y estructura florística de dos remanentes de Bosque Andino Montano Alto en el volcán Ilaló, Ecuador. Rev. Ecuat. Med. Cienc. Biol. 2018, 39, 93–104. [Google Scholar] [CrossRef]
- Haro, M.S. Estudio de regeneración natural en tres sitios de bosque montano en la reserva geobotánica Pululahua, Pichincha, Ecuador. Rev. Ecol. Trop. 2018, 45, 123–145. [Google Scholar]
- Farfan-Rios, W.; Garcia-Cabrera, K.; Salinas, N.; Raurau-Quisiyupanqu, M.N.; Silman, M.R. An annotated checklist of trees and relatives in tropical montane forests from southeast Peru: The importance of continue collecting. Rev. Peru Biol. 2015, 22, 145–174. [Google Scholar] [CrossRef]
- Pinto, E.; Pérez, A.J.; Ulloa Ulloa, C.; Cuesta, F. Árboles Representativos de los Bosques Montanos del Noroccidente de Pichincha, Ecuador; Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN): Quito, Ecuador, 2018. [Google Scholar]
- Vistín-Guamantaqui, D.; Espinoza-Castillo, D.D. Estructura y Diversidad de Especies Arbóreas del Bosque Siempreverde Montano Alto del Parque Nacional Sangay-Ecuador. Dominio Cienc. 2021, 7, 1406–1430. [Google Scholar]
- Burga-Cieza, A.M.; Burga-Cieza, J.J.; Alcalde-Alfaro, V.W.; Martínez-Sovero, G.; Iglesias-Osores, S.; Villena-Velásquez, J.J. Floristic Characterization of the Los Lanches Relict of the Montane Forest Las Palmas Chota, Peru. SciELO Prepr. 2020. [Google Scholar] [CrossRef]
- Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. Eur. J. Soil Sci. 2010, 61, 392–405. [Google Scholar] [CrossRef]
- Dilas-Jiménez, J.O.; Huamán Jiménez, A.O. Captura de carbono por un bosque montano de neblina del Perú. Alpha Centauri 2020, 1, 13–25. [Google Scholar] [CrossRef]
- Guallpa-Calva, M.Á.; Guadalupe-Arias, O.B.; Rosero-Haro, S.C.; Morocho-Lema, V.M. Carbono Almacenado en el Suelo de dos Sistemas de Uso de la Tierra de la Reserva Huayrapalte. 2019. Available online: https://dominiodelasciencias.com/ojs/index.php/es/article/view/1082 (accessed on 1 July 2023).
- Álvarez-Arteaga, G.; García Calderón, N.E.; Krasilnikov, P.; García-Oliva, F. Almacenes de carbono en bosques montanos de niebla de la Sierra Norte de Oaxaca. Agrociencia 2013, 47, 171–180. [Google Scholar]
- Jiménez, E. Composición y Estructura de una Hectárea de Bosques en la Cordillera del Paso Alto, San José de Minas, Pichincha-Ecuador. Cinchonia 2007, 8, 107–125. [Google Scholar]
- Rosero, G.A. Evaluación de Carbono Orgánico del Suelo en el Ecosistema de Páramo de la Microcuenca del río Chimborazo en Base a las Actividades Antrópicas. Bachelor’s Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2019. [Google Scholar]
- Cantú, I.; Yañez, M.I. Efecto del cambio de uso de suelo en el contenido de carbono orgánico y nitrógeno del suelo. Rev. Mex. Cienc. For. 2018, 9. [Google Scholar] [CrossRef]
- Costa de Mendonça, G.; Araújo Costa, R.C.; Parras, R.; Marianno de Oliveira, L.C.; Nogueira Abdo, M.T.V.; Leal Pacheco, F.A.; Tarlé Pissarra, T.C. Spatial indicator of priority areas for the implementation of agroforestry systems: An optimization strategy for agricultural landscapes restoration. Sci. Total Environ. 2022, 839, 156185. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.; Taylor-Lovell, S. Designing multifunctional urban agroforestry with people in mind. Urban Agric. Reg. Food Syst. 2021, 6, e20016. [Google Scholar] [CrossRef]
- FAO. Trees, Forests and Land Use in Drylands: The First Global Assessment; FAO Forestry Paper No. 184; FAO: Rome, Italy, 2022. [Google Scholar]
Attribute | Method | Unit |
---|---|---|
pH | Electrometric/EPA 9045 | - |
OC | LOI | % |
N | Dumas/Relase | % |
P | Colorimtry/Relase | mg/kg |
Texture | Bouyoucos test |
Parameter | Detail |
---|---|
Diametric structure | Histogram of frequencies of diameter at breast Height of inventoried individuals |
Taxonomic richness | Number of families, genus, and species |
Forest composition | Sum of all different species recorded considering life form: tree or shrubs (herbaceous and epiphytes were not considered in the sampling) |
Relative density (RD) | |
Relative dominance (DmR) | |
Relative diversity of family or genus (Dr) | |
Shannon-Wiener index 1 | |
Simpson’s index 2 |
Land Coverage | Texture | BD * | pH * | N * | P * | OM * | SOC Stock * | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | g/cm3 | % | ppm | % | kg/m2 | ||
Montane Forest | 56 | 29 | 15 | 0.79 ± 0.09 | 5.73 ± 0.23 | 0.57 ± 0.18 | 5.30 ± 1.08 * | 10.31 ± 1.94 * | 9.69 ± 1.44 |
Plantations | 47 | 33 | 20 | 1.20 ± 0.03 * | 5.77 ± 0.29 | 0.14 ± 0.03 * | 8.42 ± 3.62 * | 2.42 ± 0.34 | 3.27 ± 0.67 * |
Grassland | 47 | 41 | 12 | 0.81 ± 0.06 | 5.87± 0.07 * | 0.58 ± 0.05 | 4.08 ± 0.93 * | 9.64 ± 0.45 | 9.31 ± 0.36 |
Land Cover | Method | Soil Attributes | Type Model | Mean Error | Root Mean Square | Mean Standardized | Root Mean Square Standardized | Average Standard Error | Regression Equation |
---|---|---|---|---|---|---|---|---|---|
Montane Forest | CK | OM | Circular | −0.0030 | 1.2609 | −0.0206 | 0.9924 | 1.2843 | −0.36778X + 2.0083 |
P | Circular | −0.0072 | 1.1993 | −0.0084 | 1.0631 | 1.1436 | 0.05999X + 5.09135 | ||
K | N | Gaussian | 0.0002 | 0.1185 | 0.0077 | 1.0444 | 0.1129 | 0.61080X + 0.22742 | |
Plantation (E. globulus) | CK | OM | Gaussian | −0.0048 | 0.2798 | −0.0383 | 1.1757 | 0.2490 | −0.60437X + 0.83003 |
N | Gaussian | 0.0003 | 0.0296 | 0.0290 | 1.1418 | 0.0271 | 0.37778X + 0.08807 | ||
K | P | Circular | 0.0672 | 3.6830 | 0.0177 | 0.9683 | 3.9157 | 0.07518X + 8.01277 | |
Grassland | CK | P | Gaussian | −0.0282 | 0.9839 | −0.3253 | 1.7490 | 0.8579 | 0.10599X + 3.46946 |
K | OM | Circular | 0.0021 | 0.4820 | 0.0043 | 0.9897 | 0.4870 | −1.0033 + 5.62477 | |
N | Spherical | 0.0003 | 0.0503 | 0.0064 | 0.9884 | 0.0509 | −0.00182X + 0.58145 |
Family | Species | Common Name | Individuals |
---|---|---|---|
Araliaceae | Oreopanax ecuadorensis | Puma maqui | 23 |
Asteraceae | Pentacalia sp.1 | 1 | |
Baccharis latifolia | Chilca | 25 | |
Gynoxys campii | 38 | ||
Gynoxys sp.1 | 8 | ||
Betulaceae | Alnus acuminata | Aliso | 2 |
Campanulaceae | Centropogon sp.1 | 13 | |
Syphocampylus giganteus | Lechero | 22 | |
Coriariaceae | Coriaria ruscifolia | Shanshi | 7 |
Elaeocarpaceae | Vallea stipularis | Raque | 18 |
Fabaceae | Dalea coerulea | Iso | 8 |
Melastomataceae | Brachyotum ledifolium | Arete del Inca | 45 |
Miconia crocea | Colca azafranada | 20 | |
Miconia papillosa | Colca de Quito | 1 | |
Miconia sp.1 | 4 | ||
Myrtaceae | Myrcianthes aff. discolor | 10 | |
Myrcianthes rhopaloides | Arrayan | 1 | |
Primulaceae | Myrsine andina | Charmuelán | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uvidia, K.; Salazar-Cotugno, L.; Molina, J.R.; Fernandes Silva, G.; Bonilla-Bedoya, S. Effects on Soil Organic Carbon Stock in the Context of Urban Expansion in the Andes: Quito City Case. Forests 2025, 16, 1409. https://doi.org/10.3390/f16091409
Uvidia K, Salazar-Cotugno L, Molina JR, Fernandes Silva G, Bonilla-Bedoya S. Effects on Soil Organic Carbon Stock in the Context of Urban Expansion in the Andes: Quito City Case. Forests. 2025; 16(9):1409. https://doi.org/10.3390/f16091409
Chicago/Turabian StyleUvidia, Karla, Laura Salazar-Cotugno, Juan Ramón Molina, Gilson Fernandes Silva, and Santiago Bonilla-Bedoya. 2025. "Effects on Soil Organic Carbon Stock in the Context of Urban Expansion in the Andes: Quito City Case" Forests 16, no. 9: 1409. https://doi.org/10.3390/f16091409
APA StyleUvidia, K., Salazar-Cotugno, L., Molina, J. R., Fernandes Silva, G., & Bonilla-Bedoya, S. (2025). Effects on Soil Organic Carbon Stock in the Context of Urban Expansion in the Andes: Quito City Case. Forests, 16(9), 1409. https://doi.org/10.3390/f16091409