The Economic Potential of Stump Wood as an Energy Resource—A Polish Regional Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Justification for the Research and Study Scope
- (1)
- First, there is a need to look for additional sources of income and to use underground wood resources in various ways—whether as renewable energy sources (RES), as raw material for industrial production (in the pulp and paperboard sector) [38,39,40], or for the extraction of certain chemical components that chemical and pharmaceutical industries need [41].
- (2)
- Secondly, the available stump wood resources represent an opportunity to develop a new sector-specific market. This would ensure a continuous—rather than merely incidental—supply of wood to market participants, including potential customers [42].
- (3)
- Thirdly, there is both an opportunity and increasingly a necessity to develop and implement innovative technologies for stump and roundwood harvesting in forestry, ideally within a single technological operation. The integration of operations can be facilitated through the use of a harvester, particularly due to the manoeuvrability of its cutting heads. This presents a clear opportunity to optimise the utilisation of stump material by enabling lower cutting at the root section (the stump) [43,44].
- (4)
- Fourthly, and finally, this marginalised economic activity in forestry can paradoxically represent an opportunity to enhance conditions for natural forest regeneration. The depressions left after root removal can effectively prepare the soil, promote water retention, and create micro-irrigation conditions—factors that are particularly beneficial in hilly forested areas.
2.2. Background and Conceptual Data Sources
2.3. Operational Data Sources
- (1)
- https://www.webofscience.com/wos/woscc/basic-search (accessed on 13 May 2025);
- (2)
- https://onlinelibrary.wiley.com/ (accessed on 13 May 2025);
- (3)
- https://www.sciencedirect.com/ (accessed on 13 May 2025);
- (4)
- https://www.elsevier.com/ (accessed on 13 May 2025);
- (5)
- https://agro.icm.edu.pl/agro/ (accessed on 13 May 2025);
- (6)
- https://www.researchgate.net/ (accessed on 13 May 2025);
- (7)
- https://www.academia.edu/ (accessed on 13 May 2025);
- (8)
- https://scholar.google.com/ (accessed on 13 May 2025).
2.4. Pilot Study Project in the Notecka Forest
- -
- To conduct a preliminary assessment of the practical feasibility of harvesting stump wood chips (referred to as “bio-chips”), as a potential raw material for the renewable energy sector;
- -
- To investigate alternative applications of stump wood, including its potential use in the extraction of sources of chemical compounds aimed at mitigating the degradation of raw wood material, as well as in the production of bio-based components for biological filtration systems.
- (1)
- The feasibility of machine-assisted, so-called combined harvesting of roundwood and stump wood was assessed (Figure 1).
- (2)
- The presence of stump wood as part of raw timber material was observed in forest areas affected by damage or disturbance events (Figure 2).
- (3)
- Post-harvest forest sites were monitored to evaluate the condition of the area following roundwood and stump wood extraction (Figure 3).
- (4)
- Finally, the potential for temporary stump wood storage along forest transport roads was examined (Figure 4).
2.5. Profitability Model for Processing Stump Wood in Forestry Production
3. Results and Discussion
3.1. Stump Wood Resources and Harvesting in Poland
3.2. Synthesis of the Pilot Study Results in the Notecka Forest
3.3. Assessing the Viability of Harvesting Stump Wood, i.e., the Feasibility of Its Economic Use
- Ppu—unit profit from converting stump wood into energy [EUR/GJ];
- Rpu—unit revenue from energy sales (as well as savings from substituting other fuel with energy produced from stump wood) [EUR/GJ];
- Cpe—the production cost of an energy unit [EUR/GJ];
- tr—corporate income tax rate (CIT) in 2025 = 0.19 (a reduced CIT rate of 9% is also an alternative);
- pu—unit sales price of woodchips [EUR/GJ];
- mu—assumed satisfactory net margin entrepreneur level, mu: {0.01; 0.05; … 0.15}.
- Cupr—unit cost of converting stump wood into energy, including other unit operating costs [EUR/m3];
- Cutr—unit cost of transporting stump wood to the conversion to energy site [EUR/m3];
- Cmat—unit cost of energy-burning stump wood, with a value of Vusw [EUR/m3];
- d—bulk density of processed stump wood [t/m3];
- Qdrh—energy (calorific) value of stump wood [GJ/t] with a given relative humidity, denoted hr.
- Vei—value of a specific type of wood-based waste, denoted as “i” (e.g., stump wood)—after conversion into energy [EUR/m3];
- i—index of the type of wood-based waste considered for energy conversion, where: “i” ϵ <1, n>;
- pue—unit selling price of the energy derived from the combustion of wood by-products (e.g., stump wood) [EUR/GJ];
- tr—corporate income tax (CIT) rate, where the rate for the year 2025 was set as 0.19 (a reduced CIT rate of 9% may alternatively apply);
- d—bulk density of the processed stump wood [t/m3],
- mu—expected net profit margin set by the entrepreneur, possible values, mu: {0.01; 0.05; … 0.15};
- hr—relative humidity of the wood-based by-products (e.g., pine stump wood), expressed as a percentage or decimal fraction;
- h0—the absolute humidity of the wood by-products (e.g., pine stump wood), reported in numerical values;
- Cupr—unit cost of converting stump wood into energy, including associated operational costs [EUR/m3];
- Cutr—unit cost of transporting stump wood to the energy conversion site [EUR/m3].
3.4. Limitations of the Study and Major Discussion Points
4. Conclusions
- (1)
- The harvesting of stump wood as a raw material for the green energy sector was demonstrated through a case study of forest management in the Notecka Forest, located in the Wielkopolska region of Poland.
- (2)
- The regional example from Poland reveals that stump wood harvesting remains an underestimated and underutilised potential method within the forestry and wood-based sectors.
- (3)
- Research on the utilisation of forest by-products, particularly those derived from wood and indicated in this pilot study, should be further continued and expanded.
- (4)
- Although stump wood is a challenging material to process and requires adequate preparation before end use, it constitutes a substantial source of forest biomass sustainable for energy production. The identified technological difficulties can be overcome by implementing appropriate harvesting and processing technologies [98,99].
- (5)
- The main environmental barriers to stump wood harvesting include concerns over ecological damage and biodiversity loss caused by root extraction, as well as the importance of retaining dead wood in forest ecosystems. However, the application of principles of sustainable forest management should effectively mitigate these risks [100,101].
- (6)
- Potential concerns regarding stump wood accessibility and the high costs associated with harvesting the underground part of trees can be addressed through robust financial analysis. The proposed formula for calculating the optimal cost of stump wood harvesting may help resolve these challenges in practical business applications.
- (7)
- Finally, the typically local nature of stump wood energy resources implies that their utilisation should take place as close as possible to the site of production, in order to minimise logistical, economic, and environmental constraints.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergen, V.; Löwenstein, W.; Olschewski, R. Forstökonomie. Volkswirtschaftliche Ansätze für Eine Vernünftige Umwelt- und Landnutzung, Vahlens Handbücher der Wirt-Schafts- und Sozialwissenschaften; Vahlen Verlag: München, Germany, 2013. [Google Scholar]
- Aggestam, F.; Giurca, A. The art of the ‘green’ deal: Policy pathways for the EU Forest Strategy. For. Policy Econ. 2021, 128, 102456. [Google Scholar] [CrossRef]
- Macak, T.; Hron, J.; Stusek, J. A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process. Sustainability 2020, 12, 9057. [Google Scholar] [CrossRef]
- Moradzadeh, A.; Sadeghian, O.; Pourhossein, K.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A. Improving Residential Load Disaggregation for Sustainable Development of Energy via Principal Component Analysis. Sustainability 2020, 12, 3158. [Google Scholar] [CrossRef]
- Kozłowski, J. Difficult road to decarbonize economy. Nauka 2022, 4, 7–35. [Google Scholar] [CrossRef]
- Al Mubarak, F.; Rezaee, R.; Wood, D.A. Economic, Societal, and Environmental Impacts of Available Energy Sources: A Review. Eng 2024, 5, 1232–1265. [Google Scholar] [CrossRef]
- Sadowska, B.; Szczypa, P.; Wieruszewski, M.; Adamowicz, K. The Importance of Information Flow Relevant to Sustainable Forestry and the European Green Deal: The Case of Poland. Sustainability 2025, 17, 3692. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K. Using timber as a renewable resource for energy production in sustainable forest management. Energies 2022, 15, 2264. [Google Scholar] [CrossRef]
- Bocken, N.M.; Weissbrod, I.; Antikainen, M. Business model experimentation for the circular economy: Definition and approaches. Circ. Econ. Sustain. 2021, 1, 49–81. [Google Scholar] [CrossRef]
- Kusiak, W.; Mikołajczak, E.; Wanat, L. Institutional and Industrial Symbiosis Case Study of Cooperation for Development in Forestry and Wood-Based Sector. In Increasing the Use of Wood in the Global Bio-Economy; Glavonjic, B., Ed.; University of Belgrade: Belgrade, Serbia, 2018; pp. 388–399. [Google Scholar]
- Brożek, J.; Kożuch, A.; Wieruszewski, M.; Adamowicz, K. Verification of the Assumptions of the Polish State Forest Policy in the Context of the New EU Forest Strategy 2030. Sustainability 2025, 17, 2398. [Google Scholar] [CrossRef]
- Ministry of Climate and Environment (Ministerstwo Klimatu i Środowiska). Work on the Energy Wood Regulation Is Nearing Completion (Prace nad Rozporządzeniem ws. Drewna Energetycznego Dobiegają Końca); Ministry of Climate and Environment: Warsaw, Poland, 2025. Available online: https://www.gov.pl/web/klimat/prace-nad-rozporzadzeniem-ws-drewna-energetycznego-dobiegaja-konca (accessed on 7 April 2025).
- Brożek, J.; Kożuch, A.; Wieruszewski, M.; Jaszczak, R.; Adamowicz, K. Taxonomy Regulation as a New Instrument for the Sustainable Management of the Forest Environment in Europe. Sustainability 2024, 16, 8799. [Google Scholar] [CrossRef]
- Mydlarz, K.; Wieruszewski, M. The Energy Potential of Firewood and By-Products of Round Wood Processing—Economic and Technical Aspects. Energies 2024, 17, 4797. [Google Scholar] [CrossRef]
- Tao, G.; Lestander, T.A.; Geladi, P.; Xiong, S. Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties. Renew. Sustain. Energy Rev. 2012, 16, 3481–3506. [Google Scholar] [CrossRef]
- Gornowicz, R. Wykorzystanie Biomasy ze Zrębów i Trzebieży na cele Energetyczne (Use of Biomass from Logging and Thinning for Energy Purposes); Biblioteczka Leśniczego, (273); Wydawnictwo Świat: Warszawa, Poland, 2008. [Google Scholar]
- Parzych, S. Potencjalne Możliwości Wykorzystania Biomasy Drzewnej do Celów Energetycznych (The Potential Opportunities for Using Wood Biomass in Energy Production). Leśn. Pr. Badaw. 2015, 76, 256–264. Available online: https://bibliotekanauki.pl/articles/1311555 (accessed on 22 July 2025).
- Jha, S.; Nanda, S.; Zapata, O.; Acharya, B.; Dalai, A.K. A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy. Sustainability 2024, 16, 10157. [Google Scholar] [CrossRef]
- Leal-Arcas, R.; Akondo, N.; Rios, J.A. Energy Decentralization in the European Union. Georget. Environ. Law Rev. 2019, 32, 1042–1058. [Google Scholar]
- Laitila, J.; Yrjö, N. Efficiency of Integrated Grinding and Screening of Stump Wood for Fuel at Roadside Landing with a Low-Speed Double-Shaft Grinder and a Star Screen. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2015, 36, 19–32. Available online: https://hrcak.srce.hr/136124 (accessed on 30 April 2025).
- Laurila, J.; Lauhanen, R. Moisture content of Norway spruce stump wood at clear cutting areas and roadside storage sites. Silva Fenn. 2010, 44, 427–434. [Google Scholar] [CrossRef]
- Mendes, V.T.C.; Moreira, R.; Portugal, A.; Graça, V.S.; Carvalho, M. Biorefining of Pinus pinaster stump wood for ethanol production and lignin recovery. Chem. Eng. Technol. 2021, 44, 1043–1050. [Google Scholar] [CrossRef]
- Nasalski, Z. Determinants of agricultural farm participation in regional economic systems. Entrep. Sustain. Issues 2021, 9, 374. [Google Scholar] [CrossRef]
- Wanat, L. Gospodarka leśna: Zrównoważona czy integralna? Dylematy badawcze z perspektywy polskiego rynku drewna okrągłego (Forest economics: Sustainable or integral? Research dilemmas from the perspective of the Polish roundwood market). Prz. Leśn. 2016, 26, 26–27. [Google Scholar]
- Björheden, R. Drivers behind the development of forest energy in Sweden. Biomass Bioenergy 2006, 30, 289–295. [Google Scholar] [CrossRef]
- Vasaitis, R.; Stenlid, J.; Thomsen, I.M.; Barklund, P.; Dahlberg, A. Stump removal to control root rot in forest stands. A literature study. Silva Fenn. 2008, 42, 457–483. [Google Scholar] [CrossRef]
- Statistics Poland. Statistical Yearbook of Forestry 2024; CSO: Warszawa, Poland, 2024. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-forestry-2024,12,7.html (accessed on 11 April 2025).
- Athanassiadis, D.; Lindroos, O.; Nordfjell, T. Pine and spruce stump harvesting productivity and costs using a Pallari KH 160 stump lifting tool. Scand. J. For. Res. 2011, 26, 437445. [Google Scholar] [CrossRef]
- Eriksson, L.N.; Gustavsson, L. Biofuels from stumps and small roundwood—Costs and CO2 benefits. Biomass Bioenergy 2008, 32, 897–902. [Google Scholar] [CrossRef]
- Mikołajczak, E. Ekonomiczne Aspekty Przerobu Odpadów Drzewnych na Paliwa Ekologiczne (Economic Aspects of Wood Waste Reprocessing into Green Fuels); Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2011. [Google Scholar]
- Mikołajczak, E. Profitability of converting sawmill by-products into energy. Drewno 2012, 55, 88–102. [Google Scholar]
- Mydlarz, K.; Wieruszewski, M. Economic, Technological as Well as Environmental and Social Aspects of Local Use of Wood By-Products Generated in Sawmills for Energy Purposes. Energies 2022, 15, 1337. [Google Scholar] [CrossRef]
- Rahman, A.; Khanam, T.; Pelkonen, P. Is stump harvesting for bioenergy production socially acceptable in Finland? J. Clean. Prod. 2019, 229, 1233–1242. [Google Scholar] [CrossRef]
- Mikołajczak, E. Possibilities of using stump wood for energy generation purposes. Intercathedra 2015, 31, 51–58. [Google Scholar]
- Wanat, L.; Potkański, T.; Chudobiecki, J.; Mikołajczak, E.; Mydlarz, K. Intersectoral and Intermunicipal Cooperation as a Tool for Supporting Local Economic Development: Prospects for the Forest and Wood-Based Sector in Poland. Forests 2018, 9, 531. [Google Scholar] [CrossRef]
- Enes, T.; Aranha, J.; Fonseca, T.; Lopes, D.; Alves, A.; Lousada, J. Thermal Properties of Residual Agroforestry Biomass of Northern Portugal. Energies 2019, 12, 1418. [Google Scholar] [CrossRef]
- Wanat, L.; Sikora, J.; Majchrzak, L.; Sarniak, Ł.; Czarnecki, R.; Smętkiewicz, K.; Ornoch, M. The Economic and Technological Challenges of the Agri-Development Implementation Model in the Case of the Wielkopolska Region in Poland. Agriculture 2025, 15, 412. [Google Scholar] [CrossRef]
- Kaarakka, L.; Vaittinen, J.; Marjanen, M.; Hellsten, S.; Kukkola, M.; Saarsalmi, A.; Palviainen, M.; Helmisaari, H.S. Stump harvesting in Picea abies stands: Soil surface disturbance and biomass distribution of the harvested stumps and roots. For. Ecol. Manag. 2018, 425, 27–34. [Google Scholar] [CrossRef]
- Roos, C. Utilizing Biomass as a Competitive Advantage in the Forest Industry: A Case Study of a Pulp and Paper Manufacturer in Finland. Master’s Thesis, Åbo Akademi University, Turku, Finland, 2023. [Google Scholar]
- Valverde, J.C.; Arias-Aguilar, D.; Campos-Rodríguez, R. Financial Feasibility of Bioenergy Products Based on Forest Residues: Case of Costa Rica Northern. Clean Technol. 2025, 7, 21. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Górna, A.; Mydlarz, K.; Adamowicz, K. Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material. Energies 2022, 15, 4897. [Google Scholar] [CrossRef]
- Lazdiņš, A.; Zimelis, A. System analysis of productivity and cost of stump extraction for biofuel using MCR 500 excavat or head. In Research for Rural Development 2012, Proceedings of the Annual 18th International Scientific Conference Proceedings, Jelgava, Latvia, 16–18 May 2012; Treija, S., Skuja, I., Eds.; Latvia University of Agriculture: Jelgava, Latvia, 2012; pp. 62–68. [Google Scholar]
- Walmsley, J.D.; Godbold, D.L. Stump harvesting for bioenergy—A review of the environmental impacts. For. Int. J. For. Res. 2010, 83, 17–38. [Google Scholar] [CrossRef]
- Eggers, J.; Melin, Y.; Lundström, J.; Bergström, D.; Öhman, K. Management Strategies for Wood Fuel Harvesting—Trade-Offs with Biodiversity and Forest Ecosystem Services. Sustainability 2020, 12, 4089. [Google Scholar] [CrossRef]
- Ranlund, Å.; Victorsson, J. Stump extraction in the surrounding landscape: Predatory saproxylic beetles are more negatively affected than lower trophic levels. For. Ecol. Manag. 2018, 408, 78–86. [Google Scholar] [CrossRef]
- Serup, H.; Kofman, P.D.; Falster, H.; Gamborg, C.; Gundersen, P.; Hansen, L.; Heding, N.; Houmann, H.; Nikolaisen, L.; Thomsen, I.M.; et al. Wood for Energy Production; Irish Edition; COFORD, National Council for Forest Research and Development: Dublin, Ireland, 2005.
- Abrahamsson, M. High-Stumps and Wood Living Beetles in the Swedish Production Forest Landscape; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2007; p. 126. [Google Scholar]
- Hellsten, S.; Helmisaari, H.S.; Melin, Y.; Skovsgaard, J.P.; Kaakinen, S.; Kukkola, M.; Saarsalmi, A.; Petersson, H.; Akselsson, C. Nutrient concentrations in stumps and coarse roots of Norway spruce, Scots pine and silver birch in Sweden, Finland and Denmark. For. Ecol. Manag. 2013, 290, 40–48. [Google Scholar] [CrossRef]
- Kusiak, W.; Sarniak, Ł.; Wanat, L.; Wieruszewski, M. Green Deal: Opportunities and Threats for the Forest- and Wood-Based Sector in Poland. In Crisis Management and Safety Foresight in Forest-Based Sector and SMEs Operating in the Global Environment; Nováková, R., Ed.; WoodEMA ia. and Slovak Association for Quality, n.o.: Trnava, Slovakia, 2022; pp. 211–214. [Google Scholar]
- Statistics Poland. BDL Bank Danych Lokalnych—Local Data Bank. 2022. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 15 November 2024).
- Statistical Office in Poznań. Statistical Yearbook of Wielkopolskie Voivodship 2021; Statistical Office in Poznań: Poznań, Poland, 2022. Available online: https://poznan.stat.gov.pl/publikacje-i-foldery/roczniki-statystyczne/rocznik-statystyczny-wojewodztwa-wielkopolskiego-2021,2,17.html (accessed on 22 November 2024).
- Zarząd Województwa Wielkopolskiego. Raport o Stanie Województwa Wielkopolskiego za 2020 rok (Report on the State of the Wielkopolska Region for 2020); Urząd Marszałkowski Województwa Wielkopolskiego: Poznań, Polska, 2021.
- Statistical Office in Poznań. Agriculture in Wielkopolskie Voivodship 2020–2021; Statistical Office in Poznań: Poznań, Poland, 2022. Available online: https://poznan.stat.gov.pl/publikacje-i-foldery/rolnictwo-lesnictwo/rolnictwo-w-wojewodztwie-wielkopolskim-w-latach-2020-2021,2,13.html (accessed on 30 November 2024).
- Sukovata, L. Outbreaks of the pine defoliators in the Puszcza Notecka forest complex-history, prediction and preventive measures. Acta Sci. Pol. Silvarum Colendarum Ratio Ind. Lignaria 2022, 21, 93–101. [Google Scholar] [CrossRef]
- Mikołajczak, E.; Wajszczuk, K. Optimizing the Method of Sawmill by-Product Management: Selected methodological issues. In Proceedings of the 10th Economics and Finance Conference, Rome, Italy, 10–13 September 2018; Seria: Proceedings of the Economics and Finance Conference. Cermakova, K., Mozayeni, S., Hromada, E., Eds.; International Institute of Social and Economic Sciences: Prague, Czechia; pp. 369–382. [Google Scholar] [CrossRef]
- Laitila, J.; Ranta, T.; Asikainen, A. Productivity of stump harvesting for fuel. Int. J. For. Eng. 2008, 19, 37–47. [Google Scholar] [CrossRef]
- Persson, T. Stump harvesting for bioenergy—Methods and environmental effects. Scand. J. For. Res. 2017, 32, 201–203. [Google Scholar] [CrossRef]
- Jönsson, M.; Sjögren, J.; Hannrup, B.; Larsolle, A.; Mörtberg, U.; Nordström, M.; Olsson, B.A.; Strömgren, M. A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria. Sustainability 2020, 12, 8900. [Google Scholar] [CrossRef]
- Zajączkowski, J.; Zajączkowski, K. Hodowla lasu. Zadrzewienie (Silviculture. Trees Outside Forest); PWRiL: Warszawa, Poland, 2013. [Google Scholar]
- Statistics Poland. Statistical Yearbook of Agriculture 2021; Statistics Poland: Warsaw, Poland, 2022. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rolnictwa-2021,6,15.html (accessed on 13 April 2025).
- Stanula, Z.; Wieruszewski, M.; Zydroń, A.; Adamowicz, K. Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review. Energies 2023, 16, 7997. [Google Scholar] [CrossRef]
- Andrzejowski, L. Próby szacowania zasobów karpiny przemysłowej na podstawie masy ściętego drewna sosnowego i przeciętnej twardzielowości karp sosnowych (Tentative estimation of industrial stumpwood resources based on the base volume of felled pine wood and average duramen value of pine roots). Sylwan 1966, 110, 21–30. [Google Scholar]
- Grodzki, M. Określenie bazy karpiny świeżej i przemysłowej (Determination of resources of fresh and industrial stump wood). Sylwan 1975, 119, 21–25. [Google Scholar]
- Kusiak, W.; Sarniak, Ł.; Wanat, L.; Wieruszewski, M. Potential Use of Stumpwood as an Energy Raw Material—The Case of Poland. In Current Trends and Challenges for Forest-Based Sector: Carbon Neutrality and Bioeconomy; WoodEMA, i.a.; Czech University of Life Sciences Prague: Prague, Czechia, 2023; pp. 221–225. [Google Scholar]
- Szczawiński, M. Metoda wyceny surowca drzewnego w przerobie przemysłowym (Method for appraisal of wood raw material in industrial processing). Drew. Wood 2009, 52, 99–104. [Google Scholar]
- Szczawiński, M. The application formula of valuation raw materials for wood industry. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2009, 67, 260–263. [Google Scholar]
- Górna, A.; Wieruszewski, M.; Szabelska-Beręsewicz, A.; Stanula, Z.; Adamowicz, K. Biomass Price Prediction Based on the Example of Poland. Forests 2022, 13, 2179. [Google Scholar] [CrossRef]
- Camia, A.; Giuntoli, J.; Jonsson, K.; Robert, N.; Cazzaniga, N.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo Cano, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Persson, T. Environmental consequences of tree-stump harvesting. For. Ecol. Manag. 2013, 290, 1–4. [Google Scholar] [CrossRef]
- Uri, V.; Aosaar, J.; Varik, M.; Becker, H.; Kukumägi, M.; Ligi, K.; Pärn, L.; Kanal, A. Biomass resource and environmental effects of Norway Spruce (Picea abies) stump harvesting: An Estonian case study. For. Ecol. Manag. 2015, 335, 207–215. [Google Scholar] [CrossRef]
- Persson, T. Stump harvesting—Impact on climate and environment. For. Ecol. Manag. 2016, 371, 1–4. [Google Scholar] [CrossRef]
- Parzych, S.; Mandziuk, A. Ekologiczne aspekty wykorzystania biomasy drzewnej do celów energetycznych (Ecological aspects of using wood biomass for energy production). Zarządz. Ochr. Przyr. Lasach 2016, 10, 64–74. Available online: https://bw.sggw.edu.pl/info/article/WULSf14734e70ad8499d9c4a0fdfe0ced505/ (accessed on 22 July 2025).
- Persson, T.; Egnell, G. Stump harvesting for bioenergy: A review of climatic and environmental impacts in northern Europe and America. WIREs Energy Environ. 2018, 7, e307. [Google Scholar] [CrossRef]
- Alam, A.; Kellomäki, S.; Kilpeläinen, A.; Strandman, H. Effects of stump extraction on the carbon sequestration in Norway spruce forest ecosystems under varying thinning regimes with implications for fossil fuel substitution. GCB Bioenergy 2013, 5, 445–458. [Google Scholar] [CrossRef]
- Laitila, J.; Poikela, A.; Ovaskainen, H.; Väätäinen, K. Novel extracting methods for conifer stumps. Int. J. For. Eng. 2019, 30, 56–65. [Google Scholar] [CrossRef]
- Baquero, G.; Sorolla, S.; Casas, C.; Bacardit, A. Life Cycle Assessment of Polyphenolic Extracts Derived from Pine By-Products. Materials 2025, 18, 1000. [Google Scholar] [CrossRef]
- Staněk, L.; Zvěřina, L.; Ulrich, R.; Pavlíková, E.A. A Unique Grubbing Head Prototype for Environmentally Friendly and Sustainable Stump Removal. Forests 2022, 13, 1515. [Google Scholar] [CrossRef]
- Laitila, J.; Ala-Fossi, A.; Vartiamäki, T.; Ranta, T.; Asikainen, A. Productivity of Stump Lifting and Forest Haulage; Working Papers of the Finnish Forest Research Institute: Vantaa, Finland, 2007; Volume 46, pp. 1–26.
- Kärhä, K. Comparison of two stump-lifting heads in final felling Norway spruce stand. Silva Fenn. 2012, 46, 625–640. [Google Scholar] [CrossRef]
- Berg, S.; Nordfjell, T.; Bergström, D. Effect of stump size and timing of stump harvesting on ground disturbance and root breakage diameter. Silva Fenn. 2015, 49, 1–17. [Google Scholar] [CrossRef]
- Palander, T.; Smolander, J.; Kärhä, K. Work system study of three stump-lifting devices in Finland. Scand. J. For. Res. 2015, 30, 558–567. [Google Scholar] [CrossRef]
- Victorsson, J.; Jonsell, M. Overlooked subterranean saproxylic beetle diversity in clear-cut stumps and its implications for stump extraction. For. Ecol. Manag. 2016, 371, 59–66. [Google Scholar] [CrossRef]
- Becker, H.; Aosaar, J.; Varik, M.; Morozov, G.; Kanal, A.; Uri, V. The effect of Norway spruce stump harvesting on net nitrogen mineralization and nutrient leaching. For. Ecol. Manag. 2016, 377, 150–160. [Google Scholar] [CrossRef]
- Egnell, G. Effects of slash and stump harvesting after final felling on stand and site productivity in Scots pine and Norway spruce. For. Ecol. Manag. 2016, 371, 42–49. [Google Scholar] [CrossRef]
- Rahman, A.; Viiri, H.; Tikkanen, O.-P. Is stump removal for bioenergy production effective in reducing pine weevil (Hylobius abietis) and Hylastes spp. breeding and feeding activities at regeneration sites. For. Ecol. Manag. 2018, 424, 184–190. [Google Scholar] [CrossRef]
- Berg, S.; Nurmi, J.; Prinz, R. Comparison of ground disturbance of frozen peatland during stump harvesting using a stump drill and rake. Scand. J. For. Res. 2019, 34, 436–444. [Google Scholar] [CrossRef]
- Szulecka, J. Towards sustainable wood-based energy: Evaluation and strategies for mainstreaming sustainability in the sector. Sustainability 2019, 11, 493. [Google Scholar] [CrossRef]
- Flores Hernández, U.; Jaeger, D.; Samperio, J.I. Modeling forest woody biomass availability for energy use based on short-term forecasting scenarios. Waste Biomass Valoriz. 2020, 11, 2137–2151. [Google Scholar] [CrossRef]
- Acharya, B.S.; Saud, P.; Sharma, S.; Perez-Verdin, G.; Grebner, D.L.; Joshi, O. Wood-Based Bioenergy in North America: An Overview of Current Knowledge. Forests 2024, 15, 1669. [Google Scholar] [CrossRef]
- Kożuch, A.; Cywicka, D.; Górna, A. Forest Biomass in Bioenergy Production in the Changing Geopolitical Environment of the EU. Energies 2024, 17, 554. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mydlarz, K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies 2022, 15, 9601. [Google Scholar] [CrossRef]
- Mo, J.; Haviarova, E.; Kitek Kuzman, M. Wood-products value-chain mapping. Wood Mater. Sci. Eng. 2024, 19, 955–965. [Google Scholar] [CrossRef]
- Paluš, H.; Parobek, J.; Vlosky, R.P.; Motik, D.; Oblak, L.; Jošt, M.; Glavonjić, B.; Dudík, R.; Wanat, L. The status of chain-of-custody certification in the countries of Central and South Europe. Eur. J. Wood Prod. 2018, 76, 699–710. [Google Scholar] [CrossRef]
- Temmes, A.; Peck, P. Do forest biorefineries fit with working principles of a circular bioeconomy? A case of Finnish and Swedish initiatives. For. Policy Econ. 2020, 110, 101896. [Google Scholar] [CrossRef]
- Marques, A.; Cunha, J.; De Meyer, A.; Navare, K. Contribution towards a comprehensive methodology for wood-based biomass material flow analysis in a circular economy setting. Forests 2020, 11, 106. [Google Scholar] [CrossRef]
- Santos, E. Sustainable Scaling in Forest-Based Circular Models. Sustainability 2025, 17, 5967. [Google Scholar] [CrossRef]
- Canuel, C.M.; Thiffault, E.; Labelle, E.R.; Thiffault, N. Forest biomass for bioenergy as a tool to mitigate climate change: Implications for sustainable forest management in eastern Canada. For. Chron. 2025, 101, 1–14. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Wojciechowska, N.; Seliwiak, M.; Dobrzański, T.K. Properties of Forest Tree Branches as an Energy Feedstock in North-Eastern Poland. Energies 2024, 17, 1975. [Google Scholar] [CrossRef]
- Stolarski, J.; Wierzbicki, S.; Nitkiewicz, S.; Stolarski, M.J. Wood Chip Production Efficiency Depending on Chipper Type. Energies 2023, 16, 4894. [Google Scholar] [CrossRef]
- Scordia, D.; Papazoglou, E.G.; Kotoula, D.; Sanz, M.; Ciria, C.S.; Pérez, J.; Maliarenko, O.; Prysiazhniuk, O.; von Cossel, M.; Greiner, B.E.; et al. Towards Identifying Industrial Crop Types and Associated Agronomies to Improve Biomass Production from Marginal Lands in Europe. GCB Bioenergy 2022, 14, 710–734. [Google Scholar] [CrossRef]
- Johansson, M.; Lundbäck, M.; Lindroos, O. Trade-offs between stump-to-roadside lead time and harvesting cost, when using different number of operators in a harvester-forwarder system. Eur. J. For. Res. 2024, 143, 1667–1683. [Google Scholar] [CrossRef]
- Niedziałkowski, K.; Konczal, A.; Mielewczyk, M. “Hands off our forests!”—The impact of the authoritarian rule on polish forest policy in the context of the European Green Deal. For. Policy Econ. 2025, 171, 103402. [Google Scholar] [CrossRef]
Specification | 2011 | 2012 | 2013 | 2014 | 2015 | 2020 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|
Total [thousands m3] | 37.180 | 37.045 | 37,946 | 39.742 | 40.247 | 39.669 | 44.647 | 41.662 |
Timber (including) Fuelwood | 34.877 | 34.978 | 35.796 | 37.661 | 38.327 | 38.064 | 42.703 | 39.846 |
3195 | 3425 | 3451 | 3528 | 2996 | 3006 | 4848 | 5024 | |
Slash (including) Fuelwood | 2303 | 2067 | 2148 | 2079 | 1920 | 1604 | 1944 | 1816 |
1785 | 1619 | 1693 | 1655 | 1512 | 1437 | 1799 | 1627 | |
Fuelwood (total) | 4980 | 5044 | 5144 | 5183 | 4508 | 4443 | 6647 | 6615 |
Stump wood | 0.0 | 0.1 | 1.6 | 2.2 | 0.3 | 4.4 | 0.8 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majchrzak, L.; Wanat, L.; Kusiak, W.; Sikora, J.; Sarniak, Ł. The Economic Potential of Stump Wood as an Energy Resource—A Polish Regional Case Study. Forests 2025, 16, 1243. https://doi.org/10.3390/f16081243
Majchrzak L, Wanat L, Kusiak W, Sikora J, Sarniak Ł. The Economic Potential of Stump Wood as an Energy Resource—A Polish Regional Case Study. Forests. 2025; 16(8):1243. https://doi.org/10.3390/f16081243
Chicago/Turabian StyleMajchrzak, Leszek, Leszek Wanat, Władysław Kusiak, Jan Sikora, and Łukasz Sarniak. 2025. "The Economic Potential of Stump Wood as an Energy Resource—A Polish Regional Case Study" Forests 16, no. 8: 1243. https://doi.org/10.3390/f16081243
APA StyleMajchrzak, L., Wanat, L., Kusiak, W., Sikora, J., & Sarniak, Ł. (2025). The Economic Potential of Stump Wood as an Energy Resource—A Polish Regional Case Study. Forests, 16(8), 1243. https://doi.org/10.3390/f16081243