Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Plot Characteristics
2.3. Soil Measurements
2.4. Root Measurements
2.5. Additional Measurements
2.6. Statistical Analysis
3. Results
3.1. Soil Texture
3.2. Root Abundance and Root Area Ratio
3.3. Runoff and Sediment Yield
3.4. Regression Models
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalir, P.; Naghdi, R.; Gholami, V. Assessing the rice straw effects on the soil erosion rate in forest road cut slope embankments. Casp. J. Environ. Sci. 2021, 19, 325–339. [Google Scholar]
- Rahmat, A.; Noda, K.; Onishi, T.; Senge, M. Runoff characteristics of forest watersheds under different forest managements. Rev. Agric. Sci. 2018, 6, 119–133. [Google Scholar] [CrossRef]
- Jones, A.J.; Lal, R.; Huggins, D.R. Soil erosion and productivity research: A regional approach. Am. J. Altern. Agric. 1997, 12, 185–192. [Google Scholar] [CrossRef]
- Miller, W.W.; Johnson, D.W.; Denton, C.; Verburg, P.S.J.; Dana, G.L.; Walker, R.F. Inconspicuous nutrient laden surface runoff from mature forest Sierran watersheds. Water Air Soil Pollut. 2005, 163, 3–17. [Google Scholar] [CrossRef]
- Aldrich, C. Learning by Doing: A Comprehensive Guide to Simulations, Computer Games, and Pedagogy in E-Learning and Other Educational Experiences; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Connelly, J.W.; Schroeder, M.A.; Sands, A.R.; Braun, C.E. Guidelines to manage sage grouse populations and their habitats. Wildl. Soc. Bull. 2000, 28, 967–985. [Google Scholar]
- Pierson, F.B.; Bates, J.D.; Svejcar, T.J.; Hardegree, S.P. Runoff and erosion after cutting western juniper. Rangel. Ecol. Manag. 2007, 60, 285–292. [Google Scholar] [CrossRef]
- Akay, A.E.; Erdaş, O.; Mahmut, R.; Yüksel, A. Estimating sediment yield from a forest road network by using a sediment prediction model and GIS techniques. Build. Environ. 2008, 43, 687–695. [Google Scholar] [CrossRef]
- Megahan, W.F. Logging, erosion, sedimentation: Are they dirty words? J. For. 1972, 70, 403–407. [Google Scholar]
- Dalir, P.; Naghdi, R.; Gholami, V. Modelling of forest road sediment in the northern forest of Iran (Lomir Watershed). J. For. Sci. 2014, 60, 109–114. [Google Scholar] [CrossRef]
- Li, X.; Xiao, Q.; Niu, J.; Dymond, S.; van Doorn, N.S.; Yu, X.; Xie, B.; Lv, X.; Zhang, K.; Li, J. Process-based rainfall interception by small trees in Northern China: The effect of rainfall traits and crown structure characteristics. Agric. For. Meteorol. 2016, 218, 65–73. [Google Scholar] [CrossRef]
- Duran, Z.V.H.; Rodriguez, P.C.R.; Francia, M.J.R.; Carceles, R.B.; Martinez, R.A.; Perez, G.P. Harvest intensity of aromatic shrubs vs soil-erosion: An equilibrium for sustainable agriculture (SE Spain). Catena 2008, 73, 107–116. [Google Scholar] [CrossRef]
- Rey, F. Influence of vegetation distribution on sediment yield in forested marly gullies. Catena 2003, 50, 549–562. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhang, Z.Q. Impacts of forest vegetation on watershed runoff in dry land area. J. Nat. Resour. 2001, 16, 439–444. [Google Scholar]
- Cerdá, A. Soil water erosion on road embankments in eastern Spain. Sci. Total Environ. 2007, 378, 151–155. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2014, 161, 460–468. [Google Scholar] [CrossRef]
- Naghdi, R.; Dalir, P.; Gholami, V.; Pourghasemi, H.R. Modeling of sediment generation from forest roads employing SEDMODL and its calibration for Hyrcanian forests in northern Iran. Environ. Earth Sci. 2017, 76, 414. [Google Scholar] [CrossRef]
- Thomas, A.D.; Elliott, D.R.; Dougill, A.J.; Stringer, L.C.; Hoon, S.R.; Sen, R. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degrad. Dev. 2018, 29, 1306–1316. [Google Scholar] [CrossRef]
- Shinohara, Y.; Misumi, Y.; Kubota, T.; Nanko, K. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. Catena 2019, 172, 451–460. [Google Scholar] [CrossRef]
- Genet, M.; Kokutse, N.; Stokes, A.; Fourcaud, T.; Cai, X.; Ji, J.; Mickovski, S. Root reinforcement in plantations of Cryptomeria japonica D. Don: Effect of tree age, stand structure on slope stability. For. Ecol. Manag. 2008, 256, 1517–1526. [Google Scholar] [CrossRef]
- Bredemeier, M. Forest management and the water cycle: Introduction to the challenge. In Forest Management and the Water Cycle: An Ecosystem-Based Approach; Springer: Berlin/Heidelberg, Germany, 2011; pp. ix–xv. [Google Scholar]
- Fernández, C.; Vega, J.A. Are erosion barriers and straw mulching effective for controlling soil erosion after a high severity wildfire in NW Spain? Ecol. Eng. 2016, 87, 132–138. [Google Scholar] [CrossRef]
- Lopez, A.J.; Martinez-Zavala, L.; Bellinfante, N. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Sci. Total Environ. 2008, 4, 937–944. [Google Scholar]
- Foltz, R.B.; Wagenbrenner, J. An evaluation of three wood shred blends for post-fire erosion control using indoor simulated rain events on small plots. Catena 2010, 80, 86–94. [Google Scholar] [CrossRef]
- Jordán, A.; Martínez-Zavala, L. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. For. Ecol. Manag. 2008, 255, 913–919. [Google Scholar] [CrossRef]
- Abdi, E.; Majnounian, B.; Genet, M.; Rahimi, H. Quantifying the effects of root reinforcement of Persian Ironwood (Parrotia persica) on slope stability; a case study: Hillslope of Hyrcanian forests, northern Iran. Ecol. Eng. 2010, 36, 1409–1416. [Google Scholar] [CrossRef]
- Dalir, P.; Naghdi, R.; Gholami, V.; Tavankar, F.; Latterini, F.; Venanzi, R.; Picchio, R. Risk assessment of runoff generation using an artificial neural network and field plots in road and forest land areas. Nat. Hazards 2022, 113, 1451–1469. [Google Scholar] [CrossRef]
- Kalra, Y.P.; Maynard, D.G. Methods Manual for Forest Soil and Plant Analysis; Forestry Canada, Northwest Region, Northern Forestry Centre: Edmonton, AB, Canada, 1991. [Google Scholar]
- Naghdi, R.; Solgi, A.; Ilstedt, U. Soil chemical and physical properties after skidding by rubber-tired skidder in Hyrcanian forest, Iran. Geoderma 2016, 265, 12–18. [Google Scholar] [CrossRef]
- Korhonen, L.; Korhonen, K.T.; Rautiainen, M.; Stenberg, P. Estimation of forest canopy cover: A comparison of field measurement techniques. Silva Fenn. 2006, 40, 315. [Google Scholar] [CrossRef]
- Ganatsios, H.P.; Tsioras, P.A.; Papaioannou, A.G.; Blinn, C.R. Short term impacts of harvesting operations on soil chemical properties in a Mediterranean oak ecosystem. Croat. J. For. Eng. 2021, 42, 463–476. [Google Scholar] [CrossRef]
- Papaioannou, A.G. Ecological and soil conditions of black pine (Pinus nigra Arn.) stands in the area of the Russian Monastery at Mount Athos. Russ. J. Ecol. 2015, 46, 438–443. [Google Scholar] [CrossRef]
- Webb, B.; Robinson, D.A.; Marshall, M.R.; Ford, H.; Pagella, T.; Healey, J.R.; Smith, A.R. Variation in root morphology amongst tree species influences soil hydraulic conductivity and macroporosity. Geoderma 2022, 425, 116057. [Google Scholar] [CrossRef]
- Comino, E.; Marengo, P. Root tensile strength of three shrub species: Rosa canina, Cotoneaster dammeri and Juniperus horizontalis: Soil reinforcement estimation by laboratory tests. Catena 2010, 82, 227–235. [Google Scholar] [CrossRef]
- Lotfalian, M.; Babadi, T.Y.; Akbari, H. Impacts of soil stabilization treatments on reducing soil loss and runoff in cutslope of forest roads in Hyrcanian forests. Catena 2019, 172, 158–162. [Google Scholar] [CrossRef]
- Vannoppen, W.; De Baets, S.; Keeble, J.; Dong, Y.; Poesen, J. How do root and soil characteristics affect the erosion-reducing potential of plant species? Ecol. Eng. 2017, 109, 186–195. [Google Scholar] [CrossRef]
- Katuwal, S.; Vermang, J.; Cornelis, W.M.; Gabriels, D.; Moldrup, P.; de Jonge, L.W. Effect of root density on erosion and erodibility of a loamy soil under simulated rain. Soil Sci. 2013, 178, 29–36. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Gyssels, G.; Knapen, A. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology 2006, 76, 54–67. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Wang, J.-F.; Yang, Y.-F.; Wang, B.; Liu, G.-B.; Li, J.-M. Soil detachment caused by flowing water erosion in six typical herbaceous plant root systems on the Loess Plateau, China. Biosyst. Eng. 2022, 217, 56–67. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, G.; Zhang, P.; Yi, L. Influence of vegetation parameters on runoff and sediment characteristics in patterned Artemisia capillaris plots. J. Arid Land 2014, 6, 352–360. [Google Scholar] [CrossRef]
- Burylo, M.; Hudek, C.; Rey, F. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena 2011, 84, 70–78. [Google Scholar] [CrossRef]
- Centenaro, G.; Hudek, C.; Zanella, A.; Crivellaro, A. Root-soil physical and biotic interactions with a focus on tree root systems: A review. Appl. Soil Ecol. 2018, 123, 318–327. [Google Scholar] [CrossRef]
- Widmer, T.L.; Mitkowski, N.A.; Abawi, G.S. Soil organic matter and management of plant-parasitic nematodes. J. Nematol. 2002, 34, 289–295. [Google Scholar] [PubMed]
- Osman, K.T.; Osman, K.T. Physical Properties of Forest Soils. In Forest Soils: Properties and Management; Springer: Cham, Switzerland, 2013; pp. 19–44. [Google Scholar]
- Zhang, D.; Wang, Z.; Guo, Q.; Lian, J.; Chen, L. Increase and Spatial Variation in Soil Infiltration Rates Associated with Fibrous and Tap Tree Roots. Water 2019, 11, 1700. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Tang, Z.; Zhang, Y. Effects of Soil Physical Properties on Soil Infiltration in Forest Ecosystems of Southeast China. Forests 2024, 15, 1470. [Google Scholar] [CrossRef]
- Zhang, S.; Grip, H.; Lövdahl, L. Effect of soil compaction on hydraulic properties of two loess soils in China. Soil Tillage Res. 2006, 90, 117–125. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Rahmani, P.; Tsioras, P.A. Influence of machine type, traffic intensity, and travel speed on selected soil physical properties during skidding operations. Casp. J. Environ. Sci. 2024, 22, 727–740. [Google Scholar]
- Keller, T.; Lamandé, M.; Peth, S.; Berli, M.; Delenne, J.Y.; Baumgarten, W.; Rabbel, W.; Radjaï, F.; Rajchenbach, J.; Selvadurai, A.P.S.; et al. An interdisciplinary approach towards improved understanding of soil deformation during compaction. Soil Tillage Res. 2013, 128, 61–80. [Google Scholar] [CrossRef]
- Zemke, J.J.; Enderling, M.; Klein, A.; Skubski, M. The Influence of Soil Compaction on Runoff Formation. A Case Study Focusing on Skid Trails at Forested Andosol Sites. Geosciences 2019, 9, 204. [Google Scholar] [CrossRef]
- Masumian, A.; Sheykh, R.M.R.; Ahmad, S.; Keivan, B.F.; Enrico, M.; Miroslav, H.; Leila, W.; Geraeli, H. Assessment of the impact of ground-based skidding on soil physical properties: Initial effect and medium-term recovery. Int. J. For. Eng. 2024, 35, 284–295. [Google Scholar] [CrossRef]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food and Production; FAO: Rome, Italy, 2005. [Google Scholar]
- Ahmed, N.; Al-Mutairi, K.A. Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices. Sustainability 2022, 14, 7803. [Google Scholar] [CrossRef]
- Du, X.; Jian, J.; Du, C.; Stewart, R.D. Conservation management decreases surface runoff and soil erosion. Int. Soil Water Conserv. Res. 2022, 10, 188–196. [Google Scholar] [CrossRef]
- Itsukushima, R.; Ideta, K.; Iwanaga, Y.; Sato, T.; Shimatani, Y. Evaluation of infiltration capacity and water retention potential of amended soil using bamboo charcoal and humus for urban flood prevention. In Proceedings of the 11th International Symposium on Ecohydraulics, Melbourne, Australia, 8–12 February 2016; pp. 7–12. [Google Scholar]
- Guerra, A. The effect of organic matter content on soil erosion in simulated rainfall experiments in W. Sussex, UK. Soil Use Manag. 1994, 10, 60–64. [Google Scholar] [CrossRef]
- Ganatsios, H.P.; Tsioras, P.A.; Pavlidis, T. Water yield changes as a result of silvicultural treatments in an oak ecosystem. For. Ecol. Manag. 2010, 260, 1367–1374. [Google Scholar] [CrossRef]
- Todisco, F.; Vergni, L.; Vinci, A.; Torri, D. Infiltration and bulk density dynamics with simulated rainfall sequences. Catena 2022, 218, 106542. [Google Scholar] [CrossRef]
- De Ploey, J. The Ambivalent Effects of Some Factors of Erosion. In Mémoires de l’Institut de Géologie de l’Université de Louvain; Université Catholique de Louvain: Ottignies-Louvain-la-Neuve, Belgium, 1981; Volume 31, pp. 171–181. [Google Scholar]
- Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; de Kroon, H.; Mommer, L.; et al. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant Soil 2015, 397, 1–16. [Google Scholar] [CrossRef]
- Jarvis, N.; Koestel, J.; Messing, I.; Moeys, J.; Lindahl, A. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 2013, 17, 5185–5195. [Google Scholar] [CrossRef]
- Schmid, I.; Kazda, M. Vertical distribution, radial growth of coarse roots in pure, mixed stands of Fagus sylvatica, Picea abies. Can. J. For. Res. 2001, 31, 539–548. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Reubens, B.; Wemans, K.; De Baerdemaeker, J.; Muys, B. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 2008, 305, 207–226. [Google Scholar] [CrossRef]
- Gray, D.H.; Barker, D. Root-soil mechanics and interactions. In Riparian Vegetation and Fluvial Geomorphology; Bennett, J.J., Simon, A., Eds.; American Geophysical Union: New York, NY, USA, 2004; Volume 8, pp. 113–123. [Google Scholar]
- Yang, Y.; McCormack, M.L.; Hu, H.; Bao, W.; Li, F. Linking fine-root architecture, vertical distribution and growth rate in temperate mountain shrubs. Oikos 2023, 2023, e08491. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, H.; Fu, X.; Dai, X.; Kou, L.; Wang, J. Elaborate differences between trees and understory plants in the deployment of fine roots. Plant Soil 2018, 431, 433–447. [Google Scholar] [CrossRef]
- Wynn, T.M.; Mostaghimi, S.; Burger, J.A.; Harpold, A.A.; Henderson, M.B.; Henry, L.-A. Variation in Root Density along Stream Banks. J. Environ. Qual. 2004, 33, 2030–2039. [Google Scholar] [CrossRef]
Species | Particle Size Distribution | ||
---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | |
Medlar | 67.89 ± 1.31 | 10.50 ± 0.59 | 21.61 ± 1.31 |
Hawthorn | 60.89 ± 1.71 | 15.83 ± 1.12 | 23.28 ± 1.69 |
Alder | 58.89 ± 2.18 | 17.61 ± 0.91 | 23.39 ± 2.17 |
Species | N | Mean | SD | S.E. | Range |
---|---|---|---|---|---|
Medlar | 24 | 19.33 a | 3.69 | 1.12 | 13–28 |
Alder | 24 | 24.80 b | 7.14 | 2.12 | 16–41 |
Hawthorn | 24 | 34.92 c | 5.47 | 1.64 | 28–44 |
Species | N | Mean | SD | S.E. | Range |
---|---|---|---|---|---|
Medlar | 24 | 0.015 a | 0.006 | 0.001 | 0.008–0.030 |
Alder | 24 | 0.021 b | 0.005 | 0.001 | 0.011–0.031 |
Hawthorn | 24 | 0.027 c | 0.009 | 0.002 | 0.014–0.050 |
Model | Dependent Variable | Source | SS | df | η2p | F | p-Value |
---|---|---|---|---|---|---|---|
1 | Runoff | Corrected Model | 1,003,310 | 5 | 0.659 | 18.527 | <0.001 |
Intercept | 24,332 | 1 | 0.045 | 2.247 | 0.140 | ||
Bulk density | 185,139 | 1 | 0.263 | 17.094 | <0.001 | ||
SOC | 129,158 | 1 | 0.199 | 11.925 | 0.001 | ||
Surface cover | 92,919 | 1 | 0.152 | 8.579 | 0.005 | ||
Species | 83,987 | 2 | 0.139 | 3.877 | 0.027 | ||
Error | 519,869 | 48 | |||||
2 | Sediment yield | Corrected Model | 5.580 | 4 | 0.529 | 13.780 | <0.001 |
Intercept | 0.237 | 1 | 0.046 | 2.342 | 0.132 | ||
Bulk density | 1.077 | 1 | 0.178 | 10.639 | 0.002 | ||
SOC | 1.906 | 1 | 0.278 | 18.826 | <0.001 | ||
Species | 1.280 | 2 | 0.205 | 6.321 | <0.001 | ||
Error | 4.407 | 50 |
Model | Adjusted R2 | Parameter Estimate | B | S.E. | t | 95% CI | ||
---|---|---|---|---|---|---|---|---|
p-Value | Lower Bound | Upper Bound | ||||||
1 | 0.623 | Intercept | −575,726 | 419,476 | −1.372 | 0.176 | −1,419,139 | 267,687 |
Bulk density | 772,288 | 186,791 | 4.134 | 0.000 | 396,719 | 1,147,857 | ||
SOC | −119,134 | 34,499 | −3.453 | 0.001 | −188,498 | −49,770 | ||
Surface cover | −4084 | 1394 | −2.929 | 0.005 | −6888 | −1281 | ||
[species = alder] | −47,736 | 42,157 | −1.132 | 0.263 | −132,499 | 37,027 | ||
[species = hawthorn] | −114,574 | 41,858 | −2.737 | 0.009 | −198,735 | −30,414 | ||
[species = medlar] | 0.000 | |||||||
2 | 0.491 | Intercept | −1.697 | 1.243 | −1.365 | 0.178 | −4.194 | 0.801 |
Bulk density | 1.849 | 0.567 | 3.262 | 0.002 | 0.710 | 2.988 | ||
SOC | −0.429 | 0.099 | −4.339 | <0.001 | −0.628 | −0.230 | ||
[species = alder] | −0.184 | 0.125 | −1.470 | 0.148 | −0.434 | 0.067 | ||
[species = hawthorn] | −0.406 | 0.115 | −3.526 | 0.001 | −0.638 | −0.175 | ||
[species = medlar] | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalir, P.; Naghdi, R.; Jafari, S.; Tsioras, P.A. Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran. Forests 2025, 16, 1013. https://doi.org/10.3390/f16061013
Dalir P, Naghdi R, Jafari S, Tsioras PA. Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran. Forests. 2025; 16(6):1013. https://doi.org/10.3390/f16061013
Chicago/Turabian StyleDalir, Pejman, Ramin Naghdi, Sanaz Jafari, and Petros A. Tsioras. 2025. "Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran" Forests 16, no. 6: 1013. https://doi.org/10.3390/f16061013
APA StyleDalir, P., Naghdi, R., Jafari, S., & Tsioras, P. A. (2025). Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran. Forests, 16(6), 1013. https://doi.org/10.3390/f16061013