F3-YOLO: A Robust and Fast Forest Fire Detection Model
Abstract
1. Introduction
- We establish a new baseline for forest fire detection by adapting the YOLOv12 framework, which integrates area attention modules to isolate targets from cluttered backgrounds, thereby improving the detection of small, occluded, or overlapping instances of fire and smoke.
- F3-YOLO introduces the dynamically activated CondConv to enhance the model’s feature representation of dynamic targets while preserving real-time performance. Additionally, the FSAS module is integrated to leverage frequency-domain information and relational dependencies to improve detection accuracy.
- We propose the FMPDIoU loss function to stabilize training and enhance localization accuracy for irregularly shaped targets. Furthermore, structured pruning is applied to eliminate redundant parameters, reducing computational overhead and ensuring compatibility with edge devices.
- Our experimental results demonstrate that the proposed F3-YOLO achieves state-of-the-art (SOTA) accuracy while incurring the lowest computational overhead, offering a reliable, low-latency solution for forest fire early warning systems.
2. Method
2.1. Baseline Model Selection
2.2. F3-YOLO
2.2.1. Overall Architecture
2.2.2. Introduce the CondConv
2.2.3. Integrate the FSAS Module
2.3. Optimization Strategy
2.3.1. FMPDIoU
2.3.2. Structured Pruning Strategy
3. Experiment
3.1. Datasets
3.2. Evaluation Metrics
3.3. Experimental Environment and Configuration
3.3.1. Environment
3.3.2. Training Configuration
3.4. Experimental Results
3.4.1. Comparison Experiment
3.4.2. Ablation Experiment
4. Discussion
4.1. Attention Map Analysis
4.2. Hyperparameter Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
F3-YOLO | A robust and fast forest fire detection model based on YOLO |
CondConv | Conditionally parameterized convolutions |
FFT | Fast Fourier transform |
FSAS | Frequency domain-based self-attention solver |
FMPDIoU | Focaler minimum point distance intersection over union loss |
FPS | Frames per second |
GFLOPs | Giga floating-point operations |
References
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-Driven Risks to the Climate Mitigation Potential of Forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef] [PubMed]
- Dang-Ngoc, H.; Nguyen-Trung, H. Aerial Forest Fire Surveillance—Evaluation of Forest Fire Detection Model Using Aerial Videos. In Proceedings of the 2019 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 17–19 October 2019; pp. 142–148. [Google Scholar]
- Güney, C.O.; Mert, A.; Gülsoy, S. Assessing Fire Severity in Turkey’s Forest Ecosystems Using Spectral Indices from Satellite Images. J. For. Res. 2023, 34, 1747–1761. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Yin, Z.; Liu, S.; Guo, X. Forest Fire Detection System Based on Wireless Sensor Network. In Proceedings of the 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009; pp. 520–523. [Google Scholar]
- Chen, T.-H.; Wu, P.-H.; Chiou, Y.-C. An Early Fire-Detection Method Based on Image Processing. In Proceedings of the 2004 International Conference on Image Processing (ICIP), Singapore, 24–27 October 2004; Volume 3, pp. 1707–1710. [Google Scholar]
- Chino, D.Y.T.; Avalhais, L.P.S.; Rodrigues, J.F.; Traina, A.J.M. BowFire: Detection of Fire in Still Images by Integrating Pixel Color and Texture Analysis. In Proceedings of the 28th SIBGRAPI Conference on Graphics, Patterns and Images, Salvador, Brazil, 26–29 August 2015; pp. 95–102. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, J. A Video-Based Fire Detection Using Deep Learning Models. Appl. Sci. 2019, 9, 2862. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of YOLO Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Wang, H.; Zhang, Y.; Zhu, C. YOLO-LFD: A Lightweight and Fast Model for Forest Fire Detection. Comput. Mater. Contin. 2025, 82, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, J.; Xu, Y.; Xie, L. MCAN-YOLO: An Improved Forest Fire and Smoke Detection Model Based on YOLOv7. Forests 2024, 15, 1781. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, L.; Chen, Z. FFD-YOLO: A Modified YOLOv8 Architecture for Forest Fire Detection. Signal Image Video Process. 2025, 19, 265. [Google Scholar] [CrossRef]
- Yun, B.; Zheng, Y.; Lin, Z.; Li, T. FFYOLO: A Lightweight Forest Fire Detection Model Based on YOLOv8. Fire 2024, 7, 93. [Google Scholar]
- Wang, H.; Fu, X.; Yu, Z.; Zeng, Z. DSS-YOLO: An Improved Lightweight Real-Time Fire Detection Model Based on YOLOv8. Sci. Rep. 2025, 15, 8963. [Google Scholar]
- Zhou, N.; Gao, D.; Zhu, Z. YOLOv8n-SMMP: A Lightweight YOLO Forest Fire Detection Model. Fire 2025, 8, 183. [Google Scholar]
- Tian, Y.; Ye, Q.; Doermann, D. YOLOv12: Attention-Centric Real-Time Object Detectors. arXiv 2025, arXiv:2502.12524. [Google Scholar]
- Yang, B.; Bender, G.; Le, Q.V.; Ngiam, J. CondConv: Conditionally Parameterized Convolutions for Efficient Inference. Adv. Neural Inf. Process. Syst. 2019, 32, 1–11. [Google Scholar]
- Kong, L.; Dong, J.; Ge, J.; Li, M.; Pan, J. Efficient Frequency Domain-Based Transformers for High-Quality Image Deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 5886–5895. [Google Scholar]
- Ma, S.; Xu, Y. MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression. arXiv 2023, arXiv:2307.07662. [Google Scholar]
- Zhang, H.; Zhang, S. Focaler-IoU: More Focused Intersection over Union Loss. arXiv 2024, arXiv:2401.10525. [Google Scholar]
- Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning Efficient Convolutional Networks through Network Slimming. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2736–2744. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Varghese, R.; Sambath, M. YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Bangalore, India, 21–22 March 2024; pp. 1–6. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. YOLOv10: Real-Time End-to-End Object Detection. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
- Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar]
- Xiao, Y.; Xu, T.; Xin, Y.; Li, J. FBRT-YOLO: Faster and Better for Real-Time Aerial Image Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Denver, CO, USA, 25–28 February 2025; Volume 39, pp. 8673–8681. [Google Scholar]
Experimental Environment | Type |
---|---|
CPU | Intel(R) Xeon(R) Platinum 8255C |
GPU | RTX 4090 24 GB GPU |
Operating system | Linux-Ubuntu20.04 |
Python version | Python 3.12 |
Deep learning framework | PyTorch 2.3.0 |
CUDA Version | CUDA 12.1 |
Model | mAP@50/(%) | Params/ | FLOPs |
---|---|---|---|
YOLOv7-tiny | 62.4 | 6.02 | 13.2 |
YOLOv8n | 64.3 | 3.2 | 8.9 |
YOLOv10n | 63.5 | 2.3 | 6.7 |
YOLOv11n | 63.7 | 2.6 | 6.6 |
YOLOv12n | 64.4 | 2.6 | 6.5 |
YOLOv12s | 64.7 | 9.3 | 21.7 |
FBRT-YOLO | 59.4 | 0.9 | 6.7 |
YOLO-LFD | 65.5 | 3.7 | 7.8 |
DSS-YOLO | 66.2 | 3.2 | 7.9 |
YOLOv8n-SMMP | 67.5 | 2.1 | 5.4 |
F3-YOLO | 68.5 | 2.6 | 4.7 |
YOLOv12n | CondConv | FSAS | FMPDIoU | Prune | mAP@50/(%) | Params/ | GFLOPs | FPS |
---|---|---|---|---|---|---|---|---|
✔ | 64.4 | 2.6 | 6.5 | 234 | ||||
✔ | ✔ | 66.3 | 3.0 | 5.3 | 250 | |||
✔ | ✔ | ✔ | 67.1 | 3.0 | 5.0 | 241 | ||
✔ | ✔ | ✔ | ✔ | 68.1 | 3.0 | 5.0 | 243 | |
✔ | ✔ | ✔ | ✔ | ✔ | 68.5 | 2.6 | 4.7 | 254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Zhao, X.; Yang, X.; Zhang, Z.; Bi, C.; Zhang, L. F3-YOLO: A Robust and Fast Forest Fire Detection Model. Forests 2025, 16, 1368. https://doi.org/10.3390/f16091368
Zhang P, Zhao X, Yang X, Zhang Z, Bi C, Zhang L. F3-YOLO: A Robust and Fast Forest Fire Detection Model. Forests. 2025; 16(9):1368. https://doi.org/10.3390/f16091368
Chicago/Turabian StyleZhang, Pengyuan, Xionghan Zhao, Xubing Yang, Ziqian Zhang, Changwei Bi, and Li Zhang. 2025. "F3-YOLO: A Robust and Fast Forest Fire Detection Model" Forests 16, no. 9: 1368. https://doi.org/10.3390/f16091368
APA StyleZhang, P., Zhao, X., Yang, X., Zhang, Z., Bi, C., & Zhang, L. (2025). F3-YOLO: A Robust and Fast Forest Fire Detection Model. Forests, 16(9), 1368. https://doi.org/10.3390/f16091368