Integrated Measurements for Precision Forestry
Funding
Conflicts of Interest
References
- Zhang, B.; Liu, G.; Feng, Z.; Zhang, M.; Ma, T.; Zhao, X.; Su, Z.; Zhang, X. Constructing a Model of Poplus spp. Growth Rate Based on the Model Fusion and Analysis of Its Growth Rate Differences and Distribution Characteristics under Different Classes of Environmental Indicators. Forests 2023, 14, 2073. [Google Scholar] [CrossRef]
- Qian, J.; Bai, D.; Jiao, W.; Jiang, L.; Xu, R.; Lin, H.; Wang, T. A high-precision ensemble model for forest fire detection in large and small targets. Forests 2023, 14, 2089. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Y.; Ma, T.; Sun, L.; Yang, X.; Li, X.; Wang, A.; Wang, Z. Conservation effectiveness assessment of the three northern protection forest project area. Forests 2023, 14, 2121. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, D.; Feng, Z.; Li, X.; Li, X. Spatiotemporal patterns and risk zoning of wildfire occurrences in Northeast China from 2001 to 2019. Forests 2023, 14, 2350. [Google Scholar] [CrossRef]
- Shao, Y.; Zhu, Q.; Feng, Z.; Sun, L.; Yue, P.; Wang, A.; Zhang, X.; Su, Z. Utilizing Grid Data and Deep Learning for Forest Fire Occurrences and Decision Support: A Case Study in the Ningxia Hui Autonomous Region. Forests 2023, 14, 2418. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, J.; Liu, M.; Xie, G. Predicting Sub-Forest Type Transition Characteristics Using Canopy Density: An Analysis of the Ganjiang River Basin Case Study. Forests 2024, 15, 274. [Google Scholar] [CrossRef]
- Xu, B.; Feng, Z.; Chen, Y.; Zhou, Y.; Shao, Y.; Wang, Z. Assessing the distribution and driving effects of net primary productivity along an elevation gradient in subtropical regions of China. Forests 2024, 15, 340. [Google Scholar] [CrossRef]
- Yao, X.; Lin, H.; Bai, D.; Zhou, H. A small target tea leaf disease detection model combined with transfer learning. Forests 2024, 15, 591. [Google Scholar] [CrossRef]
- Hai, Q.; Han, X.; Vandansambuu, B.; Bao, Y.; Gantumur, B.; Bayarsaikhan, S.; Chantsal, N.; Sun, H. Predicting the Occurrence of Forest Fire in the Central-South Region of China. Forests 2024, 15, 844. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, X.; Pan, X.; Ma, T.; Feng, Z.; Schmullius, C. Exploring a New Physical Scenario of Virtual Water Molecules in the Application of Measuring Virtual Trees Using Computational Virtual Measurement. Forests 2024, 15, 880. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Z.; Wang, L.; Wang, S.; Liu, K. Improving the Site Index and Stand Basal Area Model of Picea asperata Mast. by Considering Climate Effects. Forests 2024, 15, 1076. [Google Scholar] [CrossRef]
- Wang, C.; Yin, Z.; Luo, R.; Qian, J.; Fu, C.; Wang, Y.; Xie, Y.; Liu, Z.; Qiu, Z.; Pei, H. Spatiotemporal Evolution and Impact Mechanisms of Areca Palm Plantations in China (1987–2022). Forests 2024, 15, 1679. [Google Scholar] [CrossRef]
- Guan, T.; Shen, Y.; Wang, Y.; Zhang, P.; Wang, R.; Yan, F. Advancing Forest Plot Surveys: A Comparative Study of Visual vs. LiDAR SLAM Technologies. Forests 2024, 15, 2083. [Google Scholar] [CrossRef]
- Ma, T.; Luo, T.; Feng, Z.; Yu, Z.; An, J.; Wang, S.; Hu, L.; Shao, Y.; Zhang, B. Radial Growth Responses of Sabina chinensis (L.) Ant. cv. Kaizuca to Climate Shifts in the Northern Transition Zones of the Yangtze River Delta (YRD) Coastal Region. Forests 2025, 16, 433. [Google Scholar] [CrossRef]
- Huang, S.; Chu, C.; Kang, Q.; Li, Y.; Liang, Y.; Li, R.; Wang, J. Response of Spring Phenology to Pre-Seasonal Diurnal Warming in Deciduous Broad-Leaved Forests of Northern China. Forests 2025, 16, 638. [Google Scholar] [CrossRef]
- Ma, E.; Feng, Z.; Chen, P.; Wang, L. Spatiotemporal Dynamics of Forest Vegetation in Northern China and Their Responses to Climate Change. Forests 2025, 16, 671. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, W.; Liu, J.; Wang, Z.; Borz, S.A. Integrated Measurements for Precision Forestry. Forests 2025, 16, 1099. https://doi.org/10.3390/f16071099
Wang J, Xu W, Liu J, Wang Z, Borz SA. Integrated Measurements for Precision Forestry. Forests. 2025; 16(7):1099. https://doi.org/10.3390/f16071099
Chicago/Turabian StyleWang, Jia, Weiheng Xu, Jincheng Liu, Zhichao Wang, and Stelian Alexandru Borz. 2025. "Integrated Measurements for Precision Forestry" Forests 16, no. 7: 1099. https://doi.org/10.3390/f16071099
APA StyleWang, J., Xu, W., Liu, J., Wang, Z., & Borz, S. A. (2025). Integrated Measurements for Precision Forestry. Forests, 16(7), 1099. https://doi.org/10.3390/f16071099