Quantifying the Independent and Interactive Effects of Environmental Drivers on Dry-Day Evapotranspiration Between Two Slope Positions in a Larch Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Hillslope Description
2.2. Meteorological and Soil Moisture Measurements
2.3. Evapotranspiration Component Measurements and Evapotranspiration Estimation
2.4. Evapotranspiration Model Coupled with Multifactorial Effects
2.5. Relative Contributions of Major Factors to Evapotranspiration
3. Results
3.1. Meteorological and Soil Moisture Variations at the Two Slope Positions
3.2. Variations in ETd at the Two Slope Positions
3.3. Impact of the Main Factors Controlling Evapotranspiration
3.4. Relative Contributions of the Main Controlling Factors at the Two Slope Positions
4. Discussion
4.1. General Response of Evapotranspiration to the Main Controlling Factors
4.2. Evapotranspiration Model Coupled with the Main Controlling Factors
4.3. Slope Differences and Contributions of Factors to Evapotranspiration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Gentine, P.; Yin, J.B.; Chen, L.J.; Chen, J.Y.; Li, L.H. Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces. Hydrol. Earth Syst. Sci. 2021, 25, 3805–3818. [Google Scholar] [CrossRef]
- Tsuruta, K.; Kosugi, Y.; Takanashi, S.; Tani, M. Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest. Hydrol. Process. 2016, 30, 5012–5026. [Google Scholar] [CrossRef]
- Liu, Z.B.; Yu, S.P.; Xu, L.H.; Wang, Y.H.; Yu, P.T.; Chao, Y. Differentiated responses of daytime and nighttime sap flow to soil water deficit in a larch plantation in Northwest China. Agric. Water Manag. 2023, 289, 108540. [Google Scholar] [CrossRef]
- Komatsu, H.; Kume, T. Modeling of evapotranspiration changes with forest management practices: A genealogical review. J. Hydrol. 2020, 585, 124835. [Google Scholar] [CrossRef]
- Fabiani, G.; Klaus, J.; Penna, D. The influence of hillslope topography on beech water use: A comparative study in two different climates. Hydrol. Earth Syst. Sci. 2024, 28, 2683–2703. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Benyon, R.G.; Lane, P.N. Responses of evapotranspiration at different topographic positions and catchment water balance following a pronounced drought in a mixed species eucalypt forest, Australia. J. Hydrol. 2012, 440, 62–74. [Google Scholar] [CrossRef]
- Tsuruta, K.; Yamamoto, H.; Kosugi, Y.; Makita, N.; Katsuyama, M.; Kosugi, K.; Tani, M. Slope position and water use by trees in a headwater catchment dominated by Japanese cypress: Implications for catchment-scale transpiration estimates. Ecohydrology 2020, 13, e2245. [Google Scholar] [CrossRef]
- Casirati, S.; Conklin, M.H.; Nandi, S.; Safeeq, M. Effect of forest management practices on water balance across a water–energy gradient in the upper Kings River Basin, USA. Ecohydrology 2025, 18, e2753. [Google Scholar] [CrossRef]
- Bonell, M. Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. J. Am. Water Resour. As. 1998, 34, 765–785. [Google Scholar] [CrossRef]
- Wolf, S.; Paul-limoges, E.; Sayler, D.; Kirchner, J.W. Dynamics of evapotranspiration from concurrent above- and below-canopy flux measurements in a montane Sierra Nevada forest. Agric. For. Meteorol. 2024, 346, 109864. [Google Scholar] [CrossRef]
- Inokoshi, S.; Gomi, T.; Chiu, C.; Onda, Y.; Hashimoto, A.; Zhang, Y.; Saitoh, T.M. A watershed-scale evapotranspiration model considering forest type, stand parameters, and climate factors. For. Ecol. Manag. 2023, 547, 121387. [Google Scholar] [CrossRef]
- Benyon, R.G.; Doody, T.M. Comparison of interception, forest floor evaporation and transpiration in Pinus radiata and Eucalyptus globulus plantations. Hydrol. Process. 2015, 29, 1173–1187. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.; Vaze, J.; Liu, C.M.; Lu, X.J.; Zheng, H.X.; Wang, Y.P.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef]
- Wen, R.H.; Qin, M.O.; Jiang, P.; Yang, F.; Liu, B.; Zhu, M.Y.; Fang, Y.; Tian, Y.C.; Shang, B. Vegetation and evapotranspiration responses to increased atmospheric vapor pressure deficit across the global forest. Atmosphere 2024, 15, 408. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Xu, D.; Liu, Y.; Li, F.S.; Cai, J.B.; Du, L.J. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agric. For. Meteorol. 2016, 216, 1–12. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Scott, R.L.; Knowles, J.F.; Nelson, J.A.; Gentine, P.; Li, X.; Barron-Gafford, G.; Bryant, R.; Biederman, J.A. Water availability impacts on evapotranspiration partitioning. Agric. For. Meteorol. 2021, 297, 108251. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- A, Y.L.; Wang, G.Q.; Liu, T.X.; Xue, B.L.; Kuczera, G. Spatial variation of correlations between vertical soil water and evapotranspiration and their controlling factors in a semi-arid region. J. Hydrol. 2019, 574, 53–63. [Google Scholar] [CrossRef]
- Donaldson, A.; Dralle, D.; Barling, N.; Callahan, R.P.; Loik, M.E.; Zimmer, M. Aspect differences in vegetation type drive higher evapotranspiration on a pole-facing slope in a California Oak Savanna. J. Geophys. Res.-Biogeo. 2024, 129, e2024JG008054. [Google Scholar] [CrossRef]
- Lin, P.F.; Zhao, P.; Ma, J.; Yang, J.J.; Zhu, X.; Tian, Q.Y.; Du, J.; Chen, L.F.; He, Z.B. Modulation of evapotranspiration and stream runoff by weathered bedrock in arid and semi-arid mountains. Sci. Total Environ. 2024, 930, 172847. [Google Scholar] [CrossRef]
- Wang, H.L.; Guan, H.D.; Xu, X.; Gao, L.M.; Gutiérrez-Jurado, H.A.; Simmons, G.T.; Simmons, C.T. Topographic regulations on ecohydrological dynamics in a montane forest catchment and the implications for plant adaptation to environment. J. Hydrol. 2024, 637, 131412. [Google Scholar] [CrossRef]
- Xu, M.J.; An, T.T.; Zheng, Z.Y.; Zhang, T.; Zhang, Y.J.; Yu, G.R. Variability in evapotranspiration shifts from meteorological to biological control under wet versus drought conditions in an alpine meadow. J. Plant Ecol. 2022, 15, 921–932. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Tian, W.; Tian, J.; He, C. Contribution of climate change and vegetation restoration to interannual variability of evapotranspiration in the agro-pastoral ecotone in northern China. Ecol. Indic. 2023, 154, 110485. [Google Scholar] [CrossRef]
- da Silva, J.B.; Valle, L.C.G., Jr.; Faria, T.O.; Marques, J.B.; Dalmagro, H.J.; Nogueira, J.S.; Vourlitis, G.L.; Rodrigues, T.R. Temporal variability in evapotranspiration and energy partitioning over a seasonally flooded scrub forest of the Brazilian Pantanal. Agric. For. Meteorol. 2021, 308, 108559. [Google Scholar] [CrossRef]
- Fabiani, G.; Schoppach, R.; Penna, D.; Klaus, J. Transpiration patterns and water use strategies of beech and oak trees along a hillslope. Ecohydrology 2022, 15, e2382. [Google Scholar] [CrossRef]
- Li, H.X.; Zhou, H.Y.; Wei, X.H.; Liang, Z.X.; Liu, S.J.; Huang, J.G. The impact of slope positions on stand transpiration of a Zenia insignis plantation in North Guangdong Province, South China. Desalin. Water Treat. 2021, 219, 164–171. [Google Scholar] [CrossRef]
- Yang, F.L.; Zhou, G.S. Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China. J. Hydrol. 2011, 396, 139–147. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Liu, Z.B.; Yu, S.P.; Xu, L.H.; Wang, Y.H.; Wang, M.F.; Yu, P.T. Spatiotemporal variations in sap flow in a larch plantation: Sampling size for stand scale estimates. J. Forestry Res. 2024, 35, 139. [Google Scholar] [CrossRef]
- Han, C.; Chen, N.; Zhang, C.K.; Liu, Y.J.; Khan, S.; Lu, K.L.; Li, Y.G.; Dong, X.X.; Zhao, C.M. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong mountain, northwestern China. For. Ecol. Manag. 2019, 451, 117519. [Google Scholar] [CrossRef]
- Flo, V.; Martinez-Vilalta, J.; Steppe, K.; Schuldt, B.; Poyatos, R. A synthesis of bias and uncertainty in sap flow methods. Agric. For. Meteorol. 2019, 271, 362–374. [Google Scholar] [CrossRef]
- Jiao, L.; Lu, N.; Fang, W.; Li, Z.; Wang, J.; Jin, Z. Determining the independent impact of soil water on forest transpiration: A case study of a black locust plantation in the Loess Plateau, China. J. Hydrol. 2019, 572, 671–681. [Google Scholar] [CrossRef]
- Schmidt, U.; Thöni, H.; Kaupenjohann, M. Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutr. Cycl. Agroecosys. 2000, 57, 119–129. [Google Scholar] [CrossRef]
- Waseem, M.; Mani, N.; Andiego, G.; Usman, M. A review of criteria of fit for hydrological models. Int. Res. J. Eng. Technol. 2017, 4, 1765–1772. [Google Scholar]
- Du, M.C.; Zhang, J.Y.; Wang, Y.; Liu, H.W.; Wang, Z.L.; Liu, C.S.; Yang, Q.L.; Hu, Y.S.; Bao, Z.X.; Liu, Y.L.; et al. Evaluating the contribution of different environmental drivers to changes in evapotranspiration and soil moisture, a case study of the Wudaogou Experimental Station. J. Contam. Hydrol. 2021, 243, 103912. [Google Scholar] [CrossRef]
- Han, X.S.; Wang, Y.H.; Li, Z.H.; Wang, Y.B.; Yu, P.T.; Xiong, W. Daily forest floor evapotranspiration of Larix principis-rupprechtii plantation and its influencing factors in the semi-arid area of Liupan Mountains. Sci. Silvae Sin. 2019, 55, 11–21. (In Chinese) [Google Scholar]
- da Silva, I.W.; Marques, T.V.; Urbano, S.A.; Mendes, K.R.; Oliveira, A.C.C.; Nascimento, F.D.S.; de Morais, L.F.; Pereira, W.D.S.; Mutti, P.R.; Neto, J.V.E.; et al. Meteorological and biophysical controls of evapotranspiration in tropical grazed pasture under rainfed conditions. Agr. Water Manag. 2024, 299, 108884. [Google Scholar] [CrossRef]
- Broughton, K.J.; Conaty, W.C. Understanding and exploiting transpiration response to vapor pressure deficit for water limited environments. Front. Plant. Sci. 2022, 13, 893994. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Bunting, D.P.; Kurc, S.A.; Glenn, E.P.; Nagler, P.L.; Scott, R.L. Insights for empirically modeling evapotranspiration influenced by riparian and upland vegetation in semiarid regions. J. Arid Environ. 2014, 111, 42–52. [Google Scholar] [CrossRef]
- Sawano, S.; Hotta, N.; Tanaka, N.; Tsuboyama, Y.; Suzuki, M. Development of a simple forest evapotranspiration model using a process-oriented model as a reference to parameterize data from a wide range of environmental conditions. Ecol. Model. 2015, 309–310, 93–109. [Google Scholar] [CrossRef]
- Marques, T.V.; Mendes, K.; Mutti, P.; Medeiros, S.; Silva, L.; Perez-Marin, A.M.; Campos, S.; Lúcio, P.S.; Lima, K.; dos Reis, J.; et al. Environmental and biophysical controls of evapotranspiration from seasonally dry tropical forests (Caatinga) in the Brazilian semiarid. Agric. For. Meteorol. 2020, 287, 107957. [Google Scholar] [CrossRef]
- Niu, X.D.; Chen, Z.C.; Pang, Y.; Niu, B.L.; Yan, C.Y.; Liu, S.R. Environmental and biological controls on the interannual variations of evapotranspiration in a natural oak forest. Agric. For. Meteorol. 2024, 349, 109969. [Google Scholar] [CrossRef]
- Liu, C.; Sun, G.; McNulty, S.G.; Kang, S. An improved evapotranspiration model for an apple orchard in northwestern China. Trans. ASABE 2015, 58, 1253–1264. [Google Scholar]
- Amenu, G.G.; Kumar, P. A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrol. Earth Syst. Sci. 2008, 12, 55–74. [Google Scholar] [CrossRef]
- Song, L.N.; Zhu, J.J.; Zheng, X.; Wang, K.; Lü, L.Y.; Zhang, X.L.; Hao, G.Y. Transpiration and canopy conductance dynamics of Pinus sylvestris var. mongolica in its natural range and in an introduced region in the sandy plains of Northern China. Agric. For. Meteorol. 2020, 281, 107830. [Google Scholar] [CrossRef]
- Fetzer, T.; Vanderborght, J.; Mosthaf, K.; Smits, K.M.; Helmig, R. Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis. Water Resour. Res. 2017, 53, 1080–1100. [Google Scholar] [CrossRef]
- Di, N.; Wang, Y.; Clothier, B.; Liu, Y.; Jia, L.M.; Xi, B.Y.; Shi, H.X. Modeling soil evaporation and the response of the crop coefficient to leaf area index in mature Populus tomentosa plantations growing under different soil water availabilities. Agric. For. Meteorol. 2019, 264, 125–137. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Huang, M.B. Spatial variability and temporal stability of actual evapotranspiration on a hillslope of the Chinese Loess Plateau. J. Arid Land 2021, 13, 189–204. [Google Scholar] [CrossRef]
- Metzen, D.; Sheridan, G.J.; Benyon, R.G.; Bolstad, P.V.; Griebel, A.; Lane, P.N. Spatio-temporal transpiration patterns reflect vegetation structure in complex upland terrain. Sci. Total Environ. 2019, 694, 133551. [Google Scholar] [CrossRef]
- Lu, S.G.; Liu, M.X.; Yi, J.; Zhang, H.L.; Wan, J.H. Responses of soil moisture at different topographic positions to rainfall events along a steep subtropical forested hillslope. Hydrol. Process. 2024, 38, e15164. [Google Scholar] [CrossRef]
- Renner, M.; Hassler, S.K.; Blume, T.; Weiler, M.; Hildebrandt, A.; Guderle, M.; Schymanski, S.J.; Kleidon, A. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits. Hydrol. Earth Syst. Sci. 2016, 20, 2063–2083. [Google Scholar] [CrossRef]
- Liu, W.N.; Nie, Y.P.; Luo, Z.D.; Wang, Z.Y.; Huang, L.; He, F.; Chen, H.S. Transpiration rates decline under limited moisture supply along hillslopes in a humid karst terrain. Sci. Total Environ. 2023, 894, 164977. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Downslope | Upslope |
---|---|---|
Elevation (m) | 2279 | 2472 |
Slope gradient (°) | 34 | 26 |
Stand density (stem·ha−1) | 933 | 944 |
Mean DBH (cm) | 18.9 ± 3.7 | 20.6 ± 4.0 |
Mean tree height (m) | 16.3 ± 3.5 | 16.9 ± 2.9 |
Mean leaf area index (m2·m−2) | 2.96 ± 0.40 | 3.59 ± 0.36 |
Soil depth (m) | 1.2 | 1.0 |
Soil bulk density (g·cm−3) | 1.10 | 0.94 |
Soil water holding capacity (%) | 33.5 | 37.7 |
Soil wilting point (%) | 17.6 | 15.5 |
Clay (%) | 13.1 | 11.6 |
Silt (%) | 62.1 | 66.4 |
Sand (%) | 24.8 | 22.0 |
Slope Position | Tree Code | DBH (cm) | Tree Height (m) | Sapwood Area (cm2) |
---|---|---|---|---|
Downslope | 1 | 12.9 | 13.9 | 72.5 |
2 | 14.5 | 14.5 | 87.2 | |
3 | 14.9 | 14.7 | 91.1 | |
4 | 19.2 | 16.4 | 136.0 | |
5 | 24.1 | 18.3 | 194.7 | |
6 | 28.2 | 19.9 | 249.6 | |
Upslope | 1 | 13.9 | 14.2 | 72.6 |
2 | 16.3 | 15.3 | 98.5 | |
3 | 19.0 | 16.4 | 132.2 | |
4 | 21.0 | 17.1 | 160.2 | |
5 | 24.2 | 18.0 | 210.4 | |
6 | 27.4 | 18.8 | 267.0 |
Month | Slope Position | Rs (w·m−2) | VPD (kPa) | SWC (cm3·cm−3) | ETd (mm·d−1) |
---|---|---|---|---|---|
July | Downslope | 193.9 ± 61.6 b | 0.57 ± 0.32 b | 0.27 ± 0.01 a | 2.35 ± 0.54 a |
Upslope | 222.1 ± 67.6 a | 0.75 ± 0.47 a | 0.25 ± 0.03 b | 2.35 ± 0.74 a | |
August | Downslope | 173.7 ± 62.9 b | 0.32 ± 0.14 b | 0.25 ± 0.02 a | 2.51 ± 0.52 a |
Upslope | 191.0 ± 64.7 a | 0.41 ± 0.26 a | 0.19 ± 0.02 b | 1.85 ± 0.53 b | |
September | Downslope | 136.7 ± 62.2 b | 0.28 ± 0.17 a | 0.19 ± 0.01 a | 1.94 ± 0.65 a |
Upslope | 147.1 ± 61.6 a | 0.31 ± 0.26 a | 0.16 ± 0.01 b | 1.28 ± 0.40 b |
Model Parameters | Value | P | R2 | NSE | n |
---|---|---|---|---|---|
a1 | 2.479 | <0.01 | 0.68 | 0.68 | 126 |
b1 | 6.880 | ||||
a2 | 0.058 | ||||
b2 | 3.188 | ||||
c2 | 0.002 | ||||
a3 | 16.641 | ||||
b3 | 2.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, M.; Liu, S.; Wang, Y.; Ma, J.; Xu, L.; Yu, P. Quantifying the Independent and Interactive Effects of Environmental Drivers on Dry-Day Evapotranspiration Between Two Slope Positions in a Larch Forest. Forests 2025, 16, 1035. https://doi.org/10.3390/f16071035
Liu Z, Wang M, Liu S, Wang Y, Ma J, Xu L, Yu P. Quantifying the Independent and Interactive Effects of Environmental Drivers on Dry-Day Evapotranspiration Between Two Slope Positions in a Larch Forest. Forests. 2025; 16(7):1035. https://doi.org/10.3390/f16071035
Chicago/Turabian StyleLiu, Zebin, Mengfei Wang, Shan Liu, Yanhui Wang, Jing Ma, Lihong Xu, and Pengtao Yu. 2025. "Quantifying the Independent and Interactive Effects of Environmental Drivers on Dry-Day Evapotranspiration Between Two Slope Positions in a Larch Forest" Forests 16, no. 7: 1035. https://doi.org/10.3390/f16071035
APA StyleLiu, Z., Wang, M., Liu, S., Wang, Y., Ma, J., Xu, L., & Yu, P. (2025). Quantifying the Independent and Interactive Effects of Environmental Drivers on Dry-Day Evapotranspiration Between Two Slope Positions in a Larch Forest. Forests, 16(7), 1035. https://doi.org/10.3390/f16071035