Monitoring Nitrogen Nutrition in Ginkgo Using Unmanned Aerial Vehicle RGB Imagery and the Gaussian Process Regression Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Plant Sampling and Nitrogen Analysis
2.4. UAV Image Data Acquisition and Processing
2.5. Model Construction and Testing
3. Results
3.1. Analysis of Nitrogen Accumulation and Nitrogen Content of Ginkgo bilobaUnder Different Nitrogen Application Levels
3.2. Correlation Analysis Between Image Features and Nitrogen Accumulation and Content in Ginkgo biloba
3.3. Construction and Testing of a Monitoring Model of Nitrogen Accumulation and Nitrogen Content in Ginkgo biloba Based on All Image Features
3.4. Construction and Testing of the Monitoring Model of Nitrogen Accumulation and Nitrogen Content in Ginkgo biloba Based on Preferred Image Features
4. Discussion
4.1. Influence of Flight Altitude on Ginkgo biloba Nitrogen Monitoring Models
4.2. The Role of Shadow Canopies in Monitoring Ginkgo biloba Nitrogen Nutrition
4.3. Selected Features for Nitrogen Nutrition Monitoring in Ginkgo biloba
4.4. Innovative Points of the Thesis and Directions for Future Research Direction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, F.; Wang, G.; Yu, W. Oriented cultivation techniques for leaf-harvest plantation of Ginkgo biloba L. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2014, 57, 146. (In Chinese) [Google Scholar]
- Mahadevan, S.; Park, Y.; Park, Y. Modulation of cholesterol metabolism by Ginkgo biloba L. nuts and their extract. Food Res. Int. 2008, 41, 89–95. [Google Scholar] [CrossRef]
- Wen, S.; Cui, N.; Gong, D.; Xing, L.; Wu, Z.; Zhang, Y.; Wang, Z.; Wang, J. Effect of nitrogen fertilizer management on N2O emission and NH₃ volatilization from orchards. Soil Tillage Res. 2024, 242, 106165. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, W.; Cao, F. Effects of nitrogen, phosphorus, and potassium on growth and physiological characteristics of Ginkgo biloba seedlings. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2003, 27, 63–66. (In Chinese) [Google Scholar]
- Blackmer, A.; Pottker, D.; Cerrato, M.; Webb, J. Correlations between soil nitrate contents in late spring and corn yields in Iowa. J. Prod. Agric. 1989, 2, 103–109. [Google Scholar] [CrossRef]
- Huan, Y.; Hua-Song, W.; Zhi-Jie, W. Evaluation of SPAD and Dualex for in-season corn nitrogen status estimation. Acta Agron. Sin. 2010, 36, 840–847. [Google Scholar]
- Ali, A.M.; Thind, H.S.; Varinderpal, S.; Singh, B. A framework for refining nitrogen management in dry direct-seeded rice using GreenSeeker™ optical sensor. Comput. Electron. Agric. 2015, 110, 114–120. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Pagola, M.; Ortiz, R.; Irigoyen, I.; Bustince Sola, H.; Barrenechea, E.; Aparicio-Tejo, P.M.; Lamsfus, C.; Lasa, B. New method to assess barley nitrogen nutrition status based on image colour analysis: Comparison with SPAD-502. Comput. Electron. Agric. 2009, 65, 213–218. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef]
- Adeluyi, O.; Harris, A.; Foster, T.; Clay, G.D. Exploiting centimetre resolution of drone-mounted sensors for estimating mid-late season above ground biomass in rice. Eur. J. Agron. 2022, 132, 126411. [Google Scholar] [CrossRef]
- Yang, Q.; She, B.; Huang, L.; Yang, Y.; Zhang, G.; Zhang, M.; Hong, Q.; Zhang, D. Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images. Ecol. Inform. 2022, 70, 101715. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat biomass, yield, and straw-grain ratio estimation from multi-temporal UAV-based RGB and multispectral images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, L.; Zha, Y.; Liu, S.; Nie, C.; Xu, H.; Yang, H.; Shao, M.; Yu, X.; Cheng, M.; et al. Estimating leaf age of maize seedlings using UAV-based RGB and multispectral images. Comput. Electron. Agric. 2023, 215, 108349. [Google Scholar] [CrossRef]
- Gu, Z.; Ju, W.; Li, L.; Li, D.; Liu, Y.; Fan, W. Using vegetation indices and texture measures to estimate vegetation fractional coverage (VFC) of planted and natural forests in Nanjing city, China. Adv. Space Res. 2013, 51, 1186–1194. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Shi, L.; Wang, W.; Niu, Z.; Guo, W.; Ma, X. Combining spectral and texture features of UAV hyperspectral images for leaf nitrogen content monitoring in winter wheat. Int. J. Remote Sens. 2022, 43, 2335–2356. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Ge, Y.; Xi, S.; Zhang, T.; Zhang, W. Semi-supervised cooperative regression model for small sample estimation of citrus leaf nitrogen content with UAV images. Int. J. Remote Sens. 2023, 44, 7237–7262. [Google Scholar] [CrossRef]
- Williams, C.; Rasmussen, C. Gaussian processes for regression. In Proceedings of the 8th Annual Conference on Neural Information Processing Systems (NIPS 1995), 1995; Volume 8. Available online: https://proceedings.neurips.cc/paper_files/paper/1995/hash/7cce53cf90577442771720a370c3c723-Abstract.html (accessed on 4 June 2025).
- Beckers, T. An introduction to Gaussian process models. arXiv 2021, arXiv:2102.05497. [Google Scholar]
- Hong, G.; Luo, M.R.; Rhodes, P.A. A study of digital camera colorimetric characterization based on polynomial modeling. Color. Res. Appl. 2001, 26, 76–84. [Google Scholar] [CrossRef]
- Gibson, R.B. The determination of nitrogen by the Kjeldahl method. J. Am. Chem. Soc. 1904, 26, 105–110. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, X.; Zhang, Q.; Tao, X.; Zhou, K. Enhanced estimation of crown-level leaf dry biomass of Ginkgo saplings based on multi-height UAV imagery and digital aerial photogrammetry point cloud data. Forests 2024, 15, 1720. [Google Scholar] [CrossRef]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Education India: Tamil Nadu, India, 2009. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Biró, L.; Kozma-Bognár, V.; Berke, J. Comparison of RGB indices used for vegetation studies based on structured similarity index (SSIM). J. Plant Sci. Phytopathol. 2024, 8, 7–12. [Google Scholar]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Plant species identification, size, and enumeration using machine vision techniques on near-binary images. Proc. SPIE Opt. Agric. For. 1993, 1836, 208–219. [Google Scholar]
- Peñuelas, J.; Gamon, J.; Fredeen, A.; Merino, J.; Field, C. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Yin, W.; Cheng, X.; Xie, J.; Cui, H.; Chen, Y. High-speed 3D profilometry employing HSI color model for color surface with discontinuities. Opt. Laser Technol. 2017, 96, 81–87. [Google Scholar] [CrossRef]
- Wu, F. Application of Image Processing Technology in Nitrogen Nutrition Diagnosis of Winter Wheat. Master’s Thesis, China Agricultural University, Beijing, China, 2004. (In Chinese). [Google Scholar]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Ouma, Y.; Tateishi, R.; Sri-Sumantyo, J. Urban features recognition and extraction from very-high resolution multi-spectral satellite imagery: A micro–macro texture determination and integration framework. IET Image Process. 2010, 4, 235–254. [Google Scholar] [CrossRef]
- Zhou, J.; Yan Guo, R.; Sun, M.; Di, T.T.; Wang, S.; Zhai, J.; Zhao, Z. The effects of GLCM parameters on LAI estimation using texture values from Quickbird satellite imagery. Sci. Rep. 2017, 7, 7366. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Jing, Y.; Guo, Y.; Zhang, H.; Rong, Y.S.; Zhang, S.H.; Feng, W.; Wang, L.G.; He, J.; Liu, H.J.; Zheng, G.Q. Effect of UAV flight altitude on nitrogen accumulation prediction model of winter wheat plants. Henan Agric. Sci. 2022, 51, 147–158. (In Chinese) [Google Scholar]
- Zhou, K. Study on Hyperspectral Imaging Monitoring Methods of Rice Nitrogen Nutrition Related Indicators. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2018. (In Chinese). [Google Scholar]
- Jia, D.; Chen, P. Effect of low-altitude UAV image resolution on inversion of winter wheat nitrogen content. Trans. Chin. Soc. Agric. Eng. 2020, 51, 164–169. (In Chinese) [Google Scholar]
- Li, M.; Zhu, X.; Bai, X.; Peng, Y.F.; Tian, Z.Y.; Jiang, Y.M. Remote sensing inversion of nitrogen content in apple canopy based on UAV image shadow removal. Chin. J. Agric. Sci. 2021, 54, 2084–2094. (In Chinese) [Google Scholar]
Image Features | Calculation Formula or Description | Origin |
---|---|---|
R | R | [25,26] |
G | G | [25,26] |
B | B | [25,26] |
G/R | G/R | [27,28] |
G/B | G/B | [27,28] |
R/B | R/B | [27,28] |
GMR | G − R | [28] |
GMB | G − B | [28] |
BMR | B − R | [28] |
NRI | R/(R + G + B) | [29] |
NGI | G/(R + G + B) | [29] |
NBI | B/(R + G + B) | [29] |
VIG, R | (G − R)/(G + R) | [27] |
VIG, B | (G − B)/(G + B) | [30] |
VIB, R | (R − B)/(B + R) | [31] |
H | [32] | |
S | 1–3 × min (R, G, B) | [32] |
I | (R + G + B)/3 | [32] |
L* | 116 × (0.299 R + 0.587 G + 0.114 B)1/3 − 16 | [33] |
a* | 500 × [1.006 × (0.607 R + 0.174 G + 0.201 B)1/3 − (0.299 R + 0.587 G + 0.114 B)1/3] | [33] |
b* | 200 × [(0.299 R + 0.587 G + 0.114 B)1/3 − 0.846 × (0.066 G + 1.117 B)1/3] | [33] |
ExG | 2 × NGI − NRI − NBI | [34,35] |
ExR | 1.4 × NRI − NGI | [34,35] |
ExGR | ExG − ExR | [35] |
VARI | (NGI − NRI)/(NGI + NRI − NBI) | [36] |
GLI | (2 × NGI − NBI − NRI)/(2 × NGI + NBI + NRI) | [35] |
MEA | Mean reflects the average of gray levels | [37,38] |
VAR | Variance reflects the magnitude of gray change | [37,38] |
HOM | Homogenetity reflects the local homogeneity | [37,38] |
CON | Contrast reflects the clarity of the texture, as opposed to homogeneity | [37,38] |
DIS | Dissimilarity is similar to contrast, used to detect pixel similarity | [37,38] |
ENT | Entropy reflects the diversity of pixel values | [37,38] |
SEM | Second moment reflects the uniformity of image gray distribution | [37,38] |
COR | Correlation reflects the extension length of a certain gray value along a certain direction | [37,38] |
Region of Interest | Flight Altitude (m) | Selected Features | R2 | RMSE (g) | nRMSE (%) |
---|---|---|---|---|---|
Total canopy | 30 | G/R, b* | 0.49 | 0.34 | 21.27 |
60 | G/R | 0.53 | 0.33 | 20.41 | |
90 | G/R | 0.38 | 0.37 | 23.34 | |
Shadow canopy | 30 | GMB | 0.51 | 0.33 | 20.70 |
60 | BMR, L* | 0.64 | 0.28 | 17.72 | |
90 | Blue, G/B, G − R | 0.39 | 0.38 | 23.48 | |
Light canopy | 30 | b*, SEM | 0.47 | 0.35 | 21.68 |
60 | Green, Blue, H | 0.40 | 0.37 | 23.1 | |
90 | (B − R)/(B + R) | 0.36 | 0.38 | 23.77 |
Region of Interest | Flight Altitude (m) | Selected Features | R2 | RMSE (%) | nRMSE (%) |
---|---|---|---|---|---|
Total canopy | 30 | GMB | 0.57 | 0.20 | 14.30 |
60 | BMR, H, CON, SEM | 0.58 | 0.20 | 14.28 | |
90 | BMR | 0.48 | 0.22 | 15.82 | |
Shadow canopy | 30 | BMR | 0.54 | 0.20 | 14.81 |
60 | NRI, VIB, R, b*, VAR | 0.47 | 0.22 | 15.93 | |
90 | BMR | 0.36 | 0.24 | 17.45 | |
Light canopy | 30 | BMR, b*, VAR, COR | 0.61 | 0.19 | 13.60 |
60 | GMB, ExGR, COR | 0.48 | 0.22 | 15.73 | |
90 | BMR, VAR, COR | 0.28 | 0.26 | 18.70 |
Region of Interest | Flight Altitude (m) | Selected Features | R2 | RMSE (g·m−2) | nRMSE (%) |
---|---|---|---|---|---|
Total canopy | 30 | H | 0.52 | 0.05 | 17.07 |
60 | VIB, R | 0.50 | 0.05 | 17.34 | |
90 | NRI, COR | 0.49 | 0.05 | 17.56 | |
Shadow canopy | 30 | b* | 0.53 | 0.05 | 16.86 |
60 | R/B | 0.52 | 0.05 | 17.08 | |
90 | R/B, BMR, VAR CON | 0.37 | 0.06 | 19.50 | |
Light canopy | 30 | b* | 0.52 | 0.05 | 16.98 |
60 | BMR | 0.43 | 0.05 | 18.32 | |
90 | BMR | 0.34 | 0.06 | 19.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, X.; Cao, F.; Wang, G.; Liu, H.; Qiu, S.; Dai, T.; Han, J.; Yu, S.; Zhou, K. Monitoring Nitrogen Nutrition in Ginkgo Using Unmanned Aerial Vehicle RGB Imagery and the Gaussian Process Regression Model. Forests 2025, 16, 965. https://doi.org/10.3390/f16060965
Tao X, Cao F, Wang G, Liu H, Qiu S, Dai T, Han J, Yu S, Zhou K. Monitoring Nitrogen Nutrition in Ginkgo Using Unmanned Aerial Vehicle RGB Imagery and the Gaussian Process Regression Model. Forests. 2025; 16(6):965. https://doi.org/10.3390/f16060965
Chicago/Turabian StyleTao, Xinyu, Fuliang Cao, Guibin Wang, Hao Liu, Saiting Qiu, Tingting Dai, Jimei Han, Sinong Yu, and Kai Zhou. 2025. "Monitoring Nitrogen Nutrition in Ginkgo Using Unmanned Aerial Vehicle RGB Imagery and the Gaussian Process Regression Model" Forests 16, no. 6: 965. https://doi.org/10.3390/f16060965
APA StyleTao, X., Cao, F., Wang, G., Liu, H., Qiu, S., Dai, T., Han, J., Yu, S., & Zhou, K. (2025). Monitoring Nitrogen Nutrition in Ginkgo Using Unmanned Aerial Vehicle RGB Imagery and the Gaussian Process Regression Model. Forests, 16(6), 965. https://doi.org/10.3390/f16060965