Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area: U.S. Department of Agriculture Forest Service (USFS) Forest Cover for the Contiguous United States
2.2. Development of Improved ForDRI Models for the Contiguous United States
2.3. Evaluation of Improved ForDRI Models for the Contiguous United States
2.3.1. Evaluating ForDRI with the Tree-Ring Standardized Growth Index (TRSGI)
2.3.2. Calculation of Integrated ForDRI for Evaluation: Aggregation of ForDRI Values for TSGI Correlation Analysis
2.3.3. Evaluating ForDRI with Normalized Bowen Ratio (BR) Data
3. Results
3.1. Evaluation of ForDRI for the West and Pacific Northwest Forest Regions
3.1.1. Evaluation of ForDRI Using Tree-Ring and Bowen Ratio for the West and Pacific Northwest Forest Regions
3.1.2. Qualitative Evaluation of the Webinar Participants for the West and Pacific Northwest Forest Regions
3.2. Evaluation of ForDRI for the Rocky Mountain and Southwest Forest Regions
3.2.1. Evaluation of ForDRI Using Tree-Ring and Bowen Ratio for the Rocky Mountain and Southwest Forest Regions
3.2.2. Qualitative Evaluation of the Webinar Participants for the Rocky Mountain and Southwest Forest Regions
3.3. Evaluation of ForDRI for the East and Northeast Forest Regions
3.3.1. Evaluation of ForDRI Using Tree-Ring and Bowen Ratio for the East and Northeast Forest Regions
3.3.2. Qualitative Evaluation of the Webinar Participants for the East and Northeast Forest Regions
3.4. Evaluation of ForDRI for the South, Central, and Southeast Forest Regions
3.4.1. Evaluation of ForDRI Using Tree-Ring and Bowen Ratio for the South, Central, and Southeast Forest Regions
3.4.2. Qualitative Evaluation of the Webinar Participants for the South, Central, and Southeast Forest Regions
3.5. Summary of Evaluation of the ForDRI Models and Products Through Regional Webinars
4. Discussion
- Data availability and accessibility: Inconsistent ground truth data collection and the lack of long-term forest-related datasets hinder the ForDRI model’s ability to track changes over time effectively. Building partnerships with local forest experts for data sharing and collaborative research could help identify available and accessible data to develop new and improved ForDRI models;
- Leveraging Advances in Machine Learning: Using machine learning (ML) to combine multiple datasets (e.g., integrating remote sensing and climate data) can enhance the precision of forest drought stress monitoring and support forest managers in making informed decisions. We plan to consider adding more hydrologic and environmental datasets using various ML methods to improve the ForDRI models;
- Incorporating Ecosystem-Specific Metrics: Developing tailored indices for different forest types (e.g., tropical vs. boreal; evergreen vs. deciduous) and integrating environmental information such as elevation and improved soil moisture measurements (or data). Including snow and temperature extremes data in ForDRI models would provide a more specific and tailored indicator for different regions and seasons.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oldekop, J.A.; Rasmussen, L.V.; Agrawal, A.; Bebbington, A.J.; Meyfroidt, P.; Bengston, D.N.; Blackman, A.; Brooks, S.; Davidson-Hunt, I.; Davies, P.; et al. Forest-Linked Livelihoods in a Globalized World. Nat. Plants 2020, 6, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing Human Dominance of Tropical Forests. Science 2015, 349, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; De Miguel, S.; Nabuurs, G.J.; Renner, S.S.; van den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated Global Assessment of the Natural Forest Carbon Potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Luo, G.; Hamdi, R.; Ma, X.; Termonia, P.; De Maeyer, P. Drought Changes the Dominant Water Stress on the Grassland and Forest Production in the Northern Hemisphere. Agric. For. Meteorol. 2024, 345, 109831. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, T.; Liu, X.; Shi, P.; Mao, R.; Zhao, X.; Xu, P.; Yu, P.; Liu, J. Dual Roles of Water Availability in Forest Vigor: A Multiperspective Analysis in China. Remote Sens. 2021, 13, 91. [Google Scholar] [CrossRef]
- USDA Forest Service. Forest Health; USDA Forest Service: Washington, DC, USA, 2025. Available online: https://www.fs.usda.gov/science-technology/forest-health (accessed on 4 April 2025).
- Shi, H.; Peng, X.; Zhou, Y.J.; Wang, A.Y.; Sun, X.K.; Li, N.; Bao, Q.S.; Buri, G.; Hao, G.Y. Resilience and Response: Unveiling the Impacts of Extreme Droughts on Forests Through Integrated Dendrochronological and Remote Sensing Analyses. For. Ecosyst. 2024, 11, 100209. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z.; Sadiq, R.; Zhu, Y. Climate Change Impacts on Water Resources and Sustainable Water Management Strategies in North America. Water Resour. Manag. 2023, 37, 2771–2786. [Google Scholar] [CrossRef]
- Wehner, M.F.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N. Droughts, Floods, and Wildfires. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 231–256. Available online: https://ntrs.nasa.gov/api/citations/20180001310/downloads/20180001310.pdf (accessed on 2 July 2025).
- Knutson, T.R.; Zeng, F.; Wittenberg, A.T. Seasonal and Annual Mean Precipitation Extremes Occurring During 2013: A U.S. Focused Analysis. Bull. Am. Meteorol. Soc. 2014, 95, S19–S23. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Zwiers, F.W.; Braconnot, P.; Gillett, N.P.; Luo, Y.; Orsini, J.A.M.; Nicholls, N.; Penner, J.E.; Stott, P.A. Understanding and Attributing Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 663–745. [Google Scholar]
- Thrippleton, T.; Bugmann, H.; Folini, M.; Snell, R.S. Overstorey—Understorey Interactions Intensify After Drought-Induced Forest Die-Off: Long-Term Effects for Forest Structure and Composition. Ecosystems 2018, 21, 723–739. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate Forest Trees and Stands Under Severe Drought: A Review of Ecophysiological Responses, Adaptation Processes and Long-Term Consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Coomes, D.A.; Grubb, P.J. Impacts of Root Competition in Forests and Woodlands: A Theoretical Framework and Review of Experiments. Ecol. Monogr. 2000, 70, 171–207. [Google Scholar] [CrossRef]
- Zamora-Pereira, J.C.; Hanewinkel, M.; Yousefpour, R. Robust Management Strategies Promoting Ecological Resilience and Economic Efficiency of a Mixed Conifer-Broadleaf Forest in Southwest Germany Under the Risk of Severe Drought. Ecol. Econ. 2023, 209, 107825. [Google Scholar] [CrossRef]
- Joyce, L.A.; Coulson, D. Climate Scenarios and Projections: A Technical Document Supporting the USDA Forest Service 2020 RPA Assessment; General Technical Report RMRS-GTR-413; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2020; p. 85. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-Off from Hotter Drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger Trees Suffer Most During Drought in Forests Worldwide. Nat. Plants 2015, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture Forest Service (USDA-FS). New Aerial Survey Identifies More Than 100 Million Dead Trees in California; USDA-FS: Washington, DC, USA, 2024. Available online: https://www.usda.gov/about-usda/news/press-releases/2016/11/18/new-aerial-survey-identifies-more-100-million-dead-trees-california (accessed on 18 November 2024).
- Stephens, S.L.; Collins, B.M.; Fettig, C.J.; Finney, M.A.; Hoffman, C.M.; Knapp, E.E.; North, M.P.; Safford, H.; Wayman, R.B. Drought, Tree Mortality, and Wildfire in Forests Adapted to Frequent Fire. BioScience 2018, 68, 77–88. [Google Scholar] [CrossRef]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional Vegetation Die-Off in Response to Global-Change-Type Drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Orth, R.; Reichstein, M.; Bahn, M.; Klosterhalfen, A.; Knohl, A.; Koebsch, F.; Migliavacca, M.; Mund, M.; Nelson, J.A.; et al. Contrasting Drought Legacy Effects on Gross Primary Productivity in a Mixed Versus Pure Beech Forest. Biogeosciences 2022, 19, 4315–4329. [Google Scholar] [CrossRef]
- Flach, M.; Brenning, A.; Gans, F.; Reichstein, M.; Sippel, S.; Mahecha, M.D. Vegetation Modulates the Impact of Climate Extremes on Gross Primary Production. Biogeosci. Discuss. 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Kukowski, K.R.; Schwinning, S.; Schwartz, B.F. Hydraulic Responses to Extreme Drought Conditions in Three Co-Dominant Tree Species in Shallow Soil over Bedrock. Oecologia 2013, 171, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Mildrexler, D.; Yang, Z.; Cohen, W.B.; Bell, D.M. A Forest Vulnerability Index Based on Drought and High Temperatures. Remote Sens. Environ. 2016, 173, 314–325. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Anderegg, W.R.L.; Vicente-Serrano, S.M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 2017, 26, 166–176. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Huning, L.S.; Sadegh, M.; Qin, Y.; Markonis, Y.; Vahedifard, F.; Love, C.A.; Mishra, A.; Mehran, A.; Obringer, R.; et al. Toward Impact-Based Monitoring of Drought and Its Cascading Hazards. Nat. Rev. Earth Environ. 2023, 4, 582–595. [Google Scholar] [CrossRef]
- Tadesse, T.; Hollinger, D.Y.; Bayissa, Y.A.; Svoboda, M.; Fuchs, B.; Zhang, B.; Demissie, G.; Wardlow, B.D.; Bohrer, G.; Clark, K.L.; et al. Forest Drought Response Index (ForDRI): A New Combined Model to Monitor Forest Drought in the Eastern United States. Remote Sens. 2020, 12, 3605. [Google Scholar] [CrossRef]
- Norman, S.P.; Koch, F.H.; Hargrove, W.W. Review of Broad-Scale Drought Monitoring of Forests: Toward an Integrated Data Mining Approach. For. Ecol. Manag. 2016, 380, 346–358. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Terfa, B.K.; Nam, W.H.; Zeng, J.; Ma, H.; Gu, X.; Du, W.; Wang, C.; Yang, J.; et al. Mapping Global Drought-Induced Forest Mortality Based on Multiple Satellite Vegetation Optical Depth Data. Remote Sens. Environ. 2024, 315, 114406. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.C.; Gao, F.; Wood, J.D.; Gu, L.; Hain, C. Studying Drought-Induced Forest Mortality Using High Spatiotemporal Resolution Evapotranspiration Data from Thermal Satellite Imaging. Remote Sens. Environ. 2021, 265, 112640. [Google Scholar] [CrossRef]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation. GIScience Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- USDA Forest Service Forest Inventory & Analysis Program (USFS). Science by Barry, T. Wilson (USFS), Cartography by Emily Meriam (ESRI). Forest Type Groups of the Continental United States. Available online: https://www.arcgis.com/home/item.html?id=10760c83b9e44923bd3c18efdaa7319d (accessed on 11 November 2024).
- AmeriFlux. About AmeriFlux; AmeriFlux: Berkeley, CA, USA, 2025. Available online: https://ameriflux.lbl.gov/about/about-ameriflux/ (accessed on 4 April 2025).
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Sproles, E.A.; Leibowitz, S.G.; Reager, J.T.; Wigington, P.J., Jr.; Famiglietti, J.S.; Patil, S.D. GRACE Storage-Runoff Hystereses Reveal the Dynamics of Regional Watersheds. Hydrol. Earth Syst. Sci. 2015, 19, 3253–3272. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Xue, R.; Jiao, L.; Zhang, P.; Wei, M.; Wang, X.; Li, Q.; Qi, C. Response Sensitivity Processes of Conifer Radial Growth to Climate Factors Based on Tree Ring Width Variations. Glob. Ecol. Conserv. 2023, 48, e02743. [Google Scholar] [CrossRef]
- Pompa-García, M.; Camarero, J.J.; Colangelo, M.; González-Cásares, M. Inter and Intra-Annual Links Between Climate, Tree Growth and NDVI: Improving the Resolution of Drought Proxies in Conifer Forests. Int. J. Biometeorol. 2021, 65, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Peltier, D.M.; Ogle, K. Tree Growth Sensitivity to Climate Is Temporally Variable. Ecol. Lett. 2020, 23, 1561–1572. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13575 (accessed on 2 July 2025). [CrossRef] [PubMed]
- National Oceanic and Atmospheric Administration (NOAA). The World Data Service for Paleoclimatology—The International Tree-Ring Data Bank (ITRDB); NOAA: Washington, DC, USA, 2024. Available online: https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring (accessed on 11 November 2024).
- Akyuz, F.A. Drought Severity and Coverage Index; United States Drought Monitor: Lincoln, NE, USA, 2025; Available online: https://droughtmonitor.unl.edu/About/AbouttheData/DSCI.aspx (accessed on 4 May 2025).
- Ren, X.; Zhang, Q.; Yue, P.; Yang, J.; Wang, S. Environmental and Biophysical Effects of the Bowen Ratio Over Typical Farmland Ecosystems in the Loess Plateau. Remote Sens. 2022, 14, 1897. [Google Scholar] [CrossRef]
- Richter, R.; Ballasus, H.; Engelmann, R.A.; Zielhofer, C.; Sanaei, A.; Wirth, C. Tree Species Matter for Forest Microclimate Regulation during the Drought Year 2018: Disentangling Environmental Drivers and Biotic Drivers. Sci. Rep. 2022, 12, 17559. [Google Scholar] [CrossRef] [PubMed]
- Coble, A.P.; Vadeboncoeur, M.A.; Berry, Z.C.; Jennings, K.A.; McIntire, C.D.; Campbell, J.L.; Rustad, L.E.; Templer, P.H.; Asbjornsen, H. Are Northeastern US forests vulnerable to extreme drought? Ecol. Process 2017, 6, 1–13. [Google Scholar] [CrossRef]
- Norman, S.P.; Christie, W.M.; Asaro, C. Mapping the 2023–2024 pine mortality event in Mississippi and Louisiana driven by an extreme hot-drought, pine bark beetle outbreaks, and wildfire. In Forest Health Monitoring: National Status, Trends, and Analysis 2024; Pandit, K., Lim-Hing, S., Eds.; US Department of Agriculture, Forest Service: Washington, DC, USA, 2025; Chapter 2. [Google Scholar]
Original Variables | Data Type | Data Source | Historical Period | Resolution |
---|---|---|---|---|
MODIS-based Normalized Difference Vegetation Index (NDVI) | Satellite | AQUA MODIS NDVI V6 | 2002–2022 | 1 km, weekly |
Groundwater Storage (GRACE) | Satellite | NASA GSFC Hydrological Sciences Laboratory | 2002–2022 | 0.125 degrees, daily |
Standardized Precipitation Index (9-,12-,24-,60-month SPI) | Climate | Applied Climate Information System (ACIS) | 1950–2022 | Interpolated to 1 km (IDW), weekly |
Standardized Precipitation Evapotranspiration Index (12-, 24-, 60-month SPEI) | Climate | Applied Climate Information System (ACIS) | 1950–2022 | Interpolated to 1 km (IDW), weekly |
Soil Moisture | Biophysical | NLDAS Noah | 2000–2022 | 0.125 degrees, monthly |
Evaporative Demand Drought Index (12-month EDDI) | Biophysical | NOAA Physical Sciences Laboratory | 1980–2022 | 0.125 degrees, weekly |
Vapor-pressure deficit (VPD) | Biophysical | PRISM | 1981–2022 | 0.05 degrees, daily |
ForDRI Values | ForDRI Categories |
---|---|
ForDRI ≤ −2 | Exceptional Drought |
−2 < ForDRI ≤ −1.5 | Extreme Drought |
−1.5 < ForDRI ≤ 1 | Moderate drought |
−1 < ForDRI ≤ −0.5 | Pre-drought Stress |
−0.5 < ForDRI ≤ 0.5 | Normal |
0.5 < ForDRI ≤ 1 | Moist |
1 < ForDRI ≤ 1.5 | Very Moist |
1.5 < ForDRI ≤ 2 | Extreme Moist |
ForDRI > 2 | Exceptionally Moist |
Dryness Level | ForDRI | Assigned Weight |
---|---|---|
1 | ForDRI ≥ 0 | 1 |
2 | 0 > ForDRI ≥ −1 | 2 |
3 | −1 > ForDRI ≥ −2 | 3 |
4 | −2 > ForDRI | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadesse, T.; Connolly, S.; Wardlow, B.; Svoboda, M.; Zhang, B.; Fuchs, B.A.; Aslam, H.; Asaro, C.; Koch, F.H.; Bernadt, T.; et al. Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States. Forests 2025, 16, 1187. https://doi.org/10.3390/f16071187
Tadesse T, Connolly S, Wardlow B, Svoboda M, Zhang B, Fuchs BA, Aslam H, Asaro C, Koch FH, Bernadt T, et al. Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States. Forests. 2025; 16(7):1187. https://doi.org/10.3390/f16071187
Chicago/Turabian StyleTadesse, Tsegaye, Stephanie Connolly, Brian Wardlow, Mark Svoboda, Beichen Zhang, Brian A. Fuchs, Hasnat Aslam, Christopher Asaro, Frank H. Koch, Tonya Bernadt, and et al. 2025. "Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States" Forests 16, no. 7: 1187. https://doi.org/10.3390/f16071187
APA StyleTadesse, T., Connolly, S., Wardlow, B., Svoboda, M., Zhang, B., Fuchs, B. A., Aslam, H., Asaro, C., Koch, F. H., Bernadt, T., Poulsen, C., Wisner, J., Nothwehr, J., Ratcliffe, I., Varisco, K., Johnson, L., & Riganti, C. (2025). Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States. Forests, 16(7), 1187. https://doi.org/10.3390/f16071187