Genome-Wide Identification and Expression Analysis of AT-Hook Motif Nuclear Localized Gene Family in Birch
Abstract
1. Introduction
- 1.
- Growth and Development Regulation.AtAHL22 modulates flowering time and hypocotyl elongation in A. thaliana through direct regulation of FLOWERING LOCUS T (FT) and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4). While its overexpression delays flowering, knockout lines exhibit enhanced hypocotyl elongation [18]. Heterotopic expression of AtAHL15 suppresses axillary meristem (AM) development while promoting apical meristem growth, thereby altering shoot architecture [19]. Additionally, AHL proteins can participate in reproductive development, including maize ear morphogenesis [20].
- 2.
- Transcriptional Regulation.In cotton, GhAT1 acts as a transcriptional repressor of the FSltp4 promoter in non-fiber tissues, thereby fine-tuning fiber development [21]. The soybean AT-1SNBP, which shares structural homology with HMG-A proteins, binds to the glutamine synthetase GSI5 promoter to stabilize chromatin architecture and mediate distal–proximal regulatory element interactions [22].
- 3.
- Stress-Responsive Regulation.Overexpression of AtAHL20 enhances immunity against bacterial pathogens in A. thaliana [23], while transgenic pepper lines overexpressing CaATL1 demonstrate broad-spectrum biotic stress resistance [24]. In rice, drought-induced OsAHL1 up-regulates OsCDPK7 expression in vascular tissues, conferring improved water-deficit tolerance [25]. Transcriptomic analyses associate specific GmAHLs with drought and flooding responses in soybean, underscoring their stress-responsive regulatory functions [7].
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Characterization of BpAHL Gene Family
2.3. Phylogenetic Analysis of BpAHL Protein Family
2.4. Protein Domain, Gene Structure, and Motif Prediction of BpAHL Gene Family
2.5. Chromosomal Localization, Gene Duplication Events, Synteny and Ka/Ks Analysis of BpAHL Gene Family
2.6. Cis-Acting Regulatory Elements (CREs) in the Promoters of BpAHL Genes Family
2.7. Tissue-Specific Transcriptome Analysis of BpAHL Gene Family
2.8. Abiotic Transcriptome Analysis of BpAHL Gene Family
- 1.
- Low-Temperature Treatments in Short Term.Transcriptome data (PRJNA532995) from leaves of two-month-old birch treated with low-temperature (6 °C) for six periods (0.5 h, 1.0 h, 1.5 h, 2.0 h, 2.5 h, and 3.0 h) [55].
- 2.
- Low- and High-Temperature Treatments in Long Term.Transcriptome data (PRJNA811313) from leaves of two-month-old birch treated with low-temperature (6 °C) and high-temperature (35 °C) for six periods (6.0 h, 1 d, 2 d, 4 d, 7 d, and 14 d) [56].
- 3.
- Salt Stress Treatments.Transcriptome data (PRJNA790472) from leaves and roots of 10-week-old birch treated with 24 h of 0.2 M NaCl condition [57].
- 4.
- Light/Dark Treatments.Transcriptome data (PRJNA759706) from leaves of one-month-old birch treated with four days of light and dark cycles [58].
2.9. RNA Extraction and Quantitative RT-PCR (qRT-PCR)
- 1.
- Genomic DNA elimination.A total of 10 µL of reaction mixture containing 2 µL RNA (500 ng/μL), 2 µL 5× gDNA Eraser Buffer, 1 µL gDNA Eraser, and 5 µL RNase-free ddH2O was incubated at 42 °C for 2 min followed by 10 min on ice.
- 2.
- cDNA synthesis.The reaction mixture was brought to 20 µL by adding 1 µL PrimeScript™ RT Enzyme Mix I, 4 µL 5× PrimeScript™ Buffer2, 1 µL RT Primer Mix, and 4 µL RNase-free ddH2O, and then incubated at 37 °C for 15 min, 85 °C for 5 s, and 4 °C for 10 min. The synthesized cDNA was diluted 20-fold and stored at −40 °C.
2.10. Statistical Analysis
3. Results
3.1. Identification of BpAHL Gene Family
3.2. Phylogenetic Analysis of BpAHL Protein Family
3.3. Sequence Characterization of BpAHL Gene Family
3.4. Chromosome Locations of BpAHL Gene Family
3.5. Gene Functions of BpAHL Gene Family
3.6. Evolutionary Analysis of BpAHL Gene Family
3.7. Cis-Acting Regulatory Elements in Promoters of BpAHL Gene Family
3.8. Transcriptome Profiles of BpAHL Gene Family in Different Plant Tissues
3.9. Transcriptome Analysis of BpAHL Gene Family in Response to Abiotic Stress
3.9.1. Type-I BpAHLs Show a Limited Cold Response, While Type-II/III Show a Dynamic Response
3.9.2. Almost BpAHLs Show Down-Regulation Under Heat Stress on the First Day
3.9.3. Almost BpAHLs Down-Regulated Under Salt Stress in Root Tissue
3.9.4. Only Type-II/III BpAHLs Respond to Light/Dark Cycles
3.10. Expression Analysis of BpAHL Genes Under Drought Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoon, Y.; Seo, D.H.; Shin, H.; Kim, H.J.; Kim, C.M.; Jang, G. The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. Agronomy 2020, 10, 788. [Google Scholar] [CrossRef]
- Zhang, W.M.; Cheng, X.Z.; Fang, D.; Cao, J. AT-Hook Motif Nuclear Localized (AHL) Proteins of Ancient Origin Radiate New Functions. Int. J. Biol. Macromol. 2022, 214, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.H.; Sanders, C.; Johns, E.W. A New Group of Chromatin-Associated Proteins with a High Content of Acidic and Basic Amino Acids. Eur. J. Biochem. 1973, 38, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Favero, D.S.; Qiu, J.; Roalson, E.H.; Neff, M.M. Insights into the Evolution and Diversification of the AT-Hook Motif Nuclear Localized Gene Family in Land Plants. BMC Plant Biol. 2014, 14, 266. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Mishra, A. Genome-Wide Identification and Analyses of the AHL Gene Family in Rice (Oryza sativa). 3 Biotech 2023, 13, 248. [Google Scholar] [CrossRef]
- Bishop, E.H.; Kumar, R.; Luo, F.; Saski, C.; Sekhon, R.S. Genome-Wide Identification, Expression Profiling, and Network Analysis of AT-Hook Gene Family in Maize. Genomics 2020, 112, 1233–1244. [Google Scholar] [CrossRef]
- Wang, M.; Chen, B.; Zhou, W.; Xie, L.; Wang, L.; Zhang, Y.; Zhang, Q. Genome-Wide Identification and Expression Analysis of the AT-Hook Motif Nuclear Localized Gene Family in Soybean. BMC Genom. 2021, 22, 361. [Google Scholar] [CrossRef]
- Li, X.; He, H.; Wang, H.; Wu, X.; Wang, H.; Mao, J. Identification and Expression Analysis of the AHL Gene Family in Grape (Vitis vinifera). Plant Gene 2021, 26, 100285. [Google Scholar] [CrossRef]
- Machaj, G.; Grzebelus, D. Characteristics of the AT-Hook Motif Containing Nuclear Localized (AHL) Genes in Carrot Provides Insight into Their Role in Plant Growth and Storage Root Development. Genes 2021, 12, 764. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Cao, Y.; Huang, J.; Duan, Q. Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa. Int. J. Mol. Sci. 2023, 24, 12447. [Google Scholar] [CrossRef]
- Wang, H.; Leng, X.; Yang, J.; Zhang, M.; Zeng, M.; Xu, X.; Wang, F.; Li, C. Comprehensive Analysis of AHL Gene Family and Their Expression under Drought Stress and ABA Treatment in Populus trichocarpa. PeerJ 2021, 9, e10932. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, W.; Zheng, X.; Lu, L.; Chen, X.; Hao, Z.; Liu, S.; Chen, Y. AT-Hook Transcription Factors Show Functions in Liriodendron chinense under Drought Stress and Somatic Embryogenesis. Plants 2023, 12, 1353. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lü, Y.; Chen, W.; Yao, J.; Li, Y.; Li, Q.; Pan, J.; Fang, S.; Sun, J.; Zhang, Y. Genome-Wide Identification and Analyses of the AHL Gene Family in Cotton (Gossypium). BMC Genom. 2020, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Rayapuram, N.; Jarad, M.; Alhoraibi, H.M.; Bigeard, J.; Abulfaraj, A.A.; Völz, R.; Mariappan, K.G.; Almeida, M.; Schlöffel, M.; Lastrucci, E.; et al. Chromatin Phosphoproteomics Unravels A Function for AT-Hook Motif Nuclear Localized Protein AHL13 in PAMP-Triggered Immunity. Proc. Natl. Acad. Sci. USA 2021, 118, e2004670118. [Google Scholar] [CrossRef]
- Huth, J.R.; Bewley, C.A.; Nissen, M.S.; Evans, J.; Reeves, R.; Gronenborn, A.M.; Clore, G.M. The Solution Structure of An HMG-I(Y)–DNA Complex Defines A New Architectural Minor Groove Binding Motif. Nat. Struct. Biol. 1997, 4, 657–665. [Google Scholar] [CrossRef]
- Aravind, L.; Landsman, D. AT-Hook Motifs Identified in A Wide Variety of DNA-Binding Proteins. Nucleic Acids Res. 1998, 26, 4413–4421. [Google Scholar] [CrossRef]
- Zhao, J.; Favero, D.S.; Peng, H.; Neff, M.M. Arabidopsis thaliana AHL Family Modulates Hypocotyl Growth Redundantly by Interacting with Each Other Via the PPC/DUF296 Domain. Proc. Natl. Acad. Sci. USA 2013, 110, 4688–4697. [Google Scholar] [CrossRef]
- Yun, J.; Kim, Y.S.; Jung, J.H.; Seo, P.J.; Park, C.M. The AT-Hook Motif-Containing Protein AHL22 Regulates Flowering Initiation by Modifying FLOWERING LOCUS T Chromatin in Arabidopsis. J. Biol. Chem. 2012, 287, 15307–15316. [Google Scholar] [CrossRef]
- Karami, O.; Rahimi, A.; Khan, M.; Bemer, M.; Hazarika, R.R.; Mak, P.; Compier, M.; Noort, V.; Offringa, R. A Suppressor of Axillary Meristem Maturation Promotes Longevity in Flowering Plants. Nat. Plants 2020, 6, 368–376. [Google Scholar] [CrossRef]
- Gallavotti, A.; Malcomber, S.; Gaines, C.; Stanfield, S.; Whipple, C.; Kellogg, E.; Schmidt, R.J. BARREN STALK FASTIGIATE1 Is An AT-Hook Protein Required for the Formation of Maize Ears. Plant Cell 2011, 23, 1756–1771. [Google Scholar] [CrossRef]
- Delaney, S.K.; Orford, S.J.; Martin-Harris, M.; Timmis, J.N. The Fiber Specificity of the Cotton FSltp4 Gene Promoter is Regulated by An AT-Rich Promoter Region and the AT-Hook Transcription Factor GhAT1. Plant Cell Physiol. 2007, 48, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Reisdorf-Cren, M.; Carrayol, E.; Tercé-Laforgue, T.; Hirel, B. A Novel HMG A-Like Protein Binds Differentially to the AT-Rich Regions Located in the Far Distal and Proximal Parts of a Soybean Glutamine Synthetase Gene (GS15) Promoter. Plant Cell Physiol. 2002, 43, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zou, Y.; Feng, N. Overexpression of AHL20 Negatively Regulates Defenses in Arabidopsis. J. Integr. Plant Biol. 2010, 52, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, Y.C.; Seong, E.S.; Lee, Y.H.; Park, J.M.; Choi, D. The Chili Pepper CaATL1: An AT-Hook Motif-Containing Transcription Factor Implicated in Defense Responses Against Pathogens. Mol. Plant Pathol. 2007, 8, 761–771. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Z.; Liu, Y.; Kong, D.; Li, T.; Yu, S.; Mei, H.; Xu, X.; Liu, H.; Chen, L.; et al. A Novel Gene OsAHL1 Improves Both Drought Avoidance and Drought Tolerance in Rice. Sci. Rep. 2016, 6, 30264. [Google Scholar] [CrossRef]
- Geng, W.; Li, Y.; Sun, D.; Li, B.; Zhang, P.; Chang, H.; Rong, T.; Liu, Y.; Shao, J.; Liu, Z.; et al. Prediction of the Potential Geographical Distribution of Betula platyphylla Suk. in China under Climate Change Scenarios. PLoS ONE 2022, 17, e0262540. [Google Scholar] [CrossRef]
- Isidorov, V.; Szoka, Ł.; Nazaruk, J. Cytotoxicity of White Birch Bud Extracts: Perspectives for Therapy of Tumours. PLoS ONE 2018, 13, e0201949. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B.; Ali, S.; Zhang, T.; Wang, Y.; Zhang, H.; Wang, L.; Zhang, Y.; Xie, L.; Jiang, T.; et al. Epigenetic Modification Associated with Climate Regulates Betulin Biosynthesis in Birch. J. For. Res. 2023, 34, 21–35. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.W.; Shang, F.Q.; Jiao, H.; Zhang, L.M.; Luo, J.X.; Teng, W.H.; Liu, G.F. Variation and Zoning of 16-Year-Old Betula platyphylla Provenance. Sci. Silvae Sin. 2016, 52, 48–56. [Google Scholar]
- Liu, Z.J.; Shi, X.X.; Wang, Z.B.; Qu, M.; Gao, C.Q.; Wang, C.; Wang, Y.C. Acetylation of Transcription Factor BpTCP20 by Acetyltransferase BpPDCE23 Modulates Salt Tolerance in Birch. Plant Physiol. 2024, 195, 2354–2371. [Google Scholar] [CrossRef]
- Wen, X.J.; Ding, Y.; Tan, Z.L.; Wang, J.X.; Zhang, D.Y.; Wang, Y.C. Identification and Characterization of Cadmium Stress-Related LncRNAs from Betula platyphylla. Plant Sci. 2020, 299, 110601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, J.; Qu, G.; Chen, S. The Cold-Responsive C-repeat Binding Factors in Betula platyphylla Suk. Positively Regulate Cold Tolerance. Plant Sci. 2024, 341, 112012. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Liu, Y.; Wang, Y.; Cao, L.; Wu, S.; Yu, S.; Xie, L.; Li, H.; Jiang, J.; Liu, G.; et al. Establishment of High-Efficiency Genome Editing in White Birch (Betula platyphylla Suk.). Plant Biotechnol. J. 2024, 22, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Salojärvi, J.; Smolander, O.P.; Nieminen, K.; Rajaraman, S.; Safronov, O.; Safdari, P.; Lamminmäki, A.; Immanen, J.; Lan, T.; Tanskanen, J.; et al. Genome Sequencing and Population Genomic Analyses Provide Insights into the Adaptive Landscape of Silver Birch. Nat. Genet. 2017, 49, 904–912. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucleic Acids Res. 2011, 39, 29–37. [Google Scholar] [CrossRef]
- Lin, L.; Nakano, H.; Nakamura, S.; Uchiyama, S.; Fujimoto, S.; Matsunaga, S.; Kobayashi, Y.; Ohkubo, T.; Fukui, K. Crystal Structure of Pyrococcus horikoshii PPC Protein at 1.60 A Resolution. Proteins 2007, 67, 505–507. [Google Scholar] [CrossRef]
- Fujimoto, S.; Matsunaga, S.; Yonemura, M.; Uchiyama, S.; Azuma, T.; Fukui, K. Identification of a Novel Plant MAR DNA Binding Protein Localized on Chromosomal Surfaces. Plant Mol. Biol. 2004, 56, 225–239. [Google Scholar] [CrossRef]
- Yang, M.; Derbyshire, M.K.; Yamashita, R.A.; Marchler-Bauer, A. NCBI’s Conserved Domain Database and Tools for Protein Domain Analysis. Curr. Protoc. Bioinform. 2020, 69, e90. [Google Scholar] [CrossRef]
- Schultz, J.; Milpetz, F.; Bork, P.; Ponting, C.P. SMART, A Simple Modular Architecture Research Tool: Identification of Signaling Domains. Proc. Natl. Acad. Sci. USA 1998, 95, 5857–5864. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The Proteomics Server for In-Depth Protein Knowledge and Analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Cell-PLoc: A Package of Web Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Nat. Protoc. 2008, 3, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; Beer, T.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.U.; Zoete, V.; Michielin, O.; Guex, N. Defining and Searching for Structural Motifs Using DeepView/Swiss-PdbViewer. BMC Bioinf. 2012, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, D.V.; Zhang, L.; Pedersen, B.S.; Ramírez, F.; Warwick, V.A.; Naldi, A.; Mungall, C.J.; Yunes, J.M.; Botvinnik, O.; Weigel, M.; et al. GOATOOLS: A Python library for Gene Ontology Analyses. Sci. Rep. 2018, 8, 10872. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL): An Online Tool for Phylogenetic Tree Display and Annotation. Bioinform. 2006, 23, 127–128. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Koch, M.A.; Haubold, B.; Mitchell, T. Comparative Evolutionary Analysis of Chalcone Synthase and Alcohol Dehydrogenase Loci in Arabidopsis, Arabis, and Related Genera (Brassicaceae). Mol. Biol. Evol. 2000, 17, 1483–1498. [Google Scholar] [CrossRef]
- Lescot, M.; Dehairs, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, A Database of Plant Cis-Acting Regulatory Elements and A Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lin, X.; Zhang, D.; Li, Q.; Zhao, X.; Chen, S. Genome-Wide Analysis of NAC Gene Family in Betula pendula. Forests 2019, 10, 741. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of A Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, D.; Chen, S.; Chen, S. Transcriptome Sequencing Analysis of Birch (Betula platyphylla Sukaczev) under Low-Temperature Stress. Forests 2020, 11, 970. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Chen, S.; Indriani, F.; Song, R.K.; Zhang, X.; Lan, X.; Chen, S. Comparative RNA-Seq Analysis of Betula platyphylla under Low and High Temperature Stresses. CERNE 2023, 29, e103147. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, H.; Niu, Y.; Wang, Y. Identification of Birch lncRNAs and mRNAs Responding to Salt Stress and Characterization of Functions of lncRNA. Hortic. Res. 2023, 10, uhac277. [Google Scholar] [CrossRef]
- Song, S.; Ge, M.; Wang, W.; Gu, C.; Chen, K.; Zhang, Q.; Yu, Q.; Liu, G.; Jiang, J. BpEIN3.1 Represses Leaf Senescence by Inhibiting Synthesis of Ethylene and Abscisic Acid in Betula platyphylla. Plant Sci. 2022, 321, 111330. [Google Scholar] [CrossRef]
- Skern, R.; Frost, P.; Nilsen, F. Relative Transcript Quantification by Quantitative PCR: Roughly Right or Precisely Wrong? BMC Mol. Biol. 2005, 6, 10. [Google Scholar] [CrossRef]
- Chen, B.; Ali, S.; Zhang, X.; Zhang, Y.; Wang, M.; Zhang, Q.; Xie, L. Genome-Wide Identification, Classification, and Expression Analysis of the JmjC Domain-Containing Histone Demethylase Gene Family in Birch. BMC Genom. 2021, 22, 772. [Google Scholar] [CrossRef]
- Chen, B.; Guo, Y.; Zhang, X.; Wang, L.; Cao, L.; Zhang, T.; Zhang, Z.; Zhou, W.; Xie, L.; Wang, J.; et al. Climate-Responsive DNA Methylation is Involved in the Biosynthesis of Lignin in Birch. Front. Plant Sci. 2022, 13, 1090967. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.O.; Kim, Y.; Breeze, E.; Koo, J.C.; Woo, H.R.; Ryu, J.S.; Park, D.H.; Beynon, J.; Tabrett, A.; Buchanan, V.; et al. Overexpression of A Chromatin Architecture-Controlling AT-Hook Protein Extends Leaf Longevity and Increases the Post-Harvest Storage Life of Plants. Plant J. 2007, 52, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The Roles of Segmental and Tandem Gene Duplication in the Evolution of Large Gene Families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Mehan, M.R.; Freimer, N.B.; Ophoff, R.A. A Genome-Wide Survey of Segmental Duplications that Mediate Common Human Genetic Variation of Chromosomal Architecture. Hum. Genomics. 2004, 1, 335. [Google Scholar] [CrossRef]
- Ambadas, D.A.; Singh, A.; Jha, R.K.; Chauhan, D.; Sharma, V.K. Genome-Wide Dissection of AT-Hook Motif Nuclear-Localized Gene Family and Their Expression Profiling for Drought and Salt Stress in Rice (Oryza sativa). Front. Plant Sci. 2023, 14, 1283555. [Google Scholar] [CrossRef]
- Marand, A.P.; Eveland, A.L.; Kaufmann, K.; Springer, N.M. Cis-Regulatory Elements in Plant Development, Adaptation, and Evolution. Annu. Rev. Plant Biol. 2023, 74, 111–137. [Google Scholar] [CrossRef]
- Wittkopp, P.J.; Kalay, G. Cis-Regulatory Elements: Molecular Mechanisms and Evolutionary Processes Underlying Divergence. Nat. Rev. Genet. 2012, 13, 59–69. [Google Scholar] [CrossRef]
- Jin, Y.; Luo, Q.; Tong, H.; Wang, A.; Cheng, Z.; Tang, J.; Li, D.; Zhao, X.; Li, X.; Wan, J.; et al. An AT-Hook. Gene is Required for Palea Formation and Floral Organ Number Control in Rice. Dev. Biol. 2011, 359, 277–288. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, F.; Yu, X.; Lin, C.; Fu, Y.F. Over-Expression of An AT-Hook Gene, AHL22, Delays Flowering and Inhibits the Elongation of the Hypocotyl in Arabidopsis thaliana. Plant Mol. Biol. 2009, 71, 39–50. [Google Scholar] [CrossRef]
- Sgarra, R.; Lee, J.; Tessari, M.A.; Altamura, S.; Spolaore, B.; Giancotti, V.; Bedford, M.T.; Manfioletti, G. The AT-Hook of the Chromatin Architectural Transcription Factor High Mobility Group A1a is Arginine-Methylated by Protein Arginine Methyltransferase 6. J. Biol. Chem. 2006, 281, 3764–3772. [Google Scholar] [CrossRef]
- Turlure, F.; Maertens, G.; Rahman, S.; Cherepanov, P.; Engelman, A. A Tripartite DNA-Binding Element, Comprised of the Nuclear Localization Signal and Two AT-Hook Motifs, Mediates the Association of LEDGF/p75 with Chromatin in vivo. Nucleic Acids Res. 2006, 34, 1653–1665. [Google Scholar] [CrossRef] [PubMed]
- Parakkunnel, R.; Bhojaraja, N.K.; Susmita, C.; Girimalla, V.; Bhaskar, K.U.; Sripathy, K.V.; Shantharaja, C.S.; Aravindan, S.; Kumar, S.; Lakhanpaul, S.; et al. Evolution and Co-Evolution: Insights into the Divergence of Plant Heat Shock Factor Genes. Physiol. Mol. Biol. Plants. 2022, 28, 1029–1047. [Google Scholar] [CrossRef] [PubMed]
- Gorlova, O.; Fedorov, A.; Logothetis, C.; Amos, C.; Gorlov, I. Genes With A Large Intronic Burden Show Greater Evolutionary Conservation on the Protein Level. BMC Evol. Biol. 2014, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome Sequence of the Palaeopolyploid Soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef]
- Street, I.H.; Shah, P.K.; Smith, A.M.; Avery, N.; Neff, M.M. The AT-hook-Containing Proteins SOB3/AHL29 and ESC/AHL27 Are Negative Modulators of Hypocotyl Growth in Arabidopsis. Plant J. 2008, 54, 1–14. [Google Scholar] [CrossRef]
- Širl, M.; Šnajdrová, T.; Gutiérrez-Alanís, D.; Dubrovsky, J.G.; Vielle-Calzada, J.P.; Kulich, I.; Soukup, A. At-Hook Motif Nuclear Localized Protein 18 as A Novel Modulator of Root System Architecture. Int. J. Mol. Sci. 2020, 21, 1886. [Google Scholar] [CrossRef]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. Organization of Cis-Acting Regulatory Elements in Osmotic- and Cold-Stress-Responsive Promoters. Trends Plant Sci. 2005, 10, 88–94. [Google Scholar] [CrossRef]
- Wang, L.; Li, T.; Liu, N.; Liu, X. Identification of Tomato AHL Gene Families and Functional Analysis Their Roles in Fruit Development and Abiotic Stress Response. Plant Physiol. Biochem. 2023, 202, 107931. [Google Scholar] [CrossRef]
Gene Name | Gene Accession | Genomic Location | Type | Gene Length (bp) | CDS Length (bp) | Protein Length (aa) | Molecular Weight (Da) | Isoelectric Point | Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|
BpAHL01 | Bpev01.c0774.g0008 | Chr1: 11,387,186–11,387,992 | I | 807 | 807 | 268 | 27,489 | 5.97 | N |
BpAHL02 | Bpev01.c0616.g0003 | Chr2: 12,611,347–12,618,513 | III | 7167 | 1041 | 346 | 35,800 | 8.97 | Cm/C/N |
BpAHL03 | Bpev01.c0362.g0004 | Chr2: 19,921,747–19,922,535 | I | 789 | 789 | 262 | 27,321 | 8.38 | C/N |
BpAHL04 | Bpev01.c1484.g0011 | Chr3: 16,791,132–16,791,854 | I | 723 | 723 | 240 | 24,150 | 8.97 | N |
BpAHL05 | Bpev01.c1390.g0007 | Chr4: 10,015,299–10,026,351 | III | 11,053 | 1038 | 345 | 35,560 | 9.00 | C/N |
BpAHL06 | Bpev01.c1390.g0016 | Chr4:10,121,683–10,122,537 | I | 855 | 855 | 284 | 29,385 | 5.48 | N |
BpAHL07 | Bpev01.c0365.g0010 | Chr5: 2,456,997–2,464,503 | I | 7507 | 1086 | 361 | 36,878 | 4.73 | N |
BpAHL08 | Bpev01.c0540.g0008 | Chr5: 6,984,368–6,996,557 | III | 12,190 | 741 | 246 | 25,202 | 9.73 | N |
BpAHL09 | Bpev01.c0027.g0117 | Chr5: 23,300,208–23,306,294 | II | 6087 | 1020 | 339 | 34,883 | 10.05 | N |
BpAHL10 | Bpev01.c0874.g0035 | Chr5: 26,805,688–26,806,626 | I | 939 | 939 | 312 | 32,923 | 7.16 | N |
BpAHL11 | Bpev01.c0169.g0027 | Chr8: 22,673,422–22,678,438 | II | 5017 | 1095 | 364 | 37,421 | 8.51 | N |
BpAHL12 | Bpev01.c0480.g0053 | Chr9: 391,896–392,816 | I | 921 | 921 | 306 | 30,838 | 7.93 | N |
BpAHL13 | Bpev01.c0480.g0043 | Chr9: 485,086–490,203 | II | 5118 | 1122 | 373 | 37,101 | 10.08 | N |
BpAHL14 | Bpev01.c0902.g0012 | Chr13: 7,069,248–7,078,300 | II | 9053 | 972 | 323 | 33,737 | 5.68 | C |
BpAHL15 | Bpev01.c0223.g0044 | Chr13: 10,271,229–10,272,056 | I | 828 | 828 | 275 | 28,092 | 7.05 | N |
BpAHL16 | Bpev01.c1544.g0004 | Chr14: 2,458,829–2,467,966 | III | 9138 | 1452 | 483 | 52,128 | 5.64 | C/N |
BpAHL17 | Bpev01.c1544.g0009 | Chr14: 2,534,436–2,535,362 | I | 927 | 927 | 308 | 33,002 | 6.53 | N |
BpAHL18 | Bpev01.c0449.g0016 | Chr14: 4,176,010–4,181,875 | II | 5866 | 1032 | 343 | 35,228 | 10.25 | Cm/C/N |
BpAHL19 | Bpev01.c0964.g0005 | Chr14: 15,052,985–15,053,881 | I | 897 | 897 | 298 | 30,770 | 6.15 | N |
BpAHL20 | Bpev01.c0964.g0003 | Chr14: 15,082,749–15,091,115 | II | 8367 | 1119 | 372 | 37,807 | 9.57 | N |
BpAHL21 | Bpev01.c1465.g0006 | Contig1465: 35,258–36,043 | I | 786 | 786 | 261 | 27,447 | 6.06 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Chu, H.; Lv, B.; Guo, Y.; Zhang, Z.; Zhang, T.; Xie, Q.; Hao, M.; Ali, S.; Zhou, W.; et al. Genome-Wide Identification and Expression Analysis of AT-Hook Motif Nuclear Localized Gene Family in Birch. Forests 2025, 16, 943. https://doi.org/10.3390/f16060943
Chen B, Chu H, Lv B, Guo Y, Zhang Z, Zhang T, Xie Q, Hao M, Ali S, Zhou W, et al. Genome-Wide Identification and Expression Analysis of AT-Hook Motif Nuclear Localized Gene Family in Birch. Forests. 2025; 16(6):943. https://doi.org/10.3390/f16060943
Chicago/Turabian StyleChen, Bowei, Huaixue Chu, Bin Lv, Yile Guo, Zihui Zhang, Tianxu Zhang, Qingyi Xie, Menghan Hao, Shahid Ali, Wei Zhou, and et al. 2025. "Genome-Wide Identification and Expression Analysis of AT-Hook Motif Nuclear Localized Gene Family in Birch" Forests 16, no. 6: 943. https://doi.org/10.3390/f16060943
APA StyleChen, B., Chu, H., Lv, B., Guo, Y., Zhang, Z., Zhang, T., Xie, Q., Hao, M., Ali, S., Zhou, W., Zhao, L., Jiang, Z., Wang, M., & Xie, L. (2025). Genome-Wide Identification and Expression Analysis of AT-Hook Motif Nuclear Localized Gene Family in Birch. Forests, 16(6), 943. https://doi.org/10.3390/f16060943