Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design and Treatments
2.3. Sample Processing
2.4. Wood Basic Density
2.5. Xylem Anatomical Variables
2.6. Hydraulic Conductivity
2.7. Plant Growth
2.8. Statistical Analyses
3. Results
3.1. Wood Density
3.2. Xylem Anatomical Traits
3.2.1. Variation in Vessel Characteristics
3.2.2. Anatomical Characteristics of Xylem Fibers
3.3. Relationship Between Anatomical Traits and Wood Density
3.4. Theoretical Hydraulic Conductivity
3.5. Multivariate Analyses
4. Discussion
4.1. Response of Xylem Traits to Drought
4.1.1. Differential Responses at Clone Level
4.1.2. Differential Responses at Organ Level
4.2. Vessel Architecture and Hydraulic Efficiency of the Studied Clones
4.3. Relationship Between Xylem Traits and Clones’ Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, Y.; Wang, X. Geographical spatial distribution and productivity dynamic change of Eucalyptus plantations in China. Sci. Rep. 2021, 11, 19764. [Google Scholar] [CrossRef]
- Linderman, T.; Plata, V.; Sancho, D.; Oyhantcabal, W. Clima de Cambios; Oyhantcabal, W., Sancho, D., Galván, M., Eds.; FAO, Ministerio de Ganadería, Agricultura y Pesca, República Oriental del Uruguay: Montevideo, Uruguay, 2013; Available online: https://www.fao.org/4/as256s/as256s.pdf (accessed on 9 June 2025).
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap, 2nd ed.; Springer: Berlin, Germany, 2002; ISBN 978-3-642-07768-5. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Pritzkow, C.; Williamson, V.; Szota, C.; Trouvé, R.; Arndt, S.K. Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. Tree Physiol. 2019, 40, 215–229. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K.A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461. [Google Scholar] [CrossRef]
- Lens, F.; Sperry, J.S.; Christman, M.A.; Choat, B.; Rabaey, D.; Jansen, S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 2011, 190, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, A.L.; Ewers, F.W.; Pratt, R.B.; Paddock III, W.A.; Davis, S.D. Do xylem fibers affect vessel cavitation resistance? Plant Physiol. 2005, 139, 546–556. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L.; Ewers, F.W.; Davis, S.D. Relationships among xylem transport efficiency, vulnerability to embolism, and wood density of nine Rhamnacea of the California chaparral. New Phytol. 2007, 173, 217–225. [Google Scholar] [CrossRef]
- Barotto, A.J.; Monteoliva, S.; Gyenge, J.; Martínez-Meier, A.; Moreno, K.; Tesón, N.; Fernández, M.E. Wood density and anatomy of three Eucalyptus species: Implications for hydraulic conductivity. For. Syst. 2017, 26, e010. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Prat, E.; Oliveras, I.; Piñol, J. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 2002, 133, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Link, R.M.; Hauck, M.; Leuschner, C.; Schuldt, B. 60-year record of stem xylem anatomy and related hydraulic modification under increased summer drought in ring- and diffuse-porous temperate broad-leaved tree species. Trees 2021, 35, 919–937. [Google Scholar] [CrossRef]
- Soro, A.; Lenz, P.; Roussel, J.R.; Nadeau, S.; Pothier, D.; Bousquet, J.; Achim, A. The phenotypic and genetic effects of drought-induced stress on wood specific conductivity and anatomical properties in white spruce seedlings, and relationships with growth and wood density. Front. Plant Sci. 2023, 14, 1297314. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Zheng, Y.; Zhang, J.; Zou, Y.; Heal, K.R.; Zhou, Y. Xylem plasticity of root, stem, and branch in Cunninghamia lanceolata under drought stress: Implications for whole-plant hydraulic integrity. Front. Plant Sci. 2024, 15, 10910014. [Google Scholar] [CrossRef]
- Liu, H.; Ye, Q.; Gleason, S.M.; He, P.; Yin, D. Weak trade-off between xylem hydraulic efficiency and safety: Climatic seasonality matters. New Phytol. 2021, 229, 1440–1452. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Klein, T.; Bartlett, M.; Sack, L.; Pellegrini, A.F.A.; Choat, B.; Jansen, S. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. USA 2016, 113, 5024–5029. [Google Scholar] [CrossRef]
- Johnson, D.M.; Katul, G.; Domec, J.C. Catastrophic hydraulic failure and tipping points in plants. Plant Cell Environ. 2022, 45, 2073–2084. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Lu, S.; Salmon, Y.; Liu, P.; Guo, J. Trade-off between hydraulic safety and efficiency in plant xylem and its influencing factors. Forests 2023, 14, 1817. [Google Scholar] [CrossRef]
- Zanne, A.E.; Westoby, M.; Falster, D.S.; Ackerly, D.D.; Loarie, S.R.; Arnold, S.E.J.; Coomes, D.A. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 2010, 97, 207–215. [Google Scholar] [CrossRef]
- Pfautsch, S. Hydraulic anatomy and function of trees—Basics and critical developments. Curr. For. 2016, 2, 236–248. [Google Scholar] [CrossRef]
- White, D.A.; Turner, N.C.; Galbraith, J.H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol. 2000, 20, 1157–1165. [Google Scholar] [CrossRef]
- Searson, M.J.; Thomas, D.S.; Montagu, K.D.; Conroy, J.P. Leaf water use efficiency differs between Eucalyptus seedlings from contrasting rainfall environments. Funct. Plant Biol. 2004, 31, 441–450. [Google Scholar] [CrossRef]
- Whitehead, D.; Beadle, C.L. Physiological regulation of productivity and water use in Eucalyptus: A review. For. Ecol. Manag. 2004, 193, 113–140. [Google Scholar] [CrossRef]
- Trifiló, P.; Nardini, A.; Lo Gullo, M.A.; Barbera, P.; Savi, T.; Raimondo, F. Diurnal changes in embolism rate in nine dry forest trees: Relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiol. 2015, 35, 694–705. [Google Scholar] [CrossRef]
- Fernández, M.E.; Barotto, A.J.; Martínez-Meier, A.; Monteoliva, S. New insights into wood anatomy and function relationships: How Eucalyptus challenges what we already know. For. Ecol. Manag. 2019, 454, 117638. [Google Scholar] [CrossRef]
- Peters, J.M.R.; López, R.; Nolf, M.; Hutley, L.B.; Wardlaw, T.; Cernusak, L.A.; Choat, B. Living on the edge: A continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 2021, 27, 3620–3641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Zhao, P.; Oren, R.; McCarthy, H.R.; Niu, J.F.; Zhu, L.W.; Ni, G.Y.; Huang, Y.Q. Water use strategies of a young Eucalyptus urophylla forest in response to seasonal change of climatic factors in South China. Biogeosci. Discuss. 2015, 12, 10469–10510. [Google Scholar]
- López Lauenstein, D.A.; Fernández, M.E.; Verga, A.R. Drought stress tolerance of Prosopis chilensis and Prosopis flexuosa species and their hybrids. Trees Struct. Funct. 2013, 27, 285–296. [Google Scholar] [CrossRef]
- Van der Willigen, C.; Pammenter, N.W. Relationship between growth and xylem hydraulic characteristics of clones of Eucalyptus spp. at contrasting sites. Tree Physiol. 1998, 18, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Gándara, J.; Nión, M.; González-Tálice, J.; Ross, S.; Villar, J.; Fernández, M.E. Similar but unique: Physiological response to drought and growth of pure species and interspecific hybrid clones of Eucalyptus. Trees 2025, 39, 36. [Google Scholar] [CrossRef]
- Saunders, A.; Drew, D.M. Measurements done on excised stems indicate that hydraulic recovery can be an important strategy used by Eucalyptus hybrids in response to drought. Trees 2022, 36, 139–151. [Google Scholar] [CrossRef]
- Crous, C.J.; Greyling, I.; Wingfield, M. Dissimilar stem and leaf hydraulic traits suggest varying drought tolerance among co-occurring Eucalyptus grandis × E. urophylla clones. South. For. 2018, 80, 175–184. [Google Scholar] [CrossRef]
- Keret, R.; Drew, D.M.; Hills, P.N. Xylem Cell Size Regulation Is a Key Adaptive Response to Water Deficit in Eucalyptus grandis. Tree Physiol. 2024, 44, tpae108. [Google Scholar] [CrossRef]
- Pfautsch, S.; Aspinwall, M.; Drake, J.; Chacon-Doria, L.; Langelaan, R.J.A.; Tissue, D.T.; Tjoelker, M.G.; Lens, F. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Ann. Bot. 2018, 121, 129–141. [Google Scholar] [CrossRef]
- Wheeler, J.K.; Sperry, J.S.; Hacke, U.G.; Hoang, N. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 2005, 28, 800–812. [Google Scholar] [CrossRef]
- Lamy, J.B.; Delzon, S.; Bouche, P.S.; Alia, R.; Vendramin, G.G.; Cochard, H.; Plomion, C. Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol. 2014, 201, 874–886. [Google Scholar] [CrossRef]
- Momo, S.T.; Libalah, M.B.; Rossi, V.; Fonton, N.; Mofack, G.I.; Kamdem, N.G.; Nguetsop, V.F.; Sonké, B.; Ploton, P.; Barbier, N. Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. For. Ecol. Manag. 2018, 424, 519–528. [Google Scholar] [CrossRef]
- Swenson, N.G.; Enquist, B.J. The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. Am. J. Bot. 2008, 95, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.B.; Wiemann, M.C. Measuring wood specific gravity correctly. Am. J. Bot. 2010, 97, 519–524. [Google Scholar] [CrossRef]
- Dadzie, P.K.; Amoah, M.; Frimpong-Mensah, K.; Shi, S.Q. Comparison of density and selected microscopic characteristics of stem and branch wood of two commercial trees in Ghana. Wood Sci. Technol. 2016, 50, 91–104. [Google Scholar] [CrossRef]
- Monteoliva, S.; Barotto, A.J.; Alarcón, P.; Tesón, N.; Fernández, M.E. Wood density as an integrating variable of wood anatomy: Analysis of branches and stem in four species of Eucalyptus. Rev. Fac. Agron. 2017, 116, 1–11. [Google Scholar]
- Olson, M.E.; Rosell, J.A. Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol. 2012, 197, 1204–1213. [Google Scholar] [CrossRef]
- Arnaud, C.; Brancheriau, L.; Sabatier, S.-A.; Heinz, C.; Chaix, G.; Tomazello Filho, M. Interactions between the mechanical and hydraulic properties of Eucalyptus trees under different environmental conditions of fertilization and water availability. BioResources 2019, 14, 7157–7168. [Google Scholar] [CrossRef]
- Pulido-Rodríguez, E.; López-Camacho, R.; Torres, J.; Velasco, E.; Negret, B.S. Traits and trade-offs of wood anatomy between trunks and branches in tropical dry forest species. Trees 2020, 34, 497–505. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Sperry, J.S.; Hacke, U.G.; Oren, R.; Comstock, J.P. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 2002, 25, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2020; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. [Google Scholar]
- Navure Team. Navure (v.2.6.1): A Data-Science-Statistic Oriented Application for Making Evidence-Based Decisions. 2023. Available online: http://www.navure.com (accessed on 5 June 2025).
- RStudio Team. R Studio: Integrated Development Environment for R.; RStudio, PBC: Boston, MA, USA, 2022; Available online: https://posit.co/products/open-source/rstudio (accessed on 20 May 2025).
- Husson, F.; Josse, J.; Lê, S.; Mazet, J. FactoMineR: Factor Analysis and Data Mining with R.; R Package Version 1.04; 2007. Available online: http://CRAN.R-project.org/package=FactoMineR (accessed on 26 May 2025).
- Drew, D.M.; Pammenter, N.W. Vessel frequency, size and arrangement in two eucalypt clones growing at sites differing in water availability. N. Z. J. For. 2006, 51, 23–28. [Google Scholar]
- Drew, D.M.; Downes, G.M.; O’Grady, A.P.; Read, J.; Worledge, D. High-resolution temporal variation in wood properties in irrigated and non-irrigated Eucalyptus globulus. Ann. For. Sci. 2009, 66, 406. [Google Scholar] [CrossRef]
- Barotto, A.J.; Fernandez, M.E.; Gyenge, J. First insights into the functional role of vasicentric tracheids and parenchyma in Eucalyptus species with solitary vessels: Do they contribute to xylem efficiency or safety? Tree Physiol. 2016, 36, 1485–1497. [Google Scholar] [CrossRef]
- Schreiber, S.G.; Hacke, U.G.; Hamann, A. Intraspecific Variation in Xylem Vessel Diameter in Populus tremuloides across a Climate Gradient. Funct. Ecol. 2015, 29, 1278–1289. [Google Scholar] [CrossRef]
- Lourenço, J., Jr.; Enquist, B.J.; von Arx, G.; Sonsin-Oliveira, J.; Morino, K.; Thomaz, L.D.; Milanez, C.R.D. Hydraulic Trade-Offs Underlie Local Variation in Tropical Forest Functional Diversity and Sensitivity to Drought. New Phytol. 2022, 235, 1815–1830. [Google Scholar] [CrossRef]
- Ziemińska, K.; Westoby, M.; Wright, I.J. Broad anatomical variation within a narrow wood density range—A study of twig wood across 69 Australian angiosperms. Plants 2015, 4, 325–347. [Google Scholar] [CrossRef]
- Longui, E.; Rajput, K.S.; Galvão de Melo, A.C.; de Araújo Alves, L.; do Nascimento, C.B. Root to branch wood anatomical fvariation and its influence on hydraulic conductivity in five Brazilian Cerrado species. Bosque 2017, 38, 183–193. [Google Scholar] [CrossRef]
- MacFarlane, D. W. Functional Relationships Between Branch and Stem Wood Density for Temperate Tree Species in North America. Front. For. Glob. Change 2020, 3, 63. [Google Scholar] [CrossRef]
- Barigah, T.S.; Gyenge, J.E.; Barreto, F.; Rozenberg, P.; Fernández, M.E. Narrow vessels cavitate first during a simulated drought in Eucalyptus camaldulensis. Physiol. Plant. 2021, 173, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Bühler, J.; van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef]
- Kharkina, T.G.; Ottosen, C.-O.; Rosenqvist, E. Effects of root restriction on the growth and physiology of cucumber plants. Physiol. Plant. 1999, 105, 434–441. [Google Scholar] [CrossRef]
- NeSmith, D.S.; Duval, J.R. The effect of container size. HortTechnology 1998, 8, 495–498. [Google Scholar] [CrossRef]
- Dadswell, H.E. The Anatomy of Eucalypt Wood; Technical Paper No. 66; Forest Products Laboratory, Division of Applied Chemistry, CSIRO: Melbourne, Australia, 1972; p. 36. [Google Scholar]
- Gleason, S.M.; Butler, D.W.; Ziemińska, K.; Waryszak, P.; Westoby, M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 2012, 26, 343–352. [Google Scholar] [CrossRef]
Clone | Water Regime | Stem Wood Density | Branch Wood Density | Difbs (%) |
---|---|---|---|---|
GG | WW | 0.391 ± 0.013 a | 0.499 ± 0.044 b | 27.62 |
WR | 0.412 ± 0.013 a | 0.603 ± 0.040 a | 46.36 | |
GC | WW | 0.465 ± 0.028 b | 0.620 ± 0.025 a | 33.33 |
WR | 0.516 ± 0.032 a | 0.624 ± 0.043 a | 21.32 | |
GT | WW | 0.481 ± 0.020 b | 0.543 ± 0.029 b | 12.89 |
WR | 0.525 ± 0.017 a | 0.627 ± 0.024 a | 19.43 | |
GU1 | WW | 0.443 ± 0.009 a | 0.519 ± 0.035 b | 17.16 |
WR | 0.459 ± 0.010 a | 0.600 ± 0.036 a | 30.72 | |
GU2 | WW | 0.416 ± 0.014 a | 0.524 ± 0.026 a | 25.96 |
WR | 0.440 ± 0.013 a | 0.528 ± 0.027 a | 20.00 |
Clone | Conductive Elements | Biomechanical Support | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Regime | N (n° mm−2) | Vd (µm) | Vdif (µm) | Va (µm2) | F (Unitless) | S (mm4) | Fl (µm) | Ftd (µm) | Fld (µm) | Ff (Unitless) | Fwt (µm) | |
GG | WW | 35.03 b | 141.40 a | 133.82 a | 19,099 a | 0.19 a | 4.5 × 10−4 a | 728.27 a | 22.14 a | 14.05 a | 0.63 a | 4.05 b |
WR | 61.37 a | 116.36 b | 123.37 a | 14,498 b | 0.15 b | 1.9 × 10−4 b | 647.39 b | 16.32 b | 5.80 b | 0.36 b | 5.26 a | |
GC | WW | 36.17 b | 140.32 a | 154.24 a | 18,281 a | 0.18 a | 3.8 × 10−4 a | 797.31 a | 19.43 a | 9.28 a | 0.48 a | 5.08 a |
WR | 63.75 a | 115.47 b | 127.24 b | 12,361 b | 0.15 a | 1.5 × 10−4 b | 804.62 a | 14.88 b | 4.64 b | 0.32 b | 5.12 a | |
GT | WW | 34.25 b | 137.18 a | 136.29 a | 21,635 a | 0.21 a | 4.8 × 10−4 a | 796.97 a | 15.83 a | 7.43 a | 0.47 a | 4.23 a |
WR | 53.60 a | 117.56 b | 135.75 a | 17,650 a | 0.18 a | 2.9 × 10−4 b | 754.49 a | 12.38 b | 5.53 b | 0.45 a | 4.29 a | |
GU1 | WW | 45.81 b | 113.99 a | 162.30 a | 16,297 a | 0.23 a | 2.9 × 10−4 a | 721.65 a | 17.16 a | 10.98 a | 0.64 a | 3.14 a |
WR | 62.73 a | 115.98 a | 151.81 a | 16,181 a | 0.16 b | 2.1 × 10−4 a | 669.08 b | 14.70 b | 6.99 b | 0.58 a | 3.86 a | |
GU2 | WW | 34.97 b | 130.94 a | 152.82 a | 17,705 a | 0.22 a | 4.2 × 10−4 a | 705.04 a | 17.48 a | 10.35 a | 0.60 a | 3.47 a |
WR | 55.60 a | 113.39 a | 147.44 a | 15,602 a | 0.18 b | 2.3 × 10−4 b | 593.60 b | 14.24 b | 6.98 b | 0.49 a | 3.63 a | |
SE | 4.28 | 4.70 | 13.29 | 1409 | 0.015 | 0.50 × 10−4 | 25.12 | 0.43 | 0.67 | 0.03 | 0.40 |
Clone | Conductive Elements | Biomechanical Support | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Regime | N (n° m−2) | Vd (µm) | Vdif (µm) | Va (µm2) | F (Unitless) | S (mm4) | Fl (µm) | Ftd (µm) | Fld (µm) | Ff (Unitless) | Fwt (µm) | |
GG | WW | 80.36 b | 101.36 a | 92.03 a | 9661 a | 0.25 a | 9.2 × 10−5 a | 593.07 a | 12.04 a | 6.33 a | 0.46 a | 3.74 a |
WR | 109.56 a | 77.06 b | 97.85 a | 9335 a | 0.15 a | 9.6 × 10−5 a | 477.07 b | 12.52 a | 5.50 a | 0.46 a | 3.25 a | |
GC | WW | 89.93 a | 87.40 a | 83.78 a | 7080 a | 0.15 a | 6.2 × 10−5 a | 636.08 a | 13.27 a | 6.22 a | 0.47 a | 3.52 b |
WR | 82.17 a | 86.14 a | 55.16 b | 7526 a | 0.15 a | 6.5 × 10−5 a | 590.76 a | 13.28 a | 5.36 a | 0.41 b | 3.96 a | |
GT | WW | 83.17 a | 98.21 a | 99.99 a | 9362 a | 0.13 a | 9.8 × 10−5 a | 648.94 a | 14.99 a | 5.95 a | 0.40 a | 4.04 b |
WR | 82.13 a | 84.44 a | 70.47 b | 6698 b | 0.17 a | 6.3 × 10−5 a | 616.59 a | 12.66 b | 4.59 b | 0.36 b | 4.52 a | |
GU1 | WW | 74.70 a | 97.47 a | 105.62 a | 8876 a | 0.17 a | 9.3 × 10−5 a | 597.67 a | 12.04 a | 4.78 a | 0.40 a | 3.63 a |
WR | 85.93 a | 90.15 a | 96.21 a | 8240 b | 0.14 b | 7.1 × 10−5 b | 472.76 b | 12.52 a | 5.07 a | 0.40 a | 3.73 a | |
GU2 | WW | 81.17 a | 97.70 a | 80.12 a | 9109 a | 0.17 a | 8.7 × 10−5 a | 563.74 a | 12.38 a | 4.22 a | 0.30 a | 3.71 a |
WR | 87.33 a | 77.43 b | 63.23 a | 5843 b | 0.12 b | 5.7 × 10−5 b | 434.04 b | 13.45 a | 4.50 a | 0.34 a | 4.04 a | |
SE | 9.30 | 3.90 | 11.11 | 637 | 0.02 | 4.76 × 10−6 | 16.79 | 0.99 | 0.70 | 0.03 | 0.39 |
Predictor Variable | Coef | SE | LI (95%) | LS (95%) | t | p-Value | R2 |
---|---|---|---|---|---|---|---|
const | 422.11 | 6.55 | 287.60 | 556.61 | 6.44 | <0.0001 | 0.58 |
Fwt | 9.53 | 5.61 | −1.98 | 21.05 | 1.70 | 0.1009 | |
Fl | 0.17 | 0.07 | 0.02 | 0.32 | 2.37 | 0.0254 | |
Ftd | −11.15 | 2.21 | −15.67 | −6.62 | −5.06 | <0.0001 | |
Vd | 0.37 | 0.33 | −0.31 | 1.05 | 1.12 | 0.2733 |
Clone | Water Regime | Stem Theoretical ks (kg s−1 m−1 MPa−1) | Branch Theoretical ks (kg s−1 m−1 MPa−1) |
---|---|---|---|
GG | WW | 7.42 ± 0.84 a | 2.14 ± 0.39 a |
WR | 3.46 ± 0.92 b | 0.71 ± 0.16 b | |
GC | WW | 7.20 ± 1.03 a | 1.07 ± 0.11 a |
WR | 3.32 ± 0.51 b | 1.10 ± 0.11 a | |
GT | WW | 6.54 ± 0.93 a | 1.06 ± 0.48 a |
WR | 4.59 ± 0.58 a | 1.80 ± 0.21 a | |
GU1 | WW | 6.00 ± 1.13 a | 1.68 ± 0.26 a |
WR | 3.60 ± 0.82 a | 1.33 ± 0.07 b | |
GU2 | WW | 8.66 ± 1.28 a | 1.66 ± 0.11 a |
WR | 3.13 ± 0.64 b | 0.75 ± 0.15 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gándara, J.; Nión, M.; Ross, S.; González-Tálice, J.; Tabeira, P.; Fernández, M.E. Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance. Forests 2025, 16, 1267. https://doi.org/10.3390/f16081267
Gándara J, Nión M, Ross S, González-Tálice J, Tabeira P, Fernández ME. Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance. Forests. 2025; 16(8):1267. https://doi.org/10.3390/f16081267
Chicago/Turabian StyleGándara, José, Matías Nión, Silvia Ross, Jaime González-Tálice, Paolo Tabeira, and María Elena Fernández. 2025. "Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance" Forests 16, no. 8: 1267. https://doi.org/10.3390/f16081267
APA StyleGándara, J., Nión, M., Ross, S., González-Tálice, J., Tabeira, P., & Fernández, M. E. (2025). Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance. Forests, 16(8), 1267. https://doi.org/10.3390/f16081267