Physiological Responses to Trail Difficulty in Indoor and Outdoor Forest Walking Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Design
2.2.1. Outdoor (Forest Trail Walking) Experiment
2.2.2. Indoor (Treadmill Walking) Experiment
2.3. Sites
2.4. Research Variables
2.5. Analysis Methods
3. Results
3.1. Outdoor Experiment
3.1.1. Descriptive Statistics
3.1.2. Boxplot
3.1.3. Repeated-Measures ANOVA and Post-Hoc
3.1.4. Linear Regression
3.2. Indoor Experiment
3.2.1. Descriptive Statistics
3.2.2. Boxplot
3.2.3. Repeated-Measures ANOVA and Post-Hoc
3.2.4. Linear Regression
3.3. Comparison Between Outdoor and Indoor Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | heart rate |
OS | oxygen saturation |
SS | step speed |
SC | step count |
RPE | rate of perceived exertion |
VO2 | oxygen consumption |
EE | energy expenditure |
MET | metabolic equivalent |
Appendix A
Appendix B
Appendix C
Physical Characteristic Variables | Cardiovascular and Metabolic Variables | Physical Variables | |
---|---|---|---|
Gathered reference data | - | - | Trail segment length and slope |
Participant-declared information | Age; height | Ratings of perceived exertion (RPE) | - |
Empirically observed indicators | Weight; leg length | Baseline heart rate; baseline blood pressure; active heart rate (hiking, walking); real-time oxygen saturation; on-exercise blood pressure | Climatic conditions; trail duration metrics; stride-related hiking metrics; time-on-foot data; step frequency data; walking slope |
Derived values | - | Baseline VO2; VO2 during exertion | Locomotion velocity |
Adjusted parameters | Body mass index | Estimated max HR; HR differential baseline pulse pressure; average arterial pressure; dynamic PP during walking; normalized exertion level; MET level during ambulation; caloric output while walking; cardiac cost per stride; VO2 per stride; VO2 per beat | Stride length |
References
- Tsunetsugu, Y.; Lee, J.; Park, B.J.; Tyrväinen, L.; Kagawa, T.; Miyazaki, Y. Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 2013, 113, 90–93. [Google Scholar] [CrossRef]
- Bamwesigye, D.; Fialová, J.; Kupec, P.; Łukaszkiewicz, J.; Fortuna-Antoszkiewicz, B. Forest Recreational Services in the Face of COVID-19 Pandemic Stress. Land 2021, 10, 1347. [Google Scholar] [CrossRef]
- Bamwesigye, D.; Fialova, J.; Kupec, P.; Yeboah, E.; Łukaszkiewicz, J.; Fortuna-Antoszkiewicz, B.; Botwina, J. Urban Forest Recreation and Its Possible Role throughout the COVID-19 Pandemic. Forests 2023, 14, 1254. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef]
- Rogerson, M.; Wood, C.; Pretty, J.; Schoenmakers, P.; Bloomfield, D.; Barton, J. Regular Doses of Nature: The Efficacy of Green Exercise Interventions for Mental Wellbeing. Int. J. Environ. Res. Public Health 2020, 17, 1526. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The Influence of Urban Green Environments on Stress Relief Measures: A Field Experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the Best Dose of Nature and Green Exercise for Improving Mental Health? A Multi-Study Analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef]
- Kortenkamp, K.V.; Moore, C.F.; Sheridan, D.P.; Ahrens, E.S. No Hiking Beyond This Point! Hiking Risk Prevention Recommendations in Peer-Reviewed Literature. J. Outdoor Recreat. Tour. 2017, 20, 67–76. [Google Scholar] [CrossRef]
- Stigsdotter, U.K.; Palsdottir, A.M.; Burls, A.; Chermaz, A.; Ferrini, F.; Grahn, P. Nature-based therapeutic interventions. In Forests, Trees and Human Health; Nilsson, K., Sangster, M., Gallis, C., Hartig, T., de Vries, S., Seeland, K., Schipperijn, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 309–342. [Google Scholar] [CrossRef]
- Timothy, D.J.; Boyd, S.W. Tourism and Trails: Cultural, Ecological and Management Issues; Channel View Publications: Bristol, UK, 2015; Volume 64. [Google Scholar]
- Downs, T.C. The National Trials System: A Model Partnership Approach to Natural Resources Management. Environ. Law Report. News Anal. 2000, 30, 10091. [Google Scholar]
- Ravinsky Raichel, N.; Yahel, H. Planning Challenges and Opportunities in the Conservation of National Trails: The Case of the Israel National Trail. Land 2024, 13, 1449. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.W.; Choi, K.H.; Choi, J.H.; Shin, H.J.; Lee, S.G. An analysis on the status of forest trails in Korea. J. Korean For. Soc. 2016, 105, 142–150. [Google Scholar]
- Korea Forest Service. Second Basic Plan for Forest Trail Development and Management; Korea Forest Service: Daejeon, Republic of Korea, 2022. [Google Scholar]
- Lee, S.; Lee, J.; Kim, G. Guide for Calculating Forest Trail Usage Grades (Difficulty); National Institute of Forest Science: Seoul, Republic of Korea, 2022. [Google Scholar]
- Yamaki, K.; Shoji, Y. Classification of Trail Settings in an Alpine National Park Using the Recreation Opportunity Spectrum Approach. In Policies, Methods and Tools for Visitor Management—Proceedings of the Second International Workshop, Rovaniemi, Finland, 16–20 June 2004; Finnish Forest Research Institute: Helsinki, Finland, 2004; p. 318. [Google Scholar]
- Sievänen, T. (Ed.) Metlan Työraportteja/Working Papers of the Finnish Forest Research Institute; Finnish Forest Research Institute; Volume 2, Helsinki, Finland, 2004. [Google Scholar]
- Hugo, M.L. A Comprehensive Approach towards the Planning, Grading and Auditing of Hiking Trails as Ecotourism Products. Curr. Issues Tour. 1999, 2, 138–173. [Google Scholar] [CrossRef]
- Saayman, M.; Viljoen, A. Who Are Wild Enough to Hike a Wilderness Trail? J. Outdoor Recreat. Tour. 2016, 14, 41–51. [Google Scholar] [CrossRef]
- Calbimonte, J.P.; Martin, S.; Calvaresi, D.; Cotting, A. A Platform for Difficulty Assessment and Recommendation of Hiking Trails. In Information and Communication Technologies in Tourism 2021, Proceedings of the ENTER 2021 eTourism Conference, Online, 19–22 January 2021; Springer: Cham, Switzerland, 2021; pp. 90–100. [Google Scholar] [CrossRef]
- Thomson, C.; Lesser, I. It’s All Relative: The Role of Cardiorespiratory Fitness in Hiking Trail Difficulty. Sci. Sports 2025, 40, 65–74. [Google Scholar] [CrossRef]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Kagawa, T.; Miyazaki, Y. The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 2010, 15, 18–26. [Google Scholar] [CrossRef]
- Lee, J.; Tsunetsugu, Y.; Takayama, N.; Park, B.J.; Li, Q.; Song, C.; Komatsu, M.; Ikei, H.; Tyrväinen, L.; Kagawa, T.; et al. Influence of forest therapy on cardiovascular relaxation in young adults. Evid. Based Complement. Alternat. Med. 2014, 2014, 834360. [Google Scholar] [CrossRef]
- Shin, W.S.; Yeoun, P.S.; Yoo, R.W.; Shin, C.S. The influence of forest experience on psychological health. J. Korean For. Soc. 2013, 102, 117–123. [Google Scholar]
- Choi, Y.; Lee, S.; Yun, S.; Lee, D.T. Examination of exercise physiological traits according to usage grade of national forest trails. Forests 2024, 15, 1853. [Google Scholar] [CrossRef]
- Grummt, M.; Hafermann, L.; Claussen, L.; Jahn, I.; Winkler, J.; Grützmacher, J.; Niebauer, J. Rating of Perceived Exertion: A Large Cross-Sectional Study Defining Intensity Levels for Individual Physical Activity Recommendations. Sports Med. Open 2024, 10, 71. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.; Song, I.; Yi, Y.; Park, B.-J.; Song, C. The Effects of Forest Walking on Physical and Mental Health Based on Exercise Prescription. Forests 2023, 14, 2332. [Google Scholar] [CrossRef]
- Fattorini, L.; Pittiglio, G.; Federico, B.; Pallicca, A.; Bernardi, M.; Rodio, A. Workload Comparison Between Hiking and Indoor Physical Activity. J. Strength Cond. Res. 2012, 26, 2883–2889. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, L.; Mayr, B.; Beck, M.; Venek, V.; Kranzinger, C.; Menzl, A.; Jahn, I.; Sareban, M.; Oberhoffer-Fritz, R.; Niebauer, J. Assessment of Exercise Intensity for Uphill Walking in Healthy Adults Performed Indoors and Outdoors. Int. J. Environ. Res. Public Health 2022, 19, 16662. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Choi, J.H. The Effects of Viewing the Forest Landscape on Physiological and Psychological Status in Radiologists. J. People Plants Environ. 2017, 20, 283–291. [Google Scholar] [CrossRef]
- Kang, H.K.; Back, S.J. Effect of Urban Agriculture Experience Program on the Mental Health of the Elderly. J. People Plants Environ. 2017, 20, 1–6. [Google Scholar] [CrossRef]
- Janeczko, E.; Bielinis, E.; Wójcik, R.; Woźnicka, M.; Kędziora, W.; Łukowski, A.; Elsadek, M.; Szyc, K.; Janeczko, K. When urban environment is restorative: The effect of walking in suburbs and forests on psychological and physiological relaxation of young Polish adults. Forests 2020, 11, 591. [Google Scholar] [CrossRef]
- Calbimonte, J.P.; Martin, D.; Calvaresi, D. Participatory environmental sensing for quality of life monitoring using mobile phones. In Participatory Sensing, Opinions and Collective Awareness; Springer: Cham, Switzerland, 2020; pp. 213–236. [Google Scholar]
- Marion, J.L.; Wimpey, J. Assessing the influence of sustainable trail design and maintenance on soil loss. J. Environ. Manag. 2017, 189, 46–57. [Google Scholar] [CrossRef]
- Korea Forest Service. Forest Recreation Act. 2020. Available online: http://www.law.go.kr/ (accessed on 10 January 2025).
- Toda, H.; Maruyama, T.; Tada, M. Indoor vs. Outdoor Walking: Does It Make Any Difference in Joint Angle Depending on Road Surface? Front. Sports Act. Living 2020, 2, 119. [Google Scholar] [CrossRef]
- Taylor, K.L.; Fitzsimons, C.; Mutrie, N. Objective and Subjective Assessments of Normal Walking Pace, in Comparison with that Recommended for Moderate Intensity Physical Activity. Int. J. Exerc. Sci. 2010, 3, 87–96. [Google Scholar] [CrossRef]
- Korea Ministry of Health and Welfare. Enforcement Rule of the Bioethics and Safety Act. Available online: https://www.law.go.kr/법령/생명윤리및안전에관한법률시행규칙/(20240821,01048,20240816)/제2조 (accessed on 29 April 2025).
- Stryd. Stryd (Version 8.15.54) [Mobile app]. Google Play. 2024. Available online: https://play.google.com/store/apps/details?id=com.stryd.pioneer&hl=en_US (accessed on 10 January 2025).
- San-gil-saem[Naduri]; NETGENETECH Ltd. San-gil-saem (Version 2.9.3) [Mobile app]. Onestore. 2024. Available online: https://m.onestore.co.kr/ko-kr/apps/appsDetail.omp?prodId=0000764451 (accessed on 10 January 2025).
- Rambler (Hike, Walk, Travel, Bike, Map, Application); Bientus, Inc. Rambler (Version 2.64.15) [Mobile app]. Google Play. 2024. Available online: https://play.google.com/store/apps/details?id=com.bientus.cirque.android&hl=ko&gl=US (accessed on 10 January 2025).
- Ross, R.; ALDuhishy, A.; González-Haro, C. Validation of the Cosmed K4b2 Portable Metabolic System During Running Outdoors. J. Strength Cond. Res. 2020, 34, 124–133. [Google Scholar] [CrossRef]
- Costello, K.; Woods, D.; Toulouse, A.; Davis, P.R. Comparisons of Portable Metabolic Sensors During Outdoor Cycling: 188 Board #26 May 29 9:30 AM–11:00 AM. Med. Sci. Sports Exerc. 2019, 51, 36–37. [Google Scholar] [CrossRef]
- Heidari, S.; Babor, T.F.; De Castro, P.; Tort, S.; Curno, M. Sex and Gender Equity in Research: Rationale for the SAGER Guidelines and Recommended Use. Res. Integr. Peer Rev. 2016, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.W.; Montes, J.; Stone, T.M.; Rietjens, R.W.; Young, J.C.; DeBeliso, M.; Navalta, J.W. Cardiovascular and Perceived Exertion Responses to Leisure Trail Hiking. J. Outdoor Recreat. Educ. Leadersh. 2015, 7, 83–92. [Google Scholar] [CrossRef]
- Majed, L.; Ibrahim, R.; Lock, M.J.; Jabbour, G. Walking Around the Preferred Speed: Examination of Metabolic, Perceptual, Spatiotemporal and Stability Parameters. Front. Physiol. 2024, 15, 1357172. [Google Scholar] [CrossRef] [PubMed]
- Julius, L.M.; Brach, J.S.; Wert, D.M.; VanSwearingen, J.M. Perceived Effort of Walking: Relationship with Gait, Physical Function and Activity, Fear of Falling, and Confidence in Walking in Older Adults with Mobility Limitations. Phys. Ther. 2012, 92, 1268–1277. [Google Scholar] [CrossRef]
- Rejeski, W.J. The Perception of Exertion: A Social Psychophysiological Integration. J. Sport Psychol. 1981, 3, 305–320. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans; U.S. Department of Health and Human Services: Washington, DC, USA, 2018. [Google Scholar]
- Schantz, P.; Salier Eriksson, J.; Rosdahl, H. The Heart Rate Method for Estimating Oxygen Uptake: Analyses of Reproducibility Using a Range of Heart Rates from Commuter Walking. Eur. J. Appl. Physiol. 2019, 119, 2655–2671. [Google Scholar] [CrossRef]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic Equivalents (METS) in Exercise Testing, Exercise Prescription, and Evaluation of Functional Capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Schmitt, A.C.; Baudendistel, S.T.; Lipat, A.L.; White, T.A.; Hass, C.J. Walking Indoors, Outdoors, and on a Treadmill: Gait Differences in Healthy Young and Older Adults. Gait Posture 2021, 90, 468–474. [Google Scholar] [CrossRef]
- Schmitt, A.C.; Baudendistel, S.L.; Lipat, A.L.; White, T.; Hass, C.J. Differences in Indoor, Outdoor, and Treadmill Walking in Healthy Young Adults. Med. Sci. Sports Exerc. 2019, 51, 700. [Google Scholar] [CrossRef]
- Tamburini, P.; Storm, F.; Buckley, C.; Bisi, M.C.; Stagni, R.; Mazzà, C. Moving from Laboratory to Real Life Conditions: Influence on the Assessment of Variability and Stability of Gait. Gait Posture 2018, 59, 248–252. [Google Scholar] [CrossRef]
- Willen, C.; Lehmann, K.; Sunnerhagen, K. Walking Speed Indoors and Outdoors in Healthy Persons and in Persons with Late Effects of Polio. J. Neurol. Res. 2013, 3, 62–67. [Google Scholar] [CrossRef]
- Krinski, K.; Machado, D.G.S.; Lirani, L.S.; DaSilva, S.G.; Costa, E.C.; Hardcastle, S.J.; Elsangedy, H.M. Let’s Walk Outdoors! Self-Paced Walking Outdoors Improves Future Intention to Exercise in Women with Obesity. J. Sport Exerc. Psychol. 2017, 39, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.P.; Maddock, J.E. Observational Park-Based Physical Activity Studies: A Systematic Review of the Literature. Prev. Med. 2016, 89, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Calogiuri, G.; Litleskare, S.; Fagerheim, K.A.; Rydgren, T.L.; Brambilla, E.; Thurston, M. Experiencing Nature Through Immersive Virtual Environments: Environmental Perceptions, Physical Engagement, and Affective Responses During a Simulated Nature Walk. Front. Psychol. 2018, 8, 2321. [Google Scholar] [CrossRef]
- Potteiger, J.A.; Schroeder, J.M.; Goff, K.L. Influence of Music on Ratings of Perceived Exertion during 20 Minutes of Moderate Intensity Exercise. Percept. Mot. Ski. 2000, 91, 848–854. [Google Scholar] [CrossRef]
Variables | Total (n = 10) | Male (n = 5) | Female (n = 5) |
---|---|---|---|
Age (years) | 48.2 ± 6.7 | 46.0 ± 7.4 | 50.4 ± 6.0 |
Height (cm) | 166.7 ± 9.6 | 173.8 ± 6.8 | 159.5 ± 5.6 |
Weight (kg) | 70.0 ± 9.9 | 75.4 ± 11.6 | 64.7 ± 3.9 |
Body mass index (kg/m2) | 25.4 ± 2.5 | 24.9 ± 2.1 | 26.0 ± 3.1 |
Leg length (cm) | 87.7 ± 4.2 | 87.1 ± 4.9 | 88.2 ± 3.8 |
Outdoor Forest Trail Walking | Indoor Treadmill Walking | |
---|---|---|
Delivery of study overview and informed consent; completion of physical activity readiness form; setup of devices and installation of necessary mobile applications; initial assessment of baseline heart rate (HR) and oxygen saturation (OS); weighing participants with all equipment; logging temperature and humidity data from the trail environment | Preparation | Delivery of study purpose and collection of informed consent; completion of physical activity readiness form; anthropometric data collection (height, weight, leg length); configuration of devices and installation of required applications; initial measurements of resting blood pressure and oxygen saturation (OS); recording total body weight with all gear attached |
↓ | ||
Activation of electronic HR monitors, gait tracking devices, and GPS apps; participants reported perceived exertion (RPE) at 10 min intervals | Experiment start | Initialization of metabolic analyzer, heart rate monitor, and gait tracking sensor |
↓ | ||
Collection of OS and RPE data prior to completing each segment | At the 200 m and 400 m points of each segment | Assessment of OS, blood pressure, and perceived exertion (RPE) |
↓ | ||
Collection of OS and RPE data prior to completing each segment | Right before the end of each segment | Assessment of OS, blood pressure, and perceived exertion (RPE); documentation of ambient indoor temperature and humidity |
↓ | ||
Logging time of segment completion | End of each segment | Time-stamping segment end using a marker for respiratory gas measurement |
↓ | ||
Deactivation and data-saving from HR monitor, gait tracker, and GPS tools | Experiment end | Termination and data-saving from metabolic analyzer, HR monitor, and gait recording device |
Grade | Slope (%) and Distance (km) |
---|---|
Moderate | 17 and 0.5 |
Difficult | 22 and 0.5 |
Very Difficult | 27 and 0.5 |
Grade | Gender | SC | SS | RPE | HR | OS |
---|---|---|---|---|---|---|
Moderate | Total (n = 10) | 95.50 ±9.68 | 3.64 ±0.48 | 11.30 ±1.25 | 145.46 ±11.61 | 96.00 ±1.33 |
Male (n = 5) | 97.20 ±12.66 | 3.88 ±0.58 | 10.80 ±1.10 | 137.22 ±10.26 | 96.00 ±1.58 | |
Female (n = 5) | 93.80 ±6.57 | 3.40 ±0.16 | 11.80 ±1.30 | 153.70 ±5.30 | 96.00 ±1.22 | |
Difficult | Total (n = 10) | 86.30 ±9.90 | 2.96 ±0.57 | 14.70 ±1.25 | 154.45 ±15.40 | 95.30 ±1.06 |
Male (n = 5) | 88.80 ±12.21 | 3.34 ±0.56 | 14.00 ±1.00 | 153.98 ±13.48 | 95.00 ±0.71 | |
Female (n = 5) | 83.80 ±7.46 | 2.58 ±0.25 | 15.40 ±1.14 | 154.92 ±18.75 | 95.60 ±1.34 | |
Very Difficult | Total (n = 10) | 79.80 ±10.91 | 2.54 ±0.57 | 15.40 ±2.17 | 158.24 ±14.84 | 96.40 ±1.07 |
Male (n = 5) | 85.00 ±13.91 | 2.96 ±0.52 | 14.80 ±1.64 | 157.84 ±16.23 | 96.40 ±1.52 | |
Female (n = 5) | 74.60 ±2.61 | 2.12 ±0.11 | 16.00 ±2.65 | 158.64 ±15.22 | 96.40 ±0.55 |
Classification | SC | SS | RPE | HR | OS | |
---|---|---|---|---|---|---|
RM ANOVA (n = 10) | F-value | 48.64 *** | 2.41 | 64.19 *** | 3.54 | 28.87 *** |
GES | 0.58 | 0.15 | 0.44 | 0.14 | 0.31 | |
Bonfferoni-adjusted pairwise comparison (mean difference) | ||||||
Moderate—Difficult | −3.4 *** | - | 0.68 *** | - | 9.2 ** | |
Moderate—Very Difficult | −4.1 *** | - | 1.10 *** | - | 15.7 *** | |
Difficult—Very Difficult | −0.7 | - | 0.42 *** | - | 6.5 ** |
Grade | Gender | EE | MET | VO2 | SC | SS | RPE | HR | OS |
---|---|---|---|---|---|---|---|---|---|
Moderate | Total (n = 10) | 567.67 ±103.39 | 7.61 ±1.12 | 26.65 ±3.94 | 107.30 ±10.05 | 3.63 ±0.49 | 14.30 ±1.70 | 150.36 ±13.90 | 95.90 ±0.32 |
Male (n = 5) | 635.84 ±51.06 | 8.10 ±0.94 | 28.44 ±3.24 | 103.78 ±10.40 | 3.88 ±0.60 | 13.40 ±1.14 | 139.42 ±9.35 | 95.80 ±0.45 | |
Female (n = 5) | 499.50 ±88.66 | 7.12 ±1.04 | 24.86 ±3.63 | 110.82 ±8.39 | 3.38 ±0.16 | 15.20 ±1.60 | 161.30 ±6.20 | 96.00 ±0.00 | |
Difficult | Total (n = 10) | 580.55 ±105.67 | 7.79 ±1.40 | 27.37 ±4.92 | 98.58 ±13.21 | 2.97 ±0.56 | 14.60 ±1.71 | 150.95 ±13.77 | 96.40 ±0.84 |
Male (n = 5) | 668.12 ±19.22 | 8.56 ±1.38 | 30.10 ±4.87 | 96.56 ±10.83 | 3.34 ±0.56 | 14.20 ±1.64 | 145.12 ±14.12 | 95.80 ±0.84 | |
Female (n = 5) | 492.98 ±66.84 | 7.02 ±0.90 | 24.64 ±3.11 | 100.60 ±14.57 | 2.60 ±0.19 | 15.00 ±1.67 | 156.78 ±10.67 | 97.00 ±0.00 | |
Very Difficult | Total (n = 10) | 587.84 ±143.72 | 7.84 ±1.75 | 27.46 ±6.09 | 93.45 ±11.58 | 2.53 ±0.55 | 15.50 ±1.51 | 159.24 ±15.76 | 96.00 ±0.67 |
Male (n = 5) | 707.02 ±7.32 | 9.02 ±1.39 | 31.62 ±4.77 | 92.52 ±9.68 | 2.92 ±0.54 | 15.00 ±1.58 | 154.68 ±22.08 | 95.60 ±0.55 | |
Female (n = 5) | 468.66 ±93.44 | 6.66 ±1.08 | 23.30 ±3.74 | 94.38 ±12.82 | 2.14 ±0.12 | 16.00 ±1.26 | 163.80 ±3.90 | 96.40 ±0.49 |
Classification | EE | MET | VO2 | SC | SS | RPE | HR | OS | |
---|---|---|---|---|---|---|---|---|---|
RM ANOVA (n = 10) | F-value | 28.20 *** | 51.59 *** | 39.32 *** | 48.01 *** | 85.33 *** | 10.94 *** | 54.94 *** | 48.58 *** |
GES | 0.32 | 0.61 | 0.64 | 0.64 | 0.77 | 0.25 | 0.61 | 0.64 | |
Bonfferoni-adjusted pairwise comparison (Mean difference) | |||||||||
Moderate—Difficult | 8.72 * | 0.66 *** | −0.3 | −0.18 | −0.59 | −0.5 | −12.88 | −0.72 | |
Moderate—Very Difficult | 13.85 *** | 1.10 *** | −1.2 * | −0.23 | −8.88 | −0.1 | −20.17 | −0.81 | |
Difficult—Very Difficult | 5.13 * | 0.44 *** | −0.9 ** | −0.05 | −8.29 | 0.4 | −7.29 | −0.09 |
Grade | SC | SS | RPE | HR | OS |
---|---|---|---|---|---|
Moderate | 4.26 ** | −0.55 | 5.38 *** | 1.71 | −0.25 |
Difficult | 4.01 ** | 1.00 | −0.21 | −1.01 | 3.497 ** |
Very Difficult | 3.52 ** | −0.557 | 0.18 | 0.22 | −1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Ryu, S.; Choi, Y.; Yun, S.; Lee, D.T. Physiological Responses to Trail Difficulty in Indoor and Outdoor Forest Walking Environments. Forests 2025, 16, 934. https://doi.org/10.3390/f16060934
Lee S, Ryu S, Choi Y, Yun S, Lee DT. Physiological Responses to Trail Difficulty in Indoor and Outdoor Forest Walking Environments. Forests. 2025; 16(6):934. https://doi.org/10.3390/f16060934
Chicago/Turabian StyleLee, Sugwang, Sungmin Ryu, Yeji Choi, Somi Yun, and Dae Taek Lee. 2025. "Physiological Responses to Trail Difficulty in Indoor and Outdoor Forest Walking Environments" Forests 16, no. 6: 934. https://doi.org/10.3390/f16060934
APA StyleLee, S., Ryu, S., Choi, Y., Yun, S., & Lee, D. T. (2025). Physiological Responses to Trail Difficulty in Indoor and Outdoor Forest Walking Environments. Forests, 16(6), 934. https://doi.org/10.3390/f16060934