The Pyrogeography of the Gran Chaco’s Dry Forest: A Comparison of Clustering Algorithms and the Scale of Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Preparation
2.4. Data Analysis
3. Results and Discussion
3.1. Gaussian Mixture Model and K-Means Cluster Analysis at Different Scales
3.2. Pyroregions at 25 Km Scale
3.3. Limitations and Future Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Preliminary Results of Cluster Analysis with PAM Algorithm (Partition Around Medoids)
- (i)
- FLL: Frequent, large, and low-intensity fires;
- (ii)
- OMI: Occasional, medium-sized, and intense fires;
- (iii)
- RSL: Rare, small, and low-intensity fires.
References
- Bowman, D.M. What is the relevance of pyrogeography to the Anthropocene? Anthr. Rev. 2015, 2, 73–76. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; Van Der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Climate Change and Future Fire Regimes: Examples from California. Geosciences 2016, 6, 37. [Google Scholar] [CrossRef]
- Fusco, E.J.; Finn, J.T.; Balch, J.K.; Nagy, R.C.; Bradley, B.A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl. Acad. Sci. USA 2019, 116, 23594–23599. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Barber, C.P. Climate change, human land use and future fires in the Amazon. Glob. Change Biol. 2009, 15, 601–612. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Dorn, J.V.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires and global change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires as an ecosystem service. Front. Ecol. Environ. 2019, 17, 289–295. [Google Scholar] [CrossRef]
- Armenteras, D.; Dávalos, L.M.; Barreto, J.S.; Miranda, A.; Hernández-Moreno, A.; Zamorano-Elgueta, C.; González-Delgado, T.M.; Meza-Elizalde, M.C.; Retana, J. Fire-induced loss of the world’s most biodiverse forests in Latin America. Sci. Adv. 2021, 7, eabd3357. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Krebs, P.; Pezzatti, G.B.; Mazzoleni, S.; Talbot, L.M.; Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 2010, 129, 53–69. [Google Scholar] [CrossRef]
- Moreno, M.V.; Chuvieco, E. Characterising fire regimes in Spain from fire statistics. Int. J. Wildland Fire 2012, 22, 296–305. [Google Scholar] [CrossRef]
- Cattau, M.; Mahood, A.; Balch, J.; Wessman, C. Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States. Fire 2022, 5, 95. [Google Scholar] [CrossRef]
- Elia, M.; Giannico, V.; Ascoli, D.; Argañaraz, J.P.; D’eSte, M.; Spano, G.; Lafortezza, R.; Sanesi, G. Uncovering current pyroregions in Italy using wildfire metrics. Ecol. Process 2022, 11, 15. [Google Scholar] [CrossRef]
- Pausas, J.G. Pyrogeography across the western Palaearctic: A diversity of fire regimes. Glob. Ecol. Biogeogr. 2022, 31, 1923–1932. [Google Scholar] [CrossRef]
- Cunningham, C.X.; Williamson, G.J.; Nolan, R.H.; Teckentrup, L.; Boer, M.M.; Bowman, D.M.J.S. Pyrogeography in flux: Reorganization of Australian fire regimes in a hotter world. Glob. Change Biol. 2024, 30, e17130. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; O’Brien, J.A.; Goldammer, J.G. Pyrogeography and the Global Quest for Sustainable Fire Management. Annu. Rev. Environ. Resour. 2013, 38, 57–80. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Vidal-Riveros, C.; Reyes, W.J.W.; Bieng, M.A.N.; Souza-Alonso, P. Assessing Fire Regimes in the Paraguayan Chaco: Implications for Ecological and Fire Management. Fire 2024, 7, 347. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Xu, D.; Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data Sci. 2015, 2, 165–193. [Google Scholar] [CrossRef]
- Fréjaville, T.; Curt, T. Pyroclimatic classification of Mediterranean and mountain landscapes of south-eastern France. In Advances in Forest Fire Research; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; pp. 1249–1255. [Google Scholar] [CrossRef]
- Galizia, L.F.; Curt, T.; Barbero, R.; Rodrigues, M. Understanding fire regimes in Europe. Int. J. Wildland Fire 2021, 31, 56–66. [Google Scholar] [CrossRef]
- Pais, C.; Gonzalez-Olabarria, J.R.; Moudio, P.E.; Garcia-Gonzalo, J.; González, M.C.; Shen, Z.-J.M. Global scale coupling of pyromes and fire regimes. Commun. Earth Environ. 2023, 4, 267. [Google Scholar] [CrossRef]
- Conedera, M.; Krebs, P.; Valese, E.; Cocca, G.; Schunk, C.; Menzel, A.; Vacik, H.; Cane, D.; Japelj, A.; Muri, B.; et al. Characterizing Alpine pyrogeography from fire statistics. Appl. Geogr. 2018, 98, 87–99. [Google Scholar] [CrossRef]
- García, M.; Pettinari, M.L.; Chuvieco, E.; Salas, J.; Mouillot, F.; Chen, W.; Aguado, I. Characterizing Global Fire Regimes from Satellite-Derived Products. Forests 2022, 13, 699. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- The Nature Conservancy (TNC), Fundación Vida Silvestre Argentina (FVSA), Fundación para el Desarrollo Sustentable del Chaco (DeSdel Chaco), and Wildife Conservation Society Bolivia (WCS). Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecoregional Assessment; Fundación Vida Silvestre Argentina: Buenos Aires, Argentina, 2005; Available online: https://wwfar.awsassets.panda.org/downloads/dossier.pdf (accessed on 19 May 2021).
- Naumann, M. Atlas del Gran Chaco Sudamericano. Sociedad Alemana de Cooperación Técnica (GTZ), 2nd ed.; ErreGé & Asoc.: Buenos Aires, Argentina, 2006. [Google Scholar]
- Oyarzabal, M.; Clavijo, J.; Oakley, L.; Biganzoli, F.; Tognetti, P.; Barberis, I.; Maturo, H.M.; Aragón, R.; Campanello, P.I.; Prado, D.; et al. Unidades de vegetación de la Argentina. Ecol. Austral 2018, 28, 40–63. [Google Scholar] [CrossRef]
- Bravo, S.; Kunst, C.; Gimenez, A.; Moglia, G. Fire regime of a Elionorus muticus Spreng. savanna, western Chaco region, Argentina. Int. J. Wildland Fire 2001, 10, 65–72. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Pizarro, G.G.; Zak, M.; Bellis, L.M. Fire Regime, Climate, and Vegetation in the Sierras de Córdoba, Argentina. Fire Ecol. 2015, 11, 55–73. [Google Scholar] [CrossRef]
- Martín, R.S.; Ottlé, C.; Sörensson, A. Fires in the South American Chaco, from dry forests to wetlands: Response to climate depends on land cover. Fire Ecol. 2023, 19, 57. [Google Scholar] [CrossRef]
- Vidal-Riveros, C.; Souza-Alonso, P.; Bravo, S.; Laino, R.; Bieng, M.A.N. A review of wildfires effects across the Gran Chaco region. For. Ecol. Manag. 2023, 549, 121432. [Google Scholar] [CrossRef]
- Cavallero, L.; Peinetti, R.; López, D.R. Incidencia de fuegos en la Argentina durante las últimas dos décadas y su asociación con coberturas y usos del suelo en distintos contextos ambientales. Ecol. Austral 2023, 33, 773–797. [Google Scholar] [CrossRef]
- Bachmann, L.; Daniele, C.; Mereb, J.; Frassetto, A. Identificación Expeditiva de los Principales Problemas Ambientales en el Gran Chaco Argentino; UBA—Instituto de Geografía: Buenos Aires, Argentina, 2007. [Google Scholar]
- Adámoli, J.; Ginzburg, R.; Torrella, S. Escenarios Productivos y Ambientales del Chaco Argentino: 1977-2010; Fundación Producir Conservando: Buenos Aires, Argentina, 2011. [Google Scholar]
- Kunst, C.; Bravo, S.; Ledesma, R.; Navall, M.; Anríquez, A.; Coria, D.; Silberman, J.; Gómez, A.; Albanesi, A. Ecology and Management of the Dry Forests and Savannas of the Western Chaco Region, Argentina. In Dry Forests: Ecology, Species Diversity and Sustainable Management; NOVA: Rehovot, Israel, 2014; pp. 132–163. [Google Scholar]
- De Marzo, T.; Pflugmacher, D.; Baumann, M.; Lambin, E.F.; Gasparri, I.; Kuemmerle, T. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102310. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Altrichter, M.; Baldi, G.; Cabido, M.; Camino, M.; Cuellar, E.; Cuellar, R.L.; Decarre, J.; Díaz, S.; Gasparri, I.; et al. Forest conservation: Remember Gran Chaco. Science 2017, 355, 465. [Google Scholar] [CrossRef]
- Speranza, F.C. Variabilidad Paleoclimática y Cambios Paleoambientales en la Región Chaqueña Semiárida Argentina. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2020. Available online: https://www.tdx.cat/handle/10803/670872#page=3 (accessed on 20 June 2025).
- Kunst, C. Ecología y uso del fuego en la región chaqueña argentina: Una revisión. Boletín Del CIDEU 2011, 10, 81–105. [Google Scholar]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Mahood, A.L.; Lindrooth, E.J.; Cook, M.C.; Balch, J.K. Country-level fire perimeter datasets (2001–2021). Sci. Data 2022, 9, 458. [Google Scholar] [CrossRef]
- Mahood, A. FIRED. Earth Lab Data, CU Scholar. 2022. Available online: https://scholar.colorado.edu/collections/pz50gx05h?utf8=%E2%9C%93&cq=Argentina&sort= (accessed on 14 November 2021).
- Markham, C.G. Seasonality of Precipitation in the United States. Ann. Assoc. Am. Geogr. 1970, 60, 593–597. [Google Scholar] [CrossRef]
- Dong, B.; Li, H.; Xu, J.; Han, C.; Zhao, S. Spatiotemporal Analysis of Forest Fires in China from 2012 to 2021 Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires. Sustainability 2023, 15, 9532. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef]
- Forkel, M.; Dorigo, W.; Lasslop, G.; Teubner, I.; Chuvieco, E.; Thonicke, K. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geosci. Model Dev. 2017, 10, 4443–4476. [Google Scholar] [CrossRef]
- Jiménez-Ruano, A.; Mimbrero, M.R.; De La Riva Fernández, J. Exploring spatial–temporal dynamics of fire regime features in mainland Spain. Nat. Hazards Earth Syst. Sci. 2017, 17, 1697–1711. [Google Scholar] [CrossRef]
- Iglesias, V.; Balch, J.K.; Travis, W.R. U.S. fires became larger, more frequent, and more widespread in the 2000s. Sci. Adv. 2022, 8, eabc0020. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef]
- Gincheva, A.; Pausas, J.G.; Torres-Vázquez, M.Á.; Bedia, J.; Vicente-Serrano, S.M.; Abatzoglou, J.T.; Sánchez-Espigares, J.A.; Chuvieco, E.; Jerez, S.; Provenzale, A.; et al. The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers. Earths Future 2024, 12, e2023EF004334. [Google Scholar] [CrossRef]
- Meneses, O.M.; Ribeiro, N.S.; Shirvani, Z.; Andrew, S.M. Spatio-Temporal Analysis of Wildfire Regimes in Miombo of the LevasFlor Forest Concession, Central Mozambique. Fire 2024, 7, 264. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Hall, J.V. MODIS Collection 6 Active Fire Product User’s Guide Revision B; NASA: Washington, DC, USA, 2018; Available online: https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_B.pdf (accessed on 26 November 2024).
- Smith, A.M.S.; Wooster, M.J. Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations. Int. J. Wildland Fire 2005, 14, 249–254. [Google Scholar] [CrossRef]
- Le Page, Y.; Oom, D.; Silva, J.M.N.; Jönsson, P.; Pereira, J.M.C. Seasonality of vegetation fires as modified by human action: Observing the deviation from eco-climatic fire regimes. Glob. Ecol. Biogeogr. 2010, 19, 575–588. [Google Scholar] [CrossRef]
- Scrucca, L.; Fop, M.; Brendan, T.M.; Raftery, A.E. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R J. 2016, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 1977, 39, 1–22. [Google Scholar] [CrossRef]
- McLachlan, G.; Peel, D. Finite Mixture Models, 1st ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Fraley, C.; Raftery, A.E. Model-Based Clustering, Discriminant Analysis, and Density Estimation. J. Am. Stat. Assoc. 2002, 97, 611–631. [Google Scholar] [CrossRef]
- Van Craenendonck, T.; Blockeel, H. Using Internal Validity Measures to Compare Clustering Algorithms. Presented at the International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Handl, J.; Knowles, J.; Kell, D.B. Computational cluster validation in post-genomic data analysis. Bioinformatics 2005, 21, 3201–3212. [Google Scholar] [CrossRef]
- Naval-Fernández, M.C.; Albornoz, J.; Bellis, L.M.; Baldini, C.; Arcamone, J.; Silvetti, L.; Álvarez, M.P.; Argañaraz, J.P. Megaincendios 2020 en Córdoba: Incidencia del fuego en áreas de valor ecológico y socioeconómico. Ecol. Austral 2023, 33, 136–151. [Google Scholar] [CrossRef]
- Mayr, M.J.; Vanselow, K.A.; Samimi, C. Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecol. Indic. 2018, 91, 324–337. [Google Scholar] [CrossRef]
- Paritsis, J.; Veblen, T.T.; Holz, A. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J. Veg. Sci. 2015, 26, 89–101. [Google Scholar] [CrossRef]
- Tálamo, A.; Caziani, S.M. Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. For. Ecol. Manag. 2003, 184, 79–92. [Google Scholar] [CrossRef]
- Linley, G.D.; Jolly, C.J.; Doherty, T.S.; Geary, W.L.; Armenteras, D.; Belcher, C.M.; Bird, R.B.; Duane, A.; Fletcher, M.; Giorgis, M.A.; et al. What do you mean, ‘megafire’? Glob. Ecol. Biogeogr. 2022, 31, 1906–1922. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Cingolani, A.M.; Bellis, L.M.; Giorgis, M. Fire incidence along an elevation gradient in the mountains of central Argentina. Ecol. Austral 2020, 30, 268–281. [Google Scholar] [CrossRef]
- Renison, D.; Cingolani, A.M.; Suarez, R. Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Rev. Chil. Hist. Nat. 2002, 75, 719–727. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Landi, M.A.; Scavuzzo, C.M.; Bellis, L.M. Determining fuel moisture thresholds to assess wildfire hazard: A contribution to an operational early warning system. PLoS ONE 2018, 13, e0204889. [Google Scholar] [CrossRef]
- Kunst, C.; Navall, M.; Ledesma, R.; Silberman, J.; Anríquez, A.; Coria, D.; Bravo, S.; Gómez, A.; Albanesi, A.; Grasso, D.; et al. Silvopastoral Systems in the Western Chaco Region, Argentina. In Silvopastoral Systems in Southern South America; Peri, P.L., Dube, F., Varella, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 63–87. [Google Scholar] [CrossRef]
- Zamboni, P.; Parmuchi, M.G.; Zacconi, G. Informe de Superficies Afectadas por Incendios en el Delta e Islas del Río Paraná (Territorio PIECAS-DP)-Segunda Parte-Implicancias en los Humedales; Ministerio de Ambiente y Desarrollo Sostenible de la Nación: Buenos Aires, Argentina, 2021; Available online: https://www.argentina.gob.ar/sites/default/files/2020/12/informe_aq_piecas_2020_30-9-21_final_revisada.pdf (accessed on 13 November 2024).
- Saucedo, G.I.; Perucca, A.R.; Kurtz, D.B. Las causas de los incendios de principios del año 2022 en la provincia de Corrientes. Ecol. Austral 2023, 33, 273–284. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Menor, I.O.; Prat-Guitart, N.; Spadoni, G.L.; Hsu, A.; Fernandes, P.M.; Puig-Gironès, R.; Ascoli, D.; Bilbao, B.A.; Bacciu, V.; Brotons, L.; et al. Integrated fire management as an adaptation and mitigation strategy to altered fire regimes. Commun. Earth Environ. 2025, 6, 202. [Google Scholar] [CrossRef] [PubMed]
- Armenteras, D.; de la Barrera, F. Landscape management is urgently needed to address the rise of megafires in South America. Commun. Earth Environ. 2023, 4, 305. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Swain, D.L.; Abatzoglou, J.T.; Kolden, C.; Shive, K.; Kalashnikov, D.A.; Singh, D.; Smith, E. Climate change is narrowing and shifting prescribed fire windows in western United States. Commun. Earth Environ. 2023, 4, 340. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Gordon, C.E.; Nolan, R.H.; Boer, M.M.; Bendall, E.R.; Williamson, J.S.; Price, O.F.; Kenny, B.J.; Taylor, J.E.; Denham, A.J.; Bradstock, R.A. Severe and Short Interval Fires Rearrange Dry Forest Fuel Arrays in South-Eastern Australia. Fire 2024, 7, 130. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Bellis, L.M. Evaluation of Burn Severity for the Fires of 2020 in the Mountains of Córdoba: Integration of Field and Remote Sensing Data. In Proceedings of the 2021 XIX Workshop on Information Processing and Control (RPIC), San Juan, Argentina, 3–5 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human Influence on California Fire Regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Loehman, R.A.; Reinhardt, E.; Riley, K.L. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees—A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For. Ecol. Manag. 2014, 317, 9–19. [Google Scholar] [CrossRef]
Clustering Algorithm and Grid Scale (km) | Internal Validation Index | Optimal Number of Clusters | |
---|---|---|---|
GMM | Connectivity | Dunn index | Based on BIC |
5 | 7750.7070 | 0.0134 | 9 |
10 | 2124.4070 | 0.0177 | 7 |
25 | 494.5726 | 0.0181 | 6 |
K-means | Connectivity | Dunn index | Based on the Connectivity and Dunn indices |
5 | 1327.0380 | 0.03246 | 2 and 10 |
10 | 649.8726 | 0.0312 | 2 and 9 |
25 | 178.0877 | 0.0644 | 2 and 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naval-Fernández, M.C.; Elia, M.; Giannico, V.; Bellis, L.M.; Bravo, S.J.; Argañaraz, J.P. The Pyrogeography of the Gran Chaco’s Dry Forest: A Comparison of Clustering Algorithms and the Scale of Analysis. Forests 2025, 16, 1114. https://doi.org/10.3390/f16071114
Naval-Fernández MC, Elia M, Giannico V, Bellis LM, Bravo SJ, Argañaraz JP. The Pyrogeography of the Gran Chaco’s Dry Forest: A Comparison of Clustering Algorithms and the Scale of Analysis. Forests. 2025; 16(7):1114. https://doi.org/10.3390/f16071114
Chicago/Turabian StyleNaval-Fernández, María Cecilia, Mario Elia, Vincenzo Giannico, Laura Marisa Bellis, Sandra Josefina Bravo, and Juan Pablo Argañaraz. 2025. "The Pyrogeography of the Gran Chaco’s Dry Forest: A Comparison of Clustering Algorithms and the Scale of Analysis" Forests 16, no. 7: 1114. https://doi.org/10.3390/f16071114
APA StyleNaval-Fernández, M. C., Elia, M., Giannico, V., Bellis, L. M., Bravo, S. J., & Argañaraz, J. P. (2025). The Pyrogeography of the Gran Chaco’s Dry Forest: A Comparison of Clustering Algorithms and the Scale of Analysis. Forests, 16(7), 1114. https://doi.org/10.3390/f16071114