Assessing the Climate and Land Use Impacts on Water Yield in the Upper Yellow River Basin: A Forest-Urbanizing Ecological Hotspot
Abstract
1. Introduction
- (1)
- To evaluate the spatiotemporal trends and variability of WY in the UYRB over the historical period (1990–2020);
- (2)
- To disentangle and quantify the relative contributions of climate change and land-use change to historical WY variations using both sensitivity and scenario-based attribution methods;
- (3)
- To assess future WY changes (2025–2100) under combined climate (SSP126, SSP370, SSP585) and land-use scenarios, thereby filling the research gap in understanding long-term WY responses to integrated drivers in alpine basins.
2. Materials and Methods
2.1. Study Area
2.2. Data Sets
2.2.1. Climate Data
2.2.2. Land-Use Data
2.2.3. Other Data
2.3. Methods
2.3.1. InVEST Water Yield Model
2.3.2. FLUS Model
2.3.3. Trend Test
2.3.4. Sensitivity Analysis
2.3.5. Attributional Analysis
2.3.6. Geodetector
3. Results
3.1. Performance of the InVEST Model
3.2. Hydrological Variation and Land-Use Change
3.2.1. Distribution and Trends in Water Yield and Climate Variables
3.2.2. Spatial–Temporal Changes in Land Use
3.3. Contribution of Climate Change and Land-Use Change to Water Yield Variation
3.3.1. Impacts of Climate Change
3.3.2. Impacts of Land-Use Changes
3.3.3. Contributions of Climate Change and Land-Use Change to Water Yield Change
3.4. Future Projections of Water Yield
3.4.1. Future Land-Use Scenarios
3.4.2. Projected Changes in Water Yield
3.4.3. Attribution of Future Water Yield Changes
4. Discussion
4.1. Dominant Role of Climate Change in Water Yield Variations
4.2. The Secondary Role of Land-Use Change in Water Yield
4.3. Limitations of the Study
4.4. Implications and Suggestions
5. Conclusions
- (1)
- Historical Trends (1990–2020)Water yield in the UYRB exhibited a statistically significant increasing trend, with an average annual growth rate of 3 mm/yr and a basin-wide mean WY of 156 mm. Spatial heterogeneity was evident, with higher WY observed in the southern sub-basins and lower values in the northern parts. All six sub-basins demonstrated a consistent upward trend in WY, suggesting a basin-wide hydrological response to changing climatic conditions.
- (2)
- Dominant Role of Climate ChangeAttribution analysis revealed that climate change has been the primary driver of WY dynamics during the historical period, contributing 94% of the total change, whereas land-use change accounted for only 6%. Precipitation was the major positive driver, while increasing potential evapotranspiration had a moderate but negative impact. The impact of land-use change exhibited strong spatiotemporal heterogeneity, depending on land cover transitions such as forest expansion, urbanization, and cropland transformation. These processes differentially influenced WY due to their contrasting effects on evapotranspiration and infiltration.
- (3)
- Future Projections (2025–2100):Under all three SSP scenarios (SSP126, SSP370, and SSP585), WY is projected to increase, reaching 217 mm, 206 mm, and 201 mm, respectively. However, the extent of this increase varies with emission intensity. Low-carbon development under SSP126 may enhance WY by stabilizing evapotranspiration rates, whereas high-emission scenarios (e.g., SSP585) could limit WY gains due to intensified atmospheric water demand. Concurrently, the relative contribution of land-use change to future WY variation is expected to decline further to 9.1%, 5.7%, and 3.1% under SSP126, SSP370, and SSP585, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, D.Y.; Kang, X.W.; Zhuang, D.F.; Pan, J.J. Multi-Scale Quantitative Assessment of the Relative Roles of Climate Change and Human Activities in Desertification—A Case Study of the Ordos Plateau, China. J. Arid Environ. 2010, 74, 498–507. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Sun, G.; Song, C.; Li, J.; Hao, L.; Liu, N. Climate Variability Masked Greening Effects on Water Yield in the Yangtze River Basin during 2001–2018. Water Resour. Res. 2022, 58, e2021WR030382. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of Land Use Changes Based on Land Change Modeler and Attribution of Changes in the Water Balance of Ganga Basin to Land Use Change Using the SWAT Model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of Land Use and Climate Change on Water-Related Ecosystem Services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Fu, G.; He, R.; Yan, X.; Jin, J.; Liu, Y.; Zhang, A. Attribution for Decreasing Streamflow of the Haihe River Basin, Northern China: Climate Variability or Human Activities? J. Hydrol. 2012, 460–461, 117–129. [Google Scholar] [CrossRef]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the Impacts of Climate and Land Use Change on Water Security in a Semi-Arid Forested Watershed Using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Singh, V.P.; Shi, P.; Sun, P. Hydrological Effects of Cropland and Climatic Changes in Arid and Semi-Arid River Basins: A Case Study from the Yellow River Basin, China. J. Hydrol. 2017, 549, 547–557. [Google Scholar] [CrossRef]
- Bai, X.; Zhao, W. Impacts of Climate Change and Anthropogenic Stressors on Runoff Variations in Major River Basins in China since 1950. Sci. Total Environ. 2023, 898, 165349. [Google Scholar] [CrossRef]
- Changnon, S.A.; Demissie, M. Detection of Changes in Streamflow and Floods Resulting from Climate Fluctuations and Land Use-Drainage Changes. Clim. Change 1996, 32, 411–421. [Google Scholar] [CrossRef]
- Palmer, M.; Ruhi, A. Linkages between Flow Regime, Biota, and Ecosystem Processes: Implications for River Restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A Review of Catchment Experiments to Determine the Effect of Vegetation Changes on Water Yield and Evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of Large-Scale Changes in Land Cover on the Discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Huisman, J.A.; Breuer, L.; Bormann, H.; Bronstert, A.; Croke, B.; Frede, H.G.; Graff, T.G.; Hubrechts, L.; Jakeman, A.; Kite, G.; et al. Assessing the Impact of Land Use Change on Hydrology by Ensemble Modeling (LUCHEM) III: Scenario Analysis. Adv. Water Resour. 2009, 32, 159–170. [Google Scholar] [CrossRef]
- Seyoum, W.M.; Milewski, A.M.; Durham, M.C. Understanding the Relative Impacts of Natural Processes and Human Activities on the Hydrology of the Central Rift Valley Lakes, East Africa. Hydrol. Process. 2015, 29, 4312–4324. [Google Scholar] [CrossRef]
- Sharma, P.J.; Patel, P.M.; Jothiprakash, V. Impact of Rainfall Variability and Anthropogenic Activities on Streamflow Changes and Water Stress Conditions across Tapi Basin in India. Sci. Total Environ. 2019, 687, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Zhang, J.; Wang, G.; Chen, Q.; Guan, T.; Yan, X.; Liu, C.; Liu, J.; Wang, J.J. The Impact of Climate Variability and Land Use/Cover Change on the Water Balance in the Middle Yellow River Basin, China. J. Hydrol. 2019, 577, 123942. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Cescatti, A.; Forzieri, G. Climate-driven Vegetation Greening Further Reduces Water Availability in Drylands. Glob. Change Biol. 2022, 29, 1628–1647. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Mishra, A. Separating the Impacts of Climate Change and Human Activities on Streamflow: A Review of Methodologies and Critical Assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jha, M.K.; Zhang, Y.-K.; Gassman, P.W.; Wolter, C.F. Impact of Land Use and Land Cover Change on the Water Balance of a Large Agricultural Watershed: Historical Effects and Future Directions. Water Resour. Res. 2008, 44, W00A09. [Google Scholar] [CrossRef]
- Ayivi, F.; Jha, M.K. Estimation of Water Balance and Water Yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina Using SWAT. Int. Soil Water Conserv. Res. 2018, 6, 203–213. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models. J. Geophys. Res. 1994, 99, 14415. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef]
- Marquès, M.; Bangash, R.F.; Kumar, V.; Sharp, R.; Schuhmacher, M. The Impact of Climate Change on Water Provision under a Low Flow Regime: A Case Study of the Ecosystems Services in the Francoli River Basin. J. Hazard. Mater. 2013, 263, 224–232. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A Comparison of Tools for Modeling Freshwater Ecosystem Services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.; Feng, Q.; Gui, J.; Zhang, B. Spatiotemporal Variations of Water Conservation and Its Influencing Factors in Ecological Barrier Region, Qinghai-Tibet Plateau. J. Hydrol. Reg. Stud. 2022, 42, 101164. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST Models to Determine Hydrological Ecosystem Service Spatial Patterns, Priorities and Trade-Offs in a Complex Basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, A.; Peng, D.; Miao, C.; Di, Z.; Gong, W. Spatiotemporal Variations in Water Conservation Function of the Tibetan Plateau under Climate Change Based on InVEST Model. J. Hydrol. Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Omer, A.; Zhuguo, M.; Zheng, Z.; Saleem, F. Natural and Anthropogenic Influences on the Recent Droughts in Yellow River Basin, China. Sci. Total Environ. 2020, 704, 135428. [Google Scholar] [CrossRef]
- Su, X.; Li, X.; Niu, Z.; Wang, N.; Liang, X. A New Complexity-Based Three-Stage Method to Comprehensively Quantify Positive/Negative Contribution Rates of Climate Change and Human Activities to Changes in Runoff in the Upper Yellow River. J. Clean. Prod. 2021, 287, 125017. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L. The Impacts of Climate Change and Land Cover/Use Transition on the Hydrology in the Upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Feng, S.; Li, W.; Xu, J.; Liang, T.; Ma, X.; Wang, W.; Yu, H. Land Use/Land Cover Mapping Based on GEE for the Monitoring of Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sens. 2022, 14, 5361. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of Recent Climate Change on the Hydrology in the Source Region of the Yellow River Basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in Evapotranspiration and Their Responses to Climate Change and Vegetation Greening over the Upper Reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Pan, T.; Wu, S.; Liu, Y. Relative Contributions of Land Use and Climate Change to Water Supply Variations over Yellow River Source Area in Tibetan Plateau during the Past Three Decades. PLoS ONE 2015, 10, e0123793. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Zhang, F.; Zeng, W.; Yan, K.; Cui, C. Spatiotemporal Heterogeneity in Runoff Dynamics and Its Drivers in a Water Conservation Area of the Upper Yellow River Basin over the Past 35 Years. Remote Sens. 2022, 14, 3628. [Google Scholar] [CrossRef]
- Lv, Z.; Qin, T.; Wang, Y.; Mu, J.; Liu, S.; Nie, H. Effects of Recent and Potential Land Use and Climate Changes on Runoff and Sediment Load in the Upper Yellow River Basin, China. Pol. J. Environ. Stud. 2020, 29, 4225–4240. [Google Scholar] [CrossRef]
- Su, X.; Li, X.; Zhang, J.; Meng, N.; Wang, N. Temporal and Spatial Differences in the Impact of Climate Changes and Human Activities on Runoff in the Upper Reaches of the Yellow River. J. Lanzhou Univ. Sci. 2021, 57, 285–293. [Google Scholar]
- Ji, P.; Yuan, X.; Jiao, Y. Future Hydrological Drought Changes over the Upper Yellow River Basin: The Role of Climate Change, Land Cover Change and Reservoir Operation. J. Hydrol. 2023, 617, 129128. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Yang, X. Water and Sediment Yield Response to Extreme Rainfall Events in a Complex Large River Basin: A Case Study of the Yellow River Basin, China. J. Hydrol. 2021, 597, 126183. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 Km × 1 Km Gridded Revised Real Gross Domestic Product and Electricity Consumption during 1992–2019 Based on Calibrated Nighttime Light Data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Hutchinson, M.F. Interpolating Mean Rainfall Using Thin Plate Smoothing Splines. Int. J. Geogr. Inf. Syst. 1995, 9, 385–403. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration under Inaccurate Data Conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- GB/T 21010-2017; Current Land use Classification. Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- Li, G.; Jiang, C.; Zhang, Y.; Jiang, G. Whether Land Greening in Different Geomorphic Units Are Beneficial to Water Yield in the Yellow River Basin? Ecol. Indic. 2021, 120, 106926. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Fu, B. On the Calculation of the Evaporation from Land Surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res. 2004, 40, WR002710. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Douglass, J.; Fisher, D.; et al. InVEST 3.9.0 User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Ju, Q.; Liu, X.; Liu, D.; Shen, T.; Wang, G.; Yu, Z. Spatiotemporal Variation Characteristics of Actual Evapotranspiration Based on Remote Sensing and Flux Observations: Case Study in the Water Conservation Area of the Yellow River Basin. Adv. Water Sci. 2024, 35, 338–347. [Google Scholar]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating Multi-Scenario Urban Growth Boundaries with a CA-Based FLUS Model and Morphological Method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Liu, X.; Wei, M.; Li, Z.; Zeng, J. Multi-Scenario Simulation of Urban Growth Boundaries with an ESP-FLUS Model: A Case Study of the Min Delta Region, China. Ecol. Indic. 2022, 135, 108538. [Google Scholar] [CrossRef]
- Shi, Q.; Gu, C.-J.; Xiao, C. Multiple Scenarios Analysis on Land Use Simulation by Coupling Socioeconomic and Ecological Sustainability in Shanghai, China. Sustain. Cities Soc. 2023, 95, 104578. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Adv. Stud. Theor. Appl. Econom. 1992, 26, 345–381. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1955. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Zhang, L.; Tong, L.; Su, X. Analysis of Impacts of Climate Variability and Human Activity on Streamflow for a River Basin in Arid Region of Northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Wang, J.; Xu, R. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Chang, X.; Zhao, W.; Liu, B.; Liu, H.; He, Z.; Du, J. Can Forest Water Yields Be Increased with Increased Precipitation in a Qinghai Spruce Forest in Arid Northwestern China? Agric. For. Meteorol. 2017, 247, 139–150. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the Impact of the Poplar Ecological Retreat Project on Water Conservation in the Dongting Lake Wetland Region Using the InVEST Model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting Water Right: A Case Study in Water Yield Modelling Based on Precipitation Data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of Water Conservation Function of Danjiang River Basin in Qinling Mountains, China Based on InVEST Model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate Change Will Affect Global Water Availability through Compounding Changes in Seasonal Precipitation and Evaporation. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Li, Z. Global Water Availability and Its Distribution under the Coupled Model Intercomparison Project Phase Six Scenarios. Int. J. Climatol. 2022, 42, 5748–5767. [Google Scholar] [CrossRef]
- Lu, N.; Sun, G.; Feng, X.; Fu, B. Water Yield Responses to Climate Change and Variability across the North–South Transect of Eastern China (NSTEC). J. Hydrol. 2013, 481, 96–105. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Zhang, X.; Zheng, F. Impacts of Land Use Change and Climate Variability on Hydrology in an Agricultural Catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Brath, A.; Montanari, A.; Moretti, G. Assessing the Effect on Flood Frequency of Land Use Change via Hydrological Simulation (with Uncertainty). J. Hydrol. 2006, 324, 141–153. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and Prospects of Climate Change Impacts on Hydrology in the Arid Region of Northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, B.-J.; He, C.-S.; Sun, G.; Gao, G.-Y. A Comparative Analysis of Forest Cover and Catchment Water Yield Relationships in Northern China. For. Ecol. Manag. 2011, 262, 1189–1198. [Google Scholar] [CrossRef]
- Zhan, C.; Xu, Z.; Ye, A.; Su, H. LUCC and Its Impact on Run-off Yield in the Bai River Catchment-Upstream of the Miyun Reservoir Basin. J. Plant Ecol. 2011, 4, 61–66. [Google Scholar] [CrossRef]
- Xing, Y.; Ni, G.; Yang, L.; Yang, Y.; Xing, P.; Sun, T. Modeling the Impacts of Urbanization and Open Water Surface on Heavy Convective Rainfall: A Case Study over the Emerging Xiong’an City, China. J. Geophys. Res. Atmos. 2019, 124, 9078–9098. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
Data Type | Period | Source | Application |
---|---|---|---|
Precipitation, Tmax, Tmin | 1990–2020 | National Meteorological Information Centre (http://data.cma.cn/ (accessed on 6 August 2025)) | Calculate potential evapotranspiration as input for the InVEST model. |
Future climate (Precipitation, Tmax, Tmin) | 2025–2100 (5-year step) | ISIMIP3b (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, and MRI-ESM2-0) | Calculate future potential evapotranspiration as input for the InVEST model. |
Historical land use | 1990–2020 | Annual land-cover product by [41] | As input for the InVEST model. |
Future land use (LUH2) | 2020–2100 | LUH2 dataset (https://luh.umd.edu (accessed on 6 August 2025)) | As input for the InVEST model. |
Digital elevation model (DEM) | Static | NASA DEM | As input for the FLUS model. |
Soil properties | Static | Harmonized World Soil Database (HWSD v1.2) | Includes soil depth, texture, used in the InVEST model. |
Naturalized runoff | 1998–2020 | Yellow River Water Resources Bulletin (http://www.yrcc.gov.cn (accessed on 6 August 2025)) | Used for InVEST model validation. |
Population density | 2010, 2015, 2020 | WorldPop (https://hub.worldpop.org (accessed on 6 August 2025)) | As input for the FLUS model. |
GDP | 2010, 2015, 2020 | Product by [42] | As input for the FLUS model. |
Remote sensing ET (GLEAM) | 1990–2020 | GLEAM v4.1a (https://www.gleam.eu (accessed on 6 August 2025)) | Verify the InVEST model. |
1990/2020 | Cropland | Forestland | Grassland | Unused Land | Urban | Sum |
---|---|---|---|---|---|---|
Cropland | 4 | −49 | 1 | 27 | 128 | 111 |
Forestland | 41 | 11 | 77 | 244 | 0 | 373 |
Grassland | 6 | −47 | 15 | 84 | 161 | 219 |
Unused land | −14 | −199 | −50 | 10 | 108 | −145 |
Urban | −136 | 0 | −147 | −108 | 10 | −382 |
Sum | −99 | −283 | −104 | 257 | 407 | 177 |
1990/2020 | Cropland | Forestland | Grassland | Unused Land | Urban | Sum |
---|---|---|---|---|---|---|
Cropland | 5.17 | 38.10 | 1.20 | −18.58 | −139.46 | −113.57 |
Forestland | −51.83 | 3.78 | −64.69 | −242.31 | 0 | −355.05 |
Grassland | 0.48 | 61.11 | 1.44 | −64.59 | −164.46 | −166.03 |
Unused land | 33.23 | 224.08 | 70.48 | −0.19 | −109.27 | 218.32 |
Urban | 124.12 | 0 | 118.76 | 108.24 | −0.88 | 350.23 |
Sum | 111.17 | 327.06 | 127.19 | −217.43 | −414.07 | −66.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Liang, K. Assessing the Climate and Land Use Impacts on Water Yield in the Upper Yellow River Basin: A Forest-Urbanizing Ecological Hotspot. Forests 2025, 16, 1304. https://doi.org/10.3390/f16081304
Gong L, Liang K. Assessing the Climate and Land Use Impacts on Water Yield in the Upper Yellow River Basin: A Forest-Urbanizing Ecological Hotspot. Forests. 2025; 16(8):1304. https://doi.org/10.3390/f16081304
Chicago/Turabian StyleGong, Li, and Kang Liang. 2025. "Assessing the Climate and Land Use Impacts on Water Yield in the Upper Yellow River Basin: A Forest-Urbanizing Ecological Hotspot" Forests 16, no. 8: 1304. https://doi.org/10.3390/f16081304
APA StyleGong, L., & Liang, K. (2025). Assessing the Climate and Land Use Impacts on Water Yield in the Upper Yellow River Basin: A Forest-Urbanizing Ecological Hotspot. Forests, 16(8), 1304. https://doi.org/10.3390/f16081304