Trends and Applications of Principal Component Analysis in Forestry Research: A Literature and Bibliometric Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. A Bibliometric Review
3.2. Literature Review
3.2.1. Utilization of Principal Component Analysis in Forestry
3.2.2. Emerging Applications and Innovations in PCA-Based Forestry Research
3.2.3. Integration of PCA with Other Methods and Programs
- -
- PCA assumes linearity, which can mask complex ecological interactions.
- -
- Secondary PCA interpretations are often unclear.
- -
- The results depend on variable scaling and data preprocessing decisions.
- -
- Kernel PCA for extracting nonlinear features.
- -
- t-SNE and UMAP for visualizing high-dimensional ecological datasets.
- -
- Adaptive PCA models that adjust to forest heterogeneity.
4. Discussion
4.1. Bibliometric Review
4.2. Recent Innovations and Emerging Uses of PCA in Forestry Sciences
- -
- assuming linearity and overlooking the nonlinear relationships that are essential for ecological modeling;
- -
- being sensitive to data processing (normalization, scaling) and affecting result reliability;
- -
- ambiguous and data-dependent interpretation of later main components.
- -
- hybrid methods that combine PCA with tools for reducing nonlinear dimensionality (t-SNE, UMAP). This allows for a better understanding of complex ecological interactions.
- -
- validating different forest types and ecological gradients. This allows for better testing of general and robust models.
- -
- integrating deep learning frameworks where PCA is a feature in extracting and preprocessing, allowing for a better performance and a reduced computational load.
4.3. Integration of PCA with Other Methods and Programs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, L.I. A Tutorial on Principal Components Analysis; University of Otago: Dunedin, New Zealand, 2002. [Google Scholar]
- Pearson, K.L., III. On lines and planes of closest fit to systems of points in space. Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Wang, M.; Gao, G.; Huang, H.; Heidari, A.A.; Zhang, Q.; Chen, H.; Tang, W. A principal component analysis-boosted dynamic Gaussian mixture clustering model for ignition factors of Brazil’s rainforests. IEEE Access 2021, 9, 145748–145762. [Google Scholar] [CrossRef]
- Yao, L.; Ding, Y.; Xu, H.; Deng, F.; Yao, L.; Ai, X.; Zang, R. Patterns of diversity change for forest vegetation across different climatic regions—A compound habitat gradient analysis approach. Glob. Ecol. Conserv. 2020, 23, e01106. [Google Scholar] [CrossRef]
- Dadon, A.; Mandelmilch, M.; Ben-Dor, E.; Sheffer, E. Sequential PCA-based classification of Mediterranean forest plants using airborne hyperspectral remote sensing. Remote Sens. 2019, 11, 2800. [Google Scholar] [CrossRef]
- Raja, A.R. Principal component analysis based assessment of trees outside forests in satellite images. Indian J. Sci. Technol. 2016, 9, S1. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Dom, S.P.; Ikenaga, M.; Lau, S.Y.L.; Radu, S.; Midot, F.; Yap, M.L.; Melling, L. Linking prokaryotic community composition to carbon biogeochemical cycling across a tropical peat dome in Sarawak, Malaysia. Sci. Rep. 2021, 11, 6416. [Google Scholar] [CrossRef]
- Li, Y.; Yan, C.; Liu, W.; Li, M. A principal component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification. Appl. Soft Comput. 2018, 70, 1000–1009. [Google Scholar] [CrossRef]
- Bu, H.; Tan, X.; Li, S.; Zhang, Q. Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts., China. Ecotoxicol. Environ. Saf. 2010, 73, 907–913. [Google Scholar] [CrossRef]
- Crişan, V.E.; Dincă, L.; Bragă, C.; Murariu, G.; Tupu, E.; Mocanu, G.D.; Drasovean, R. The configuration of Romanian Carpathians landscape controls the volume diversity of Picea abies (L.) stands. Land 2023, 12, 406. [Google Scholar] [CrossRef]
- Murariu, G.; Dincă, L.; Tudose, N.; Crişan, V.; Georgescu, L.; Munteanu, D.; Mocanu, G.D. Structural characteristics of the main resinous stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
- Deflandre, A.; Williams, R.J.; Elorza, F.J.; Mira, J.; Boorman, D.B. Analysis of the QUESTOR water quality model using a Fourier amplitude sensitivity test (FAST) for two UK rivers. Sci. Total Environ. 2006, 360, 290–304. [Google Scholar] [CrossRef]
- Dincă, L.; Murariu, G.; Enescu, C.M.; Achim, F.; Georgescu, L.; Murariu, A.; Holonec, L. Productivity differences between southern and northern slopes of Southern Carpathians (Romania) for Norway spruce, silver fir, birch and black alder. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1070–1084. [Google Scholar] [CrossRef]
- Dincă, L.; Marin, M.; Radu, V.; Murariu, G.; Drasovean, R.; Cretu, R.; Timiș-Gânsac, V. Which are the best site and stand conditions for silver fir (Abies alba Mill.) located in the Carpathian Mountains? Diversity 2022, 14, 547. [Google Scholar] [CrossRef]
- Topa, C.; Murariu, G.; Calmuc, V.; Calmuc, M.; Arseni, M.; Serban, C.; Georgescu, L. A spatial–seasonal study on the Danube River in the adjacent Danube Delta area: Case study—Monitored heavy metals. Water 2024, 16, 2490. [Google Scholar] [CrossRef]
- Sohil, F.; Sohali, M.U.; Shabbir, J. An Introduction to Statistical Learning with Applications in R: By Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani; Springer Science+Business Media: Philadelphia, PA, USA, 2022; ISBN 978-1-4614-7137-7. [Google Scholar]
- Wang, B.; Cheng, W.; Xu, H.; Wang, R.; Song, K.; Bao, A.; Shi, Q. Vegetation differentiation characteristics and control mechanisms in the Altay region based on topographic gradients. Ecol. Indic. 2024, 160, 111838. [Google Scholar] [CrossRef]
- Chen, H.; Ferrari, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr. Polym. 2010, 82, 772–778. [Google Scholar] [CrossRef]
- Timis-Gansac, V.; Dinca, L.; Constandache, C.; Murariu, G.; Cheregi, G.; Timofte, C.S.C. Conservation biodiversity in arid areas: A review. Sustainability 2025, 17, 2422. [Google Scholar] [CrossRef]
- Dincă, L.; Crisan, V.; Ienasoiu, G.; Murariu, G.; Drasovean, R. Environmental indicator plants in mountain forests: A review. Plants 2024, 13, 3358. [Google Scholar] [CrossRef]
- Dincă, L.; Constandache, C.; Postolache, R.; Murariu, G.; Tupu, E. Timber harvesting in mountainous regions: A comprehensive review. Forests 2025, 16, 495. [Google Scholar] [CrossRef]
- Clarivate.com. Web of Science Core Collection. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/web-of-science-core-collection/ (accessed on 20 January 2025).
- Scopus. Available online: https://www.elsevier.com/products/scopus (accessed on 10 December 2024).
- Salisbury, L. Web of Science and Scopus: A comparative review of content and searching capabilities. Charlest. Advis. 2009, 11, 5–18. [Google Scholar]
- Adriaanse, L.; Rensleigh, C. Web of Science, Scopus and Google Scholar: A content comprehensiveness comparison. Electron. Libr. 2013, 31, 727–744. [Google Scholar] [CrossRef]
- Microsoft Excel. Available online: https://www.microsoft.com/en-us/microsoft-365/excel?legRedir=true&CorrelationId=3bb60ab0-fe13-41a4-812b-2627667cf346 (accessed on 1 February 2025).
- Geochart. Available online: https://developers.google.com/chart/interactive/docs/gallery/geochart (accessed on 13 March 2025).
- VOS Viewer. Available online: https://www.vosviewer.com/ (accessed on 7 December 2024).
- Vella, F.M.; De Masi, L.; Calandrelli, R.; Morana, A.; Laratta, B. Valorization of the agro-forestry wastes from Italian chestnut cultivars for the recovery of bioactive compounds. Eur. Food Res. Technol. 2019, 245, 2679–2686. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, Y.; Wang, Y.; Zhang, S.; Yu, W.; Zhu, X.; Nover, D. Comparative assessment of sponge city constructing in public awareness, Xi’an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
- Asuoha, G.C.; Okafor, U.P.; Phil-Eze, P.O.; Ayadiuno, R.U. The impact of soil erosion on biodiversity conservation in Isiala Ngwa North LGA, Southeastern Nigeria. Sustainability 2019, 11, 7192. [Google Scholar] [CrossRef]
- Zawieja, B.; Turczański, K.; Najgrakowski, T.; Kaźmierczak, K. The use of measurable traits of trunk and crown to assess the biosocial classes of oak trees (Quercus robur L.). Balt. For. 2021, 27, 542. [Google Scholar] [CrossRef]
- Oliveira, C.P.D.; Ferreira, R.L.C.; da Silva, J.A.A.; Lima, R.B.D.; Silva, E.A.; Silva, A.F.D.; Melo, C.L.S.M.S.D. Modeling and spatialization of biomass and carbon stock using LiDAR metrics in tropical dry forest, Brazil. Forests 2021, 12, 473. [Google Scholar] [CrossRef]
- He, X.; Lei, X.; Xu, Q.; Lan, J.; Wu, B.; Guo, H.; Gao, W.; Liu, D. Combining multiple feature selection methods and structural equation modelling for exploring factors affecting stand biomass of natural coniferous-broad leaved mixed forests. Sci. Total Environ. 2024, 954, 176669. [Google Scholar] [CrossRef]
- Teixeira, B.M.; Oliveira, M.; da Silva Borges, A.D. Coniferous biomass for energy valorization: A thermo-chemical properties analysis. Sustainability 2024, 16, 7622. [Google Scholar] [CrossRef]
- Rex, F.E.; Silva, C.A.; Dalla Corte, A.P.; Klauberg, C.; Mohan, M.; Cardil, A.; Hudak, A.T. Comparison of statistical modelling approaches for estimating tropical forest aboveground biomass stock and reporting their changes in low-intensity logging areas using multi-temporal LiDAR data. Remote Sens. 2020, 12, 1498. [Google Scholar] [CrossRef]
- Socaci, S.A.; Socaciu, C.; Tofană, M.; Raţi, I.V.; Pintea, A. In-tube extraction and GC–MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. carpatica) berry varieties and juice. Phytochem. Anal. 2013, 24, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Heim, L.; Dodeler, R.; Brancheriau, L.; Marchal, R.; Boutahar, N.; Lotte, S.; Candelier, K. Comparison of extractive chemical signatures among branch, knot and bark wood fractions from forestry and agroforestry walnut trees (Juglans regia × J. nigra) by NIR spectroscopy and LC-MS analyses. Unpublished work. 2022. [Google Scholar]
- Širić, I.; Rukavina, K.; Mioč, B.; Držaić, V.; Kumar, P.; Taher, M.A.; Eid, E.M. Bioaccumulation and health risk assessment of nickel uptake by five wild edible saprotrophic mushroom species collected from Croatia. Forests 2023, 14, 879. [Google Scholar] [CrossRef]
- Dobbertin, M.K.; Nobis, M.P. Exploring research issues in selected forest journals 1979–2008. Ann. For. Sci. 2010, 67, 800. [Google Scholar] [CrossRef]
- Solana-Gutiérrez, J.; Bejarano-Carrión, M.D.; Merino-De-Miguel, S. Triggering student creativity through statistical brainstorming—An experience in a forestry engineering degree. In Proceedings of the EDULEARN14 Conference, Barcelona, Spain, 7–9 July 2014; pp. 6461–6470. [Google Scholar]
- Kaitera, J.; Witzell, J. Phenolic profiles of two Melampyrum species differing in susceptibility to Cronartium rust. Eur. J. Plant Pathol. 2016, 144, 133–140. [Google Scholar] [CrossRef]
- Ueda, A.; Itô, H.; Kanetani, S. Effects of heterogenous forest environments on ground-dwelling beetles in a conifer plantation. Entomol. Sci. 2024, 27, e12584. [Google Scholar] [CrossRef]
- Mgbeahuruike, A.C.; Kohler, A.; Asiegbu, F.O. Expression analysis of the impact of culture filtrates from the biocontrol agent, Phlebiopsis gigantea, on the conifer pathogen, Heterobasidion annosum ss transcriptome. Microb. Ecol. 2013, 66, 669–681. [Google Scholar] [CrossRef]
- Jia, Z.; Duan, Q.; Wang, Y.; Wu, K.; Jiang, H. Detection model and spectral disease indices for poplar (Populus L.) anthracnose based on hyperspectral reflectance. Forests 2024, 15, 1309. [Google Scholar] [CrossRef]
- Addison, J.A.; Trofymow, J.A.; Marshall, V.G. Functional role of Collembola in successional coastal temperate forests on Vancouver Island, Canada. Appl. Soil Ecol. 2003, 24, 247–261. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Yang, G.; Zhu, C.; Huo, L.; Feng, H. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ. 2018, 217, 323–339. [Google Scholar] [CrossRef]
- Dania, V.O.; Osunlaja, O.A.; Igwe, D.O. Evaluation of genetic diversity using inter-simple sequence repeat markers and effect on the severity of leaf blight disease of teak (Tectona grandis L.). J. Sustain. For. 2020, 39, 461–476. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water Air Soil Pollut. 2015, 226, 389. [Google Scholar] [CrossRef]
- Lee, J.; Yun, C.W. Tree vegetation affecting soil stability, soil porosity and soil total nitrogen in the protected forest of Kulon Progo community forestry, Yogyakarta, Indonesia. Appl. Ecol. Environ. Res. 2024, 22, 1761–1776. [Google Scholar]
- Staddon, W.J.; Duchesne, L.C.; Trevors, J.T. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns. Microb. Ecol. 1997, 34, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Teng, Z.; Zhang, H.; Cai, D.; Zhang, J.; Meng, F.; Sun, G. Nitrogen application and intercropping change microbial community diversity and physicochemical characteristics in mulberry and alfalfa rhizosphere soil. J. For. Res. 2021, 32, 2121–2133. [Google Scholar] [CrossRef]
- Siswo; Kim, H.; Lee, J.; Yun, C.W. Influence of Tree Vegetation and The Associated Environmental Factors on Soil Organic Carbon; Evidence from “Kulon Progo Community Forestry,” Yogyakarta, Indonesia. Forests 2023, 14, 365. [Google Scholar] [CrossRef]
- Rodríguez-Rivera, V.; Zaragosa-López, K.; Clark-Tapia, R.; Ramírez Santiago, R. Effect of forest management on the physicochemical properties of the soil in Ixtlán de Juárez, Oaxaca, Mexico. Madera Bosques 2023, 29, e2912476. [Google Scholar] [CrossRef]
- Kurien, V.T.; Thomas, E.; Narayanan, S.P.; Thomas, A.P. Soil organic carbon pool under selected tree plantations in the Southern Western Ghats of Kerala, India. Trop. Ecol. 2021, 62, 126–138. [Google Scholar] [CrossRef]
- Sharma, A.; Patel, S.K.; Barla, A.; Singh, G.S. Evaluating variability in soil attributes and forest vegetation in a degraded dry tropical region: An ecological restoration perspective. Environ. Dev. Sustain. 2024, 1–31. [Google Scholar] [CrossRef]
- Xiang, T.; Qiang, F.; Liu, G.; Liu, C.; Ai, N. Soil quality evaluation and dominant factor analysis of economic forest in loess area of northern Shaanxi. Forests 2023, 14, 1179. [Google Scholar] [CrossRef]
- Tourne, D.C.; Martorano, L.G.; Junior, S.B.; Dias, C.T.D.S.; Lisboa, L.S.; Sartorio, S.D.; Vettorazzi, C.A. Potential topoclimatic zones as support for forest plantation in the Amazon: Advances and challenges to growing Paricá (Schizolobium amazonicum). Environ. Dev. 2016, 18, 26–35. [Google Scholar] [CrossRef]
- Lewińska, K.E.; Ivits, E.; Schardt, M.; Zebisch, M. Alpine forest drought monitoring in South Tyrol: PCA based synergy between scPDSI data and MODIS derived NDVI and NDII7 time series. Remote Sens. 2016, 8, 639. [Google Scholar] [CrossRef]
- Bueis, T.; Bravo, F.; Pando, V.; Turrión, M.B. Site factors as predictors for Pinus halepensis Mill. productivity in Spanish plantations. Ann. For. Sci. 2017, 74, 6. [Google Scholar] [CrossRef]
- Bueis Mellado, T.D.L. Relationships between the dynamics of Pinus halepensis Mill. and Pinus sylvestris L. plantations and environmental parameters: A basis for sustainable management of stands. Ph.D. Thesis, Universidad de Valladolid, Valladolid, Spain, 2017. [Google Scholar]
- Wu, S.; Guo, C.; Yang, J. Using PCA and one-stage detectors for real-time forest fire detection. J. Eng. 2020, 2020, 383–387. [Google Scholar]
- Wang, X.F.; Gao, P.; Liu, Y.F.; Li, H.F.; Lu, F. Predicting thermophilic proteins by machine learning. Curr. Bioinform. 2020, 15, 493–502. [Google Scholar]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Random forests unsupervised classification: The detection and mapping of Solanum mauritianum infestations in plantation forestry using hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3107–3122. [Google Scholar] [CrossRef]
- Baron, J.N.; Rubin, B.D. Secondary invasion? Emerald ash borer (Agrilus planipennis) induced ash (Fraxinus spp.) mortality interacts with ecological integrity to facilitate European buckthorn (Rhamnus cathartica). Can. J. For. Res. 2021, 51, 455–464. [Google Scholar] [CrossRef]
- Kebrle, D.; Zasadil, P.; Barták, V.; Hofmeister, J. Bird response to forest disturbance size in mountain spruce forests in Central Europe. For. Ecol. Manag. 2022, 524, 120527. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L.; Jenerette, G.D. Socio-environmental determinants of the perceived value of moist Afromontane forest ecosystem services in Kaffa Biosphere Reserve, Ethiopia. For. Policy Econ. 2022, 136, 102688. [Google Scholar] [CrossRef]
- Diktaş Bulut, N. An approach to determining forest areas with recreational potential: The case of forest areas around main transportation roads in the Maçka Region of Trabzon, Turkey. J. Sustain. For. 2018, 37, 286–301. [Google Scholar] [CrossRef]
- Zhang, H.; Jim, C.Y. Species adoption for sustainable forestry in Hong Kong’s degraded countryside. Int. J. Sustain. Dev. World Ecol. 2013, 20, 484–503. [Google Scholar] [CrossRef]
- Salvati, L.; Becagli, C.; Bertini, G.; Cantiani, P.; Ferrara, C.; Fabbio, G. Toward sustainable forest management indicators? A data mining approach to evaluate the impact of silvicultural practices on stand structure. Int. J. Sustain. Dev. World Ecol. 2017, 24, 372–382. [Google Scholar] [CrossRef]
- Liubachyna, A.; Bubbico, A.; Secco, L.; Pettenella, D. Management goals and performance: Clustering state forest management organizations in Europe with multivariate statistics. Forests 2017, 8, 504. [Google Scholar] [CrossRef]
- Venema, H.D.; Calamai, P.H.; Fieguth, P. Forest structure optimization using evolutionary programming and landscape ecology metrics. Eur. J. Oper. Res. 2005, 164, 423–439. [Google Scholar] [CrossRef]
- de Souza, M.T.P.; de Azevedo, G.B.; Azevedo, G.T.D.O.S.; Teodoro, L.P.R.; Plaster, O.B.; de Assunção, P.C.G.; Teodoro, P.E. Growth of native forest species in a mixed stand in the Brazilian Savanna. For. Ecol. Manag. 2020, 462, 118011. [Google Scholar] [CrossRef]
- Murariu, G.; Hahuie, V.; Murariu, A.G.; Georgescu, L.; Calin, M.A.; Buruiana, D.; Carp, G.B. Growth rate modeling for white poplar in the south eastern part of Romania: An important issue of forest conservation. Int. J. Conserv. Sci. 2017, 8, 303–316. [Google Scholar]
- Qu, H.; Dong, X.; Zhang, B.; Liu, H.; Gao, T.; Meng, Y.; Zhang, Y. Evaluation of Ecological Function Restoration Effect for Degraded Natural Forests in Xiaoxinganling, China. Sustainability 2024, 16, 1793. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Zhang, W.; Tang, Z.; Zhang, Y. How forest types shape soil quality: The evidence from eastern China’s north sub-tropical ecosystems. Ecol. Indic. 2025, 175, 113583. [Google Scholar] [CrossRef]
- Palaghianu, C.; Coșofreț, C. Patterns of forest species association in a broadleaf forest in Romania. Forests 2023, 14, 1118. [Google Scholar] [CrossRef]
- Yang, K.; Diao, M.; Zhu, J.; Lu, D.; Zhang, W. A global meta-analysis of indicators for assessing forest soil quality through comparison between paired plantations versus natural forests. Land Degrad. Dev. 2022, 33, 3603–3616. [Google Scholar] [CrossRef]
- Guo, X.; Cui, M.; Deng, M.; Liu, X.; Huang, X.; Zhang, X.; Luo, L. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci. Rep. 2017, 7, 46579. [Google Scholar]
- Sandak, J.; Sandak, A. Fourier transform near infrared assessment of biomass composition of shrub willow clones (Salix sp.) for optimal bio-conversion processing. J. Near Infrared Spectrosc. 2011, 19, 309–318. [Google Scholar] [CrossRef]
- Mu, H.; Liu, Y.; Wang, F.; Zhang, Z.; Wang, J.; Yang, Y. Genetic Parameters and Selection of Clones and Families of Pinus koraiensis Using Principal Components and Multi-Trait Method. Forests 2024, 15, 2259. [Google Scholar] [CrossRef]
- Jamnická, G.; Fleischer Jr, P.; Konôpková, A.; Pšidová, E.; Kučerová, J.; Kurjak, D.; Ditmarová, Ľ. Norway spruce (Picea abies L.) provenances use different physiological strategies to cope with water deficit. Forests 2019, 10, 651. [Google Scholar] [CrossRef]
- Pangaribuan, H.P.; Sader, S.A. Evaluation of satellite change detection methods for monitoring forest harvest and silvicultural activity in Maine industrial forests. In Multispectral Imaging for Terrestrial Applications II; SPIE: Bellingham, WA, USA, 1997; Volume 3119, pp. 2–12. [Google Scholar]
- Phompila, C.; Lewis, M.; Clarke, K.; Ostendorf, B. Monitoring expansion of plantations in Lao tropical forests using Landsat time series. In Land Surface Remote Sensing II; SPIE: Bellingham, WA, USA, 2014; Volume 9260, pp. 296–306. [Google Scholar]
- Skydan, V.; Fedoniuk, T.P.; Mozharovskii, O.S.; Zhukov, O.V.; Zymaroieva, A.A.; Pazych, V.M.; Melnychuk, T.V. Monitoring tree mortality in Ukrainian Pinus sylvestris L. forests using remote sensing data from earth observing satellites. Ann. For. Res. 2022, 65, 91–101. [Google Scholar] [CrossRef]
- Song, B.; Liu, L.; Zhang, B. A novel restoration approach for vegetation reflectance spectra at noisy bands using the principal component analysis method. Int. J. Remote Sens. 2020, 41, 2303–2325. [Google Scholar] [CrossRef]
- Yankovich, K.S.; Yankovich, E.P.; Baranovskiy, N.V. Classification of vegetation to estimate forest fire danger using Landsat 8 images: Case study. Math. Probl. Eng. 2019, 2019, 6296417. [Google Scholar] [CrossRef]
- Oladi, J.; Bozornia, D.; Rashidi, F.; Jalilvandd, H. Investigating the effects of satellite data fusion on the accuracy of forest type classification in Mazandaran Province. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2010, 10, 647–651. [Google Scholar]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Evaluation and selection of multi-spectral indices to classify vegetation using multivariate functional principal component analysis. Remote Sens. 2024, 16, 1224. [Google Scholar] [CrossRef]
- Sa, R.; Fan, W. Estimation of forest parameters in boreal artificial coniferous forests using landsat 8 and sentinel-2A. Remote Sens. 2023, 15, 3605. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Li, X.; Wang, X.; Dai, Z.; Duan, M.; Xie, J. Relationships between the visual quality and color patterns: Study in peri-urban forests dominated by Cotinus coggygria var. cinerea Engl. in autumn in Beijing, China. Forests 2022, 13, 1996. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Roscoe, C.J. Preference for site conservation in relation to on-site biodiversity and perceived site attributes: An on-site survey of unmanaged urban greenery in a tropical city. Urban For. Urban Green. 2017, 28, 12–20. [Google Scholar] [CrossRef]
- Krtalić, A.; Linardić, D.; Pernar, R. Framework for spatial and temporal monitoring of urban forest and vegetation conditions: Case study Zagreb, Croatia. Sustainability 2021, 13, 6055. [Google Scholar] [CrossRef]
- Pu, R.; Liu, D. Segmented canonical discriminant analysis of in situ hyperspectral data for identifying 13 urban tree species. Int. J. Remote Sens. 2011, 32, 2207–2226. [Google Scholar] [CrossRef]
- Feng, T.; Qi, Y.; Zhang, Y.; Fan, D.; Wei, T.; Wang, P.; Cerdà, A. Long-term effects of vegetation restoration and forest management on carbon pools and nutrient storages in northeastern Loess Plateau, China. J. Environ. Manag. 2024, 354, 120296. [Google Scholar] [CrossRef]
- Ju, Y.; Zhao, T.; Tong, L.; Fan, R.; Ma, L.; Dong, X. Research on forest carbon sequestration model based on principal component analysis and analytic Hierarchy process. In Proceedings of the 3rd International Conference on Computer, Artificial Intelligence and Control Engineering, Xi’an, China, 26–28 January 2024; pp. 61–66. [Google Scholar]
- Cooper, A.; McCann, T.P.; Hamill, B. Vegetation regeneration on blanket mire after mechanized peat-cutting. Glob. Ecol. Biogeogr. 2001, 10, 275–289. [Google Scholar] [CrossRef]
- Giménez, A.M.; Moglia, J.G.; Figueroa, M.E.; Diaz Zirpolo, J.A.; Calatayu, F. Comparative wood anatomy of Maytenus in northwestern Argentina (South America). Madera Bosques 2014, 20, 95–110. [Google Scholar] [CrossRef]
- Mészáros, E.; Jakab, E.; Várhegyi, G.; Szepesváry, P.; Marosvölgyi, B. Comparative study of the thermal behavior of wood and bark of young shoots obtained from an energy plantation. J. Anal. Appl. Pyrolysis 2004, 72, 317–328. [Google Scholar] [CrossRef]
- Nganko, J.M.; Koffi, E.P.M.; Kane, M.; Gbaha, P.; Yao, K.B. Application of principal component analysis (PCA) to the study of the influence of the thermochemical treatment process of tropical wood sawdust on the calorific, mechanical, physicochemical and combustion properties of the resulting fuel briquettes. Biofuels 2024, 15, 1281–1294. [Google Scholar] [CrossRef]
- Nazari, N.; Bahmani, M.; Kahyani, S.; Humar, M.; Koch, G. Geographic variations of the wood density and fiber dimensions of the Persian oak wood. Forests 2020, 11, 1003. [Google Scholar] [CrossRef]
- de Medeiros, D.T.; Gomes, J.N.N.; Batista, F.G.; Mascarenhas, A.R.P.; Pimenta, E.M.; Chaix, G.; Hein, P.R.G. Estimation of the basic density of Eucalyptus grandis wood chips at different moisture levels using benchtop and handheld NIR instruments. Ind. Crops Prod. 2024, 209, 117921. [Google Scholar] [CrossRef]
- Ramalho, F.M.G.; Hein, P.R.G.; Andrade, J.M.; Napoli, A. Potential of near-infrared spectroscopy for distinguishing charcoal produced from planted and native wood for energy purpose. Energy Fuels 2017, 31, 1593–1599. [Google Scholar] [CrossRef]
- Sharma, A.; Garg, S.; Sharma, V. ATR-FTIR spectroscopy and machine learning for sustainable wood sourcing and species identification: Applications to wood forensics. Microchem. J. 2024, 200, 110467. [Google Scholar] [CrossRef]
- Da Silva, D.O.; Klausner, V.; Prestes, A.; Macedo, H.G.; Aakala, T.; Da Silva, I.R. Principal components analysis: An alternative way for removing natural growth trends. Pure Appl. Geophys. 2021, 178, 3131–3149. [Google Scholar] [CrossRef]
- Neuville, R.; Bates, J.S.; Jonard, F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning. Remote Sens. 2021, 13, 352. [Google Scholar] [CrossRef]
- He, S.; Tan, S.; Shen, L.; Zhou, Q. Soil organic matter estimation model integrating spectral and profile features. Sensors 2023, 23, 9868. [Google Scholar] [CrossRef]
- Salata, S.; Grillenzoni, C. A spatial evaluation of multifunctional Ecosystem Service networks using Principal Component Analysis: A case of study in Turin, Italy. Ecol. Indic. 2021, 127, 107758. [Google Scholar] [CrossRef]
- López-Amoedo, A.; Silvosa, M.R.; Lago, M.B.; Lorenzo, H.; Acuña-Alonso, C.; Álvarez, X. Weight estimation models for commercial Pinus radiata wood in small felling stands based on UAV-LiDAR data. Trees For. People 2023, 14, 100436. [Google Scholar] [CrossRef]
- Miller, J.W. Unsupervised Learning. In Lecture 13: Principal Components Analysis–Statistical Learning (BST 263). 2013. Available online: https://jwmi.github.io/SL/13-Principal-components-analysis.pdf (accessed on 13 June 2025).
- Crosby, M.K.; McConnell, T.E.; Holderieath, J.J.; Meeker, J.R.; Steiner, C.A.; Strom, B.L.; Johnson, C. The Use of High-Resolution Satellite Imagery to Determine the Status of a Large-Scale Outbreak of Southern Pine Beetle. Remote Sens. 2024, 16, 582. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Liu, P. Deep transfer learning for dominant tree species classification based on Google Earth Engine Sentinel-2: A case study in Kunming City. In Proceedings of the Fifth International Conference on Geoscience and Remote Sensing Mapping (ICGRSM 2023), Lianyungang, China, 13–15 October 2023; SPIE: Bellingham, WA, USA, 2024; Volume 12980, pp. 323–329. [Google Scholar]
- Du, W.; Tian, M.; Li, J.; Xia, L.; Yang, G.; Hu, W.; Ma, C. Research on Airborne LiDAR and Hyperspectral Combined System for Forest Tree Species Classification. In Proceedings of the 2023 International Conference on Big Data, Mining, and Information Processing, Xiamen, China, 17–19 November 2023; pp. 29–33. [Google Scholar]
- Cao, Y.; Wang, W.; Zhao, Y.; Sun, Q. Research on Visual Inspection Method of Tree Whitening Quality based on Multi-level Feature Fusion. Recent Pat. Eng. 2024, 18, 146–153. [Google Scholar] [CrossRef]
- Sharma, V.; Yadav, J.; Kumar, R.; Tesarova, D.; Ekielski, A.; Mishra, P.K. On the rapid and non-destructive approach for wood identification using ATR-FTIR spectroscopy and chemometric methods. Vib. Spectrosc. 2020, 110, 103097. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Cortizas, A.M. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 153, 63–70. [Google Scholar] [CrossRef] [PubMed]
Cur. No. | Journal | Documents | Total Link Strength |
---|---|---|---|
1 | Forests | 10 | 67 |
2 | Sustainability | 8 | 55 |
3 | Journal of Analytical and Applied Pyrolysis | 3 | 169 |
4 | Forest Policy and Economics | 2 | 50 |
5 | Annals of Forest Science | 2 | 27 |
6 | Forest Ecology and Management | 2 | 22 |
7 | International Journal of Sustainable Development and Word Ecology | 2 | 18 |
8 | Journal of Applied Ecology | 1 | 107 |
9 | Landscape and Urban Planning | 1 | 87 |
10 | Water Air and Soil Pollution | 1 | 74 |
11 | Ecological Indicators | 1 | 69 |
12 | Biodiversity and Conservation | 1 | 68 |
13 | Journal of Hydrology | 1 | 45 |
14 | Applied Soil Ecology | 1 | 34 |
15 | Mathematical Problems in Engineering | 1 | 24 |
16 | IEEE Transactions on Geoscience and Remote Sensing | 1 | 23 |
17 | Quaternary Science Review | 1 | 21 |
18 | Journal of Forestry Research | 1 | 17 |
19 | Scientometrics | 1 | 16 |
20 | Remote Sensing | 1 | 13 |
Crt. No. | Keyword | Occurrences | Total Link Strength |
---|---|---|---|
1 | principal component analysis | 17 | 18 |
2 | forestry | 10 | 15 |
3 | biomass | 6 | 13 |
4 | biodiversity | 4 | 12 |
5 | climate | 7 | 12 |
6 | indicators | 7 | 12 |
7 | land use | 6 | 12 |
8 | quality | 6 | 12 |
9 | carbon | 5 | 11 |
10 | conservation | 6 | 11 |
11 | dynamics | 5 | 11 |
12 | restoration | 4 | 11 |
13 | growth | 6 | 9 |
14 | impacts | 5 | 9 |
15 | region | 4 | 8 |
16 | vegetation | 6 | 7 |
17 | wood | 4 | 7 |
18 | decomposition | 4 | 6 |
19 | selection | 4 | 6 |
Application Area | Benefits of PCA | Limitations of PCA |
---|---|---|
Forest structure and inventory | Enhanced model performance | Context-dependent performance |
Soil and environmental studies | Grouping of multi-parametric indicators | Loss of interpretability beyond PC1–3 |
Species classification | High accuracy, dimensionality reduction | May miss non-linear patterns |
Fire/disease monitoring | Real-time processing | Needs careful calibration |
Remote sensing analysis | Feature extraction, fusion, change detection | Sensitive to preprocessing |
Cur. No. | Domain | Subdomain | Country | Citing Article |
---|---|---|---|---|
1 | Agro-forestry | Chestnut | Italy | Vella et al., 2019 [31] |
Soil quality | China | Luo et al., 2022 [32] | ||
2 | Biodiversity conservation | Impact of soil erosion | Nigeria | Asuoha et al., 2019 [33] |
3 | Biometry | Measurable traits of trunk and crown | Poland | Zawieja et al., 2021 [34] |
Modeling and spatialization of biomass | Brazil; China; Portugal | Oliveira et al., 2021 [35]; He et al., 2024 [36]; Teixeira et al., 2024 [37] | ||
Estimating tropical forest aboveground biomass stock | Brazil | Rex et al., 2020 [38] | ||
4 | Chemical composition | Volatile compounds of sea buckthorn (Hippophae rhamnoides L.) | Romania | Socaci et al., 2013 [39] |
Walnut trees | France | Heim et al., 2022 [40] | ||
Bioaccumulation of nickel in five edible saprotrophic mushroom species | Croatia | Siric et al., 2023 [41] | ||
5 | Education, publications | Forest journals | general | Dobbertin and Nobis, 2010 [42] |
Student creativity in a Forestry engineering degree | Spain | Solana-Gutiérrez et al., 2014 [43] | ||
6 | Entomology and Fitopatology | Phenolic profiles of two Melampyrum species | Finland | Kaitera, J. and Witzell, J., 2016 [44] |
Ground-dwelling beetles in a conifer plantation | Japan | Ueda et al., 2024 [45] | ||
the conifer pathogen Heterobasidion annosum | Finland | Mgbeahuruike et al., 2013 [46] | ||
Poplar Anthracnose | China | Jia et al., 2024 [47] | ||
Collembola | Canada | Addison et al., 2003 [48] | ||
Defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak | China | Zhang et al., 2018 [49] | ||
Leaf blight disease of teak (Tectona Grandis L.) | Nigeria | Dania et al., 2020 [50] | ||
7 | Environmental factors | Soil | Poland; Indonesia; Canada; China; Korea; Mexico; India; China | Klamerus-Iwan et al., 2015 [51]; Lee and Yun, 2024 [52]; Staddon et al., 1997 [53]; Zhang et al., 2021 [54]; Siswo et al., 2023 [55]; Rodríguez-Rivera et al., 2023 [56]; Kurien et al., 2021 [57] ; Sharma et al., 2024 [58]; Xiang et al., 2023 [59] |
Topoclimate | Brazil | Tourne et al., 2016 [60] | ||
Alpine forest drought monitoring | Austria | Lewinska et al., 2016 [61] | ||
Site factors as predictors for Pinus halepensis Mill. productivity | Spain | Bueis et al., 2017 [62] | ||
Dynamics of Pinus halepensis Mill. and Pinus sylvestris L. plantations | Spain | Bueis Mellado, 2017 [63] | ||
8 | Forest damages | Forest fires | General; Brazil | Wu et al., 2020 [64]; Wang et al., 2021 [65] |
Invasive species | General; Canada | Peerbhay et al., 2015 [66]; Baron and Rubin, 2021 [67] | ||
Bird response to forest disturbance | Czech Republic | Kebrle et al., 2022 [68] | ||
9 | Forest ecosystem services | Socio-environmental determinants | Ethiopia | Mengist et al., 2022 [69] |
Determining forest areas with recreational potential | Turkey | Diktaş Bulut, 2018 [70] | ||
10 | Forest management | Sustainable forestry | Hong Kong | Zhang and Jim, 2013 [71] |
Forest indicators | Italy | Salvati et al., 2017 [72] | ||
State forest organizations | Europe | Liubachyna et al., 2017 [73] | ||
11 | Forest structure | Landscape ecology metrics | general | Venema et al., 2005 [74] |
Mixed stands | Brazil; Romania | de Souza et al., 2020 [75]; Murariu et al., 2021 [76] | ||
12 | Forest types | Natural forests | China | Qu et al., 2024 [77]; Chen et al., 2025 [78] |
Species association in a broadleaf forest | Romania | Palaghianu and Coșofreț, 2023 [79] | ||
Comparison between paired plantations versus natural forests | China | Yang et al., 2022 [80] | ||
13 | Genetics | Cinnamomum camphora chemotypes | China | Guo et al., 2017 [81] |
Willow, Pinus clones | Slovenia; China | Sandak and Sandak, 2011 [82]; Mu et al., 2024 [83] | ||
Intraspecific leaf morphological variation | China | Yang et al., 2022 [80] | ||
Norway spruce (Picea abies L.) provenances | Slovakia | Jamnická et al., 2019 [84] | ||
14 | Satellite images, remote sensing | Monitoring forest harvest | USA | Pangaribuan et al., 1997 [85] |
Plantation monitoring | Lao People’s Democratic Republic | Phompila et al., 2014 [86] | ||
Monitoring tree mortality | Ukraine | Skydan et al., 2022 [87] | ||
Leaf reflectance spectra | general | Song et al., 2020 [88] | ||
Vegetation classification | Russia; Iran; Italy | Yancovich et al., 2019 [89]; Oladi et al., 2010 [90]; Pesaresi et al., 2024 [91]; Sa et al., 2023 [92] | ||
15 | Urban forests | Peri-urban forests in Beijing | China | Cao et al., 2022 [93] |
Site conservation | Singapore | Hwang and Roscoe, 2017 [94] | ||
Monitoring of urban forest | Croatia | Krtalic et al., 2021 [95] | ||
Identifying urban tree species | USA | Pu and Liu, 2011 [96] | ||
16 | Vegetation restauration | Carbon pools | China | Feng et al., 2024 [97]; Ju et al., 2024 [98] |
Blanket mire | Ireland | Cooper et al., 2001 [99] | ||
17 | Wood anatomy | Genus Maytenus | Argentina | Gimenez et al., 2014 [100] |
Thermal behavior of wood from energy plantation | Hungary; Senegal | Meszaros et al., 2004 [101]; Nganko et al., 2024 [102] | ||
Wood density and fiber dimensions of the Persian oak wood | Iran | Nazari et al., 2020 [103] | ||
Basic density of Eucalyptus grandis wood chips | Brazil | de Medeiros et al., 2024 [104] | ||
Near-infrared spectroscopy | Brazil; India | Ramalho et al., 2017 [105]; Sharma et al., 2024 [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murariu, G.; Dinca, L.; Munteanu, D. Trends and Applications of Principal Component Analysis in Forestry Research: A Literature and Bibliometric Review. Forests 2025, 16, 1155. https://doi.org/10.3390/f16071155
Murariu G, Dinca L, Munteanu D. Trends and Applications of Principal Component Analysis in Forestry Research: A Literature and Bibliometric Review. Forests. 2025; 16(7):1155. https://doi.org/10.3390/f16071155
Chicago/Turabian StyleMurariu, Gabriel, Lucian Dinca, and Dan Munteanu. 2025. "Trends and Applications of Principal Component Analysis in Forestry Research: A Literature and Bibliometric Review" Forests 16, no. 7: 1155. https://doi.org/10.3390/f16071155
APA StyleMurariu, G., Dinca, L., & Munteanu, D. (2025). Trends and Applications of Principal Component Analysis in Forestry Research: A Literature and Bibliometric Review. Forests, 16(7), 1155. https://doi.org/10.3390/f16071155