Stem Profile Estimation of Pinus densiflora in Korea Using Machine Learning Models: Towards Precision Forestry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Variable Exponent-Based Model
2.3. Machine Learning-Based Models
2.4. Performance Evaluation of Prediction Models
2.5. Stem Taper Estimation and Visualization
3. Results and Discussion
3.1. Variable Exponent-Based Model Validation
3.2. Comparison of Machine Learning Models’ Performance
3.3. Visualization and Interpretation of Stem Taper Curves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | Random Forest |
XGBoost | eXtreme Gradient Boosting |
ANN | Artificial Neural Network |
References
- Kang, J.T.; Son, Y.-M.; Kim, S.W.; Park, H.; Hwang, J.S. Development of Local Stem Volume Table for Larix kaempferi Using Kozak’s Stem Taper Model. J. Agric. Life Sci. 2014, 48, 119–131. [Google Scholar] [CrossRef]
- Tewari, V.P.; Kumar, V.S.K. Construction and Validation of Tree Volume Functions for Dalbergia sissoo Grown under Irrigated Conditions in the Hot Desert of India. J. Trop. For. Sci. 2001, 13, 503–511. [Google Scholar]
- Max, T.A.; Burkhart, H.E. Segmented polynomial regression applied to taper equations. For. Sci. 1976, 22, 283–289. [Google Scholar] [CrossRef]
- Hjelm, B. Taper and Volume Equations for Poplar Trees Growing on Farmland in Sweden. Licentiate Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2011. [Google Scholar]
- Kozak, A. A variable-exponent taper equation. Can. J. For. Res. 1988, 18, 1363–1368. [Google Scholar] [CrossRef]
- Kang, J.T.; Son, Y.M.; Kim, S.W.; Lee, S.; Park, H. Development of Local Stem Volume Table for Pinus densiflora S. et Z. Using Tree Stem Taper Model. Korean J. Agric. For. Meteorol. (KJAFM) 2014, 16, 327–335. [Google Scholar] [CrossRef]
- Kang, J.T.; Moon, H.S.; Son, Y.M.; An, K.W. An Estimation on the Stem Volume of Cryptomeria japonica in Jeju Using Kozak’s Stem Taper Model. J. Korean Islands (TJOKI) 2015, 27, 145–160. [Google Scholar]
- Kang, J.T.; Son, Y.M.; Kim, H.; Park, H. Developing Optimal Site Prediction Model for Evergreen Broad-Leaved Trees, Machilus thunbergii in Warm Temperate Zone of the Korean Peninsula. J. Agric. Life Sci. 2014, 48, 39–54. [Google Scholar] [CrossRef]
- Son, Y.M.; Kang, J.T.; Jeon, J.H.; Ko, C. The Estimation of Stem Volume for Pinus thunbergii by Coast Using Kozak’s Stem Taper Model in Korea. J. Korean Islands (TJOKI) 2017, 29, 225–244. [Google Scholar] [CrossRef]
- Shin, J.H.; Han, H.; Kim, Y.H.; Yim, J.S.; Chang, Y.S. Uncertainty in Estimating Forest Growing Stock from Volume Estimation of a Standing Tree by Stem Volume Table and the Resulting Bias in Carbon Stock Estimation: A Case Study in Hongcheon-Gun, Republic of Korea. J. Clim. Change Res. 2022, 13, 355–364. [Google Scholar] [CrossRef]
- Kang, J.T.; Ko, C. The Development of a Stem Taper Equation and a Stem Table for Standing Trees of Chamaecyparis obtusa on Jeju Island and in the Southern Regions of South Korea. J. Korean Islands (TJOKI) 2020, 32, 221–233. [Google Scholar] [CrossRef]
- Lee, S.H.; Ko, C.; Shin, J.H.; Kang, J.T. Estimation of Stem Taper for Quercus acutissima Using Machine Learning Techniques. J. Agric. Life Sci. 2020, 54, 29–37. [Google Scholar] [CrossRef]
- Ko, C.; Lee, S.H.; Lee, S.J.; Kim, D.G.; Kang, J.T. Development of a Stem Taper Equation and a Stem Table for Cryptomeria japonica Stands in South Korea. J. Korean Soc. For. Sci. 2020, 109, 461–467. [Google Scholar] [CrossRef]
- Ko, C.; Moon, G.H.; Yim, J.S.; Lee, S.; Kim, D.G.; Kang, J.T. Estimation and Comparison of Stem Volume for Larix kaempferi in South Korea Using the Stem Volume Model. J. Korean Soc. For. Sci. 2019, 108, 592–599. [Google Scholar] [CrossRef]
- Son, Y.M.; Jeon, J.H.; Pyo, J.K.; Kim, K.N.; Kim, S.W.; Lee, K.H. Development of Stem Volume Table for Robinia pseudoacacia Using Kozak’s Stem Profile Model. J. Agric. Life Sci. 2012, 46, 43–49. [Google Scholar]
- Son, Y.M.; Kim, S.W.; Lee, S.; Kim, J.S. Estimation of Stand Yield and Carbon Stock for Robinia pseudoacacia Stands in Korea. J. Korean Soc. For. Sci. 2014, 103, 264–269. [Google Scholar] [CrossRef]
- Son, Y.M.; Kim, H.; Lee, H.Y.; Kim, C.M.; Kim, C.S.; Kim, J.W.; Joo, R.W.; Lee, K.H. Taper Equations and Stem Volume Table of Eucalyptus pellita and Acacia mangium Plantations in Indonesia. J. Korean Soc. For. Sci. 2009, 98, 633–638. [Google Scholar]
- Son, Y.M.; Lee, K.H.; Pyo, J.K. Development of Biomass Allometric Equations for Pinus densiflora in Central Region and Quercus variabilis. J. Agric. Life Sci. 2011, 45, 65–72. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Diamantopoulou, M.J.; Georgakis, A. Improving European Black Pine Stem Volume Prediction Using Machine Learning Models with Easily Accessible Field Measurements. Forests 2024, 15, 2251. [Google Scholar] [CrossRef]
- Sahin, A. Analyzing Regression Models and Multi-Layer Artificial Neural Network Models for Estimating Taper and Tree Volume in Crimean Pine Forests. iForest 2024, 17, 36–44. [Google Scholar] [CrossRef]
- Habeeb, H.N.; Mustafa, Y.T. Deep Learning-Based Prediction of Forest Cover Change in Duhok, Iraq: Past and Future. Forestist 2025, 75, 1–13. [Google Scholar] [CrossRef]
- Abosuliman, S.S.; Rahman, I.U.; Abdullah, S.; Qadir, A. Selection of third-party logistics in supply chain finance under probabilistic complex hesitant fuzzy sets and distance measures. Heliyon 2024, 10, e36544. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Anees, S.A.; Huang, Q.; Qin, X.; Qin, Z.; Fan, J.; Han, G.; Zhang, L.; Shafri, H.Z.M. Improving Forest Above-Ground Biomass Estimation by Integrating Individual Machine Learning Models. Forests 2024, 15, 975. [Google Scholar] [CrossRef]
- Li, R.; Weiskittel, A.R. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach. Eur. J. For. Res. 2011, 130, 219–233. [Google Scholar] [CrossRef]
- Özçelik, R.; Diamantopoulou, M.J.; Trincado, G. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey. Comput. Electron. Agric. 2019, 162, 773–782. [Google Scholar] [CrossRef]
- Shen, J.; Hu, Z.; Sharma, R.P.; Wang, G.; Meng, X.; Wang, M.; Wang, Q.; Fu, L. Modeling height–diameter relationship for poplar plantations using combined-optimization multiple hidden layer back propagation neural network. Forests 2020, 11, 442. [Google Scholar] [CrossRef]
- Scrinzi, G.; Marzullo, L.; Galvagni, D. Development of a neural network model to update forest distribution data for managed alpine stands. Ecol. Model. 2007, 206, 331–346. [Google Scholar] [CrossRef]
- Socha, J.; Netzel, P.; Cywicka, D. Stem taper approximation by artificial neural network and a regression set models. Forests 2020, 11, 79. [Google Scholar] [CrossRef]
- Korea Forest Research Institute. Economic Tree Species 1: Pinus densiflora; Research Report on Korea Forest Research Institute; Korea Forest Research Institute: Seoul, Republic of Korea, 2012. [Google Scholar]
- National Institute of Forest Science (NIFoS). Stem Volume and Biomass, Yield Table; NIFoS: Seoul, Republic of Korea, 2023. [Google Scholar]
- Li, R.; Weiskittel, A.; Dick, A.R.; Kershaw, J.A., Jr.; Seymour, R.S. Regional Stem Taper Equations for Eleven Conifer Species in the Acadian Region of North America: Development and Assessment. North. J. Appl. For. 2012, 29, 5–14. [Google Scholar] [CrossRef]
- Shin, J.H.; Han, H.; Ko, C.; Kang, J.T.; Kim, Y.H. Applying Nonlinear Mixed-Effects Models to Taper Equations: A Case Study of Pinus densiflora in Gangwon Province, Republic of Korea. J. Korean Soc. For. Sci. 2022, 111, 136–149. [Google Scholar] [CrossRef]
- Alo, A.A.; Ogana, F.N. Equations for estimating bark thickness of Gmelina arborea trees in Omo Forest Reserve, Nigeria. J. Agric. Environ. 2018, 14, 153–165. [Google Scholar]
- Li, X.; Du, H.; Mao, F.; Xu, Y.; Huang, Z.; Xuan, J.; Zhou, Y.; Hu, M. Estimation aboveground biomass in subtropical bamboo forests based on an interpretable machine learning framework. Environ. Model. Softw. 2024, 178, 106071. [Google Scholar] [CrossRef]
- Czaplewski, R.L.; Brown, A.S.; Guenther, D.G. Estimating Merchantable Tree Volume in Oregon and Washington Using Stem Profile Models; PNW-RN-459; US Department of Agriculture, Forest Service: Fort Collins, CO, USA, 1989; pp. 1–15. [Google Scholar]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H. A Taper and Volume Prediction System for Pinus densiflora in Kangwon Province, Korea. Korea For. Inst. J. For. Sci. 1999, 62, 155–166. [Google Scholar]
- Seo, Y.O. Allometric Equations, Stem Density and Biomass Expansion Factors for Cryptomeria japonica in Mount Halla, Jeju Island, Korea. J. Ecol. Environ. 2014, 37, 177–184. [Google Scholar]
- Son, Y.M.; Lee, K.H.; Kim, R.H. Estimation of Forest Biomass in Korea. J. Korean Soc. For. Sci. 2007, 96, 477–482. [Google Scholar] [CrossRef]
- Valverde, J.C.; Rubilar, R.; Medina, A.; Mardones, O.; Emhart, V.; Bozo, D.; Espinoza, Y.; Campoe, O. Taper and individual tree volume equations of Eucalyptus varieties under contrasting irrigation regimes. N. Z. J. For. Sci. 2022, 52, 15. [Google Scholar] [CrossRef]
- Sharma, M.; Zhang, S.Y. Variable-Exponent Taper Equations for Jack Pine, Black Spruce, and Balsam Fir in Eastern Canada. For. Ecol. Manag. 2004, 198, 39–53. [Google Scholar] [CrossRef]
- Sharma, M.; Parton, J. Modeling Stand Density Effects on Taper for Jack Pine and Black Spruce Plantations Using Dimensional Analysis. For. Sci. 2009, 55, 268–282. [Google Scholar] [CrossRef]
- Sandoval, S.; Acuña, E. Stem Taper Estimation Using Artificial Neural Networks for Nothofagus Trees in Natural Forest. Forests 2022, 13, 2143. [Google Scholar] [CrossRef]
Species | N | DBH (cm) | TH (m) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min_ | Max | Mean | SD | Min | Max | ||
Pinus densiflora (central provenance) | 1042 | 25 | 7.43 | 7.2 | 45.5 | 15.03 | 2.44 | 6.1 | 23 |
Pinus densiflora (Gangwon provenance) | 1155 | 25.6 | 8.02 | 6 | 50.4 | 16.70 | 3.15 | 6 | 26.2 |
Model | Taper Equation |
---|---|
Kozak (1988) [5] | |
where Z = relative height (=) X = (p = inflection point) ai, bi = parameters d = diameter (estimated) when h/H |
Statistic | Calculation Formula |
---|---|
Root mean square error (RMSE) | |
Mean absolute error (MAE) | |
Coefficient of determination (R2) |
Parameter | Pinus densiflora (Gangwon Provenance) | Pinus densiflora (Central Provenance) |
---|---|---|
a1 | 1.0742 | 1.0046 |
a2 | 0.8968 | 0.9217 |
a3 | 1.0013 | 1.0009 |
b1 | −0.0123 | −0.1732 |
b2 | −0.1073 | −0.0876 |
b3 | 0.4714 | 0.4003 |
b4 | 0.1232 | 0.2271 |
b5 | −0.0220 | −0.0408 |
p | 0.3 | 0.3 |
R2 | 0.9874 | 0.9885 |
RMSE | 1.1013 | 1.0391 |
Species | Model | RMSE (cm) | R2 | MAE (cm) |
---|---|---|---|---|
Pinus densiflora (central provenance) | Random Forest | 1.824 | 0.968 | 1.304 |
XGBoost | 1.851 | 0.966 | 1.318 | |
ANN | 1.616 | 0.974 | 1.147 | |
Pinus densiflora (Gangwon provenance) | Random Forest | 1.732 | 0.972 | 1.240 |
XGBoost | 1.803 | 0.969 | 1.225 | |
ANN | 1.584 | 0.976 | 1.125 |
Species | Comparison | Test Model | p-Value | Significance (α = 0.05) |
---|---|---|---|---|
Pinus densiflora (central provenance) | ANN vs. RF | Wilcoxon signed-rank | 0.0005 | Significant |
ANN vs. XGBoost | 0.0147 | Significant | ||
RF vs. XGBoost | 0.959 | Not Significant | ||
Pinus densiflora (Gangwon provenance) | ANN vs. RF | 0.0000 | Significant | |
ANN vs. XGBoost | 0.0000 | Significant | ||
RF vs. XGBoost | 0.597 | Not Significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, C.; Kang, J.; Won, H.; Seo, Y.; Lee, M. Stem Profile Estimation of Pinus densiflora in Korea Using Machine Learning Models: Towards Precision Forestry. Forests 2025, 16, 840. https://doi.org/10.3390/f16050840
Ko C, Kang J, Won H, Seo Y, Lee M. Stem Profile Estimation of Pinus densiflora in Korea Using Machine Learning Models: Towards Precision Forestry. Forests. 2025; 16(5):840. https://doi.org/10.3390/f16050840
Chicago/Turabian StyleKo, Chiung, Jintack Kang, Hyunkyu Won, Yeonok Seo, and Minwoo Lee. 2025. "Stem Profile Estimation of Pinus densiflora in Korea Using Machine Learning Models: Towards Precision Forestry" Forests 16, no. 5: 840. https://doi.org/10.3390/f16050840
APA StyleKo, C., Kang, J., Won, H., Seo, Y., & Lee, M. (2025). Stem Profile Estimation of Pinus densiflora in Korea Using Machine Learning Models: Towards Precision Forestry. Forests, 16(5), 840. https://doi.org/10.3390/f16050840