Aboveground Forest Biomass Generally Increases with Elevation Gradients in China’s Qinling–Daba Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.2.1. Calculation of AGB in Sample Plots
2.2.2. Interaction Test Between Allometric Equation Parameters and Elevation
2.2.3. Forest Type Classification
2.2.4. Outlier Detection
2.3. Data Analysis
3. Results
3.1. GAMs Analysis of AGB and Elevation Relationships Across Forest Types
3.2. GAMs Analysis of AGB and Elevation Relationships Across Four Sampling Transects
3.3. GAM Analysis of AGB and Elevation Relationships Across Four Representative Mountains
4. Discussion
4.1. Effect of Elevation Gradient on the AGB of Different Forest Types
4.2. Elevational AGB Patterns Corresponding to the Mid-Domain Effect
4.3. Component-Specific Responses of Forest AGB to Elevational Gradients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 265, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Kolomyts, E.G. Predictive modelling of boreal forest resources in regulation of the carbon cycle and mitigation of the global warming. Int. J. Glob. Warm. 2022, 27, 333–364. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, H.; Wang, J. Forest carbon reserve calculation and comprehensive economic value evaluation: A forest management model based on both biomass expansion factor method and total forest value. Int. J. Environ. Res. Public Health 2022, 19, 15925. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef]
- Austin, K.G.; Baker, J.S.; Sohngen, B.L.; Wade, C.M.; Daigneault, A.; Ohrel, S.B.; Ragnauth, S.; Bean, A. The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. 2020, 11, 5946. [Google Scholar] [CrossRef]
- Fang, J.; Wang, G.; Liu, G.; Xu, S. Forest biomass of China: An estimate based on the biomass-volume relationship. Ecol. Appl. 1998, 8, 1084–1091. [Google Scholar] [CrossRef]
- Li, G.; Zhou, G.; Wang, X.; Wu, Z.; Qiu, Z.; Zhao, H.; Liang, R. Aboveground biomass of natural Castanopsis fissa community at the Xiaokeng of NanLing Mountain, Southern China. Acta Ecol. Sin. 2011, 31, 3650–3658. [Google Scholar]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Fang, J.Y.; Wang, Z.M. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecol. Res. 2001, 16, 587–592. [Google Scholar] [CrossRef]
- Swoish, M.; Leme Filho, J.F.D.C.; Reiter, M.S.; Campbell, J.B.; Thomason, W.E. Comparing satellites and vegetation indices for cover crop biomass estimation. Comput. Electron. Agric. 2022, 196, 106900. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- Navarro, A.; Young, M.; Allan, B.; Carnell, P.; Macreadie, P.; Ierodiaconou, D. The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens. Environ. 2020, 242, 111747. [Google Scholar] [CrossRef]
- Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de Las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodriguez, L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Razaq, M.; Huang, Q.; Wang, F.; Liu, C.; Gnanamoorthy, P.; Liu, C.; Tang, J. Carbon stock dynamics in rubber plantations along an elevational gradient in tropical China. Forests 2024, 15, 1933. [Google Scholar] [CrossRef]
- Asner, G.P.; Hughes, R.F.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 2009, 12, 261–278. [Google Scholar] [CrossRef]
- Bunker, D.E.; DeClerck, F.; Bradford, J.C.; Colwell, R.K.; Perfecto, I.; Phillips, O.L.; Sankaran, M.; Naeem, S. Species loss and aboveground carbon storage in a tropical forest. Science 2005, 310, 1029–1031. [Google Scholar] [CrossRef]
- Slik, J.W.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C.; et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, W.; Chen, H.Y.H. Meta-analysis reveals global variations in plant diversity effects on productivity. Nature 2025, 638, 435–440. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Arneth, A.; Kautz, M.; Poulter, B.; Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 2019, 12, 730. [Google Scholar] [CrossRef]
- DeWalt, S.J.; Chave, J. Structure and biomass of four lowland neotropical forests. Biotropica 2004, 36, 7–19. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Pawlik, Ł. Drivers of forest aboveground biomass and its increments in the Tatra Mountains after 15 years. Catena 2021, 205, 105468. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, F.; Song, T.; Wang, K.; Du, H. Stand structure and abiotic factors modulate karst forest biomass in southwest China. Forests 2020, 11, 443. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Wang, Y. Spatial distribution patterns and drivers of above- and below-biomass in Chinese terrestrial ecosystems. Sci. Total Environ. 2024, 944, 173922. [Google Scholar] [CrossRef]
- Riihimäki, H.; Heiskanen, J.; Luoto, M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 44–53. [Google Scholar] [CrossRef]
- Sandoya, V.; Saura-Mas, S.; Granzow-de la Cerda, I.; Arellano, G.; Macía, M.J.; Tello, J.S.; Lloret, F. Contribution of species abundance and frequency to aboveground forest biomass along an Andean elevation gradient. For. Ecol. Manag. 2021, 479, 118549. [Google Scholar] [CrossRef]
- Cuni-Sanchez, A.; Sullivan, M.J.P.; Platts, P.J.; Lewis, S.L.; Marchant, R.; Imani, G.; Hubau, W.; Abiem, I.; Adhikari, H.; Albrecht, T.; et al. High aboveground carbon stock of African tropical montane forests. Nature 2021, 596, 536–542. [Google Scholar] [CrossRef]
- Moser, G.; Leuschner, C.; Hertel, D.; Graefe, S.; Soethe, N.; Iost, S. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): The role of the belowground compartment. Glob. Change Biol. 2011, 17, 2211–2226. [Google Scholar] [CrossRef]
- Bai, J.; Long, C.; Quan, X.; Liao, C.; Zhai, D.; Bao, Y.; Men, X.; Zhang, D.; Cheng, X. Reverse diversity–biomass patterns in grasslands are constrained by climates and stoichiometry along an elevational gradient. Sci. Total Environ. 2024, 917, 170416. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Delong, J.P.; Fox, A.M.; Brese, D.A.; Litvak, M.E. Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Glob. Change Biol. 2011, 17, 410–424. [Google Scholar] [CrossRef]
- Hemp, A. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 2006, 184, 27–42. [Google Scholar] [CrossRef]
- Fadrique, B.; Báez, S.; Duque, Á.; Malizia, A.; Blundo, C.; Carilla, J.; Osinaga-Acosta, O.; Malizia, L.; Silman, M.; Farfán-Ríos, W.; et al. Author Correction: Widespread but heterogeneous responses of Andean forests to climate change. Nature 2019, 565, E10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Chen, P.; Song, J.; Fu, B. Interannual precipitation variability dominates the growth of alpine grassland above-ground biomass at high elevations on the Tibetan Plateau. Sci. Total Environ. 2024, 931, 172745. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Gao, M.; Piao, S.; Chen, A.; Yang, H.; Liu, Q.; Fu, Y.H.; Janssens, I.A. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 2019, 10, 2970. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, Y.; Dong, J.; Fu, Y.; Zhu, J.; Zhang, G.; Jiang, Y.; Tian, L.; Zhang, X.; Zhang, T.; et al. Elevation-dependent relationships between climate change and grassland vegetation variation across the Qinghai-Xizang Plateau. Int. J. Climatol. 2015, 35, 1638–1647. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Liu, A.; Qi, S.; Hu, B.; Huang, M.; Luo, J. Mapping of secondary forest age in China using stacked generalization and Landsat time series. Sci. Data 2024, 11, 302. [Google Scholar] [CrossRef]
- Wei, X.; Liu, R.; Liu, Y.; He, J.; Chen, J.; Qi, L.; Zhou, Y.; Qin, Y.; Wu, C.; Dong, J.; et al. Forest Areas in China Are Recovering Since the 21st Century. Geophys. Res. Lett. 2024, 51, e2024GL110312. [Google Scholar] [CrossRef]
- Xia, X.; Xia, J.; Chen, X.; Fan, L.; Liu, S.; Qin, Y.; Qin, Z.; Xiao, X.; Xu, W.; Yue, C.; et al. Reconstructing Long-Term Forest Cover in China by Fusing National Forest Inventory and 20 Land Use and Land Cover Data Sets. J. Geophys. Res. Biogeosciences 2023, 128, e2022JG007101. [Google Scholar] [CrossRef]
- Gao, H.; Fu, T.; Liu, J.; Liang, H.; Han, L. Ecosystem Services Management Based on Differentiation and Regionalization along Vertical Gradient in Taihang Mountain, China. Sustainability 2018, 10, 986. [Google Scholar] [CrossRef]
- Mi, X.; Feng, G.; Hu, Y.; Zhang, J.; Chen, L.; Corlett, R.T.; Hughes, A.C.; Pimm, S.; Schmid, B.; Shi, S.; et al. The global significance of biodiversity science in China: An overview. Natl. Sci. Rev. 2021, 8, nwab032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Song, C.; Yan, J. Spatio-temporal trends of annual extreme temperature in northern and southern qinling mountains. Sci. Geogr. Sin. 2011, 31, 1007–1011. [Google Scholar]
- Zhang, B. Ten major scientific issues concerning the study of China’s north-south transitional zone. Prog. Geogr. 2019, 38, 305–311. [Google Scholar] [CrossRef]
- Cheng, Y.; Huo, A.; Liu, F.; Ahmed, A.; Abuarab, M.E.; Elbeltagi, A.; Kucher, D.E. Spatiotemporal Variation of Soil Erosion in the Northern Foothills of the Qinling Mountains Using the RUSLE Model. Water 2024, 16, 2187. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Liu, J.; Zhang, B. Variation Analysis of the Typical Altitudinal Belt Width in the Qinling–Daba Mountains. Nat. Prot. Areas 2023, 3, 12–25. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y.; Xiao, F.; Zhou, W.; Zhu, L.; Zhang, J.; Zhao, F.; Bai, H.; Wang, J.; Yu, F.; et al. The finding and significance of the super altitudinal belt of montane deciduous broad-leaved forests in central Qinling Mountains. Acta Geogr. Sin. 2022, 77, 2236–2248. [Google Scholar] [CrossRef]
- GB/T 26424-2010; Technical Regulations for Inventory for Forest Management Planning and Design. Institute of Forest Ecological Environment and Protection, Chinese Academy of Forestry Sciences: Beijing, China, 2011; pp. 1–3.
- Molto, Q.; Rossi, V.; Blanc, L. Error propagation in biomass estimation in tropical forests. Methods Ecol. Evol. 2013, 4, 175–183. [Google Scholar] [CrossRef]
- GB/T 43648-2024; Tree Biomass Models and Related Parameters to Carbon Accounting for Major Tree Species. National Forestry and Grassland Administration Forest and Grassland Survey and Planning Institute: Beijing, China, 2024; pp. 5–8.
- Xie, Z. Manual of Biomass Models for Common Shrubs in China; Longmen Bookstore: Beijing, China, 2018; pp. 78–139. [Google Scholar]
- Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Feng, L.; Tao, J. A review of biomass equations for China’s tree species. Earth Syst. Sci. Data 2020, 12, 21–40. [Google Scholar] [CrossRef]
- Li, H.; Lei, Y. Assessment of Forest Vegetation Biomass and Carbon Storage in China; China Forestry Publishing House: Beijing, China, 2010; pp. 82–99. [Google Scholar]
- Conti, G.; Gorne, L.D.; Zeballos, S.R.; Lipoma, M.L.; Gatica, G.; Kowaljow, E.; Whitworth-Hulse, J.I.; Cuchietti, A.; Poca, M.; Pestoni, S.; et al. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Glob. Ecol. Biogeogr. 2019, 28, 961–975. [Google Scholar] [CrossRef]
- Zhou, G.; Yin, G.; Tang, X. Carbon Storage of Forest Ecosystems in China: Biomass Equation; Longmen Bookstore: Beijing, China, 2018; pp. 183–192. [Google Scholar]
- Wu, J.; Zhu, J.; Ai, X.; Yao, L.; Guo, Q.; Yan, F.; Xue, W. Meta-analysis of woody plant biomass model of subtropical evergreen deciduous broadleaf mixed forests. J. Cent. South Univ. For. Technol. 2023, 43, 111–122. [Google Scholar]
- Pfennigwerth, A.A.; Bailey, J.K.; Schweitzer, J.A. Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AoB Plants 2017, 9, plx027. [Google Scholar] [CrossRef] [PubMed]
- Stoklosa, J.; Daly, C.; Foster, S.D.; Ashcroft, M.B.; Warton, D.I. A climate of uncertainty: Accounting for error in climate variables for species distribution models. Methods Ecol. Evol. 2015, 6, 412–423. [Google Scholar] [CrossRef]
- GB/T 14721-2010; Classification and Codes for Forestry Resources—Forest Types. Institute of Forest Ecological Environment and Protection, Chinese Academy of Forestry Sciences: Beijing, China, 2010; p. 6.
- Rahmatullah Imon, A.H.M. Identifying multiple influential observations in linear regression. J. Appl. Stat. 2005, 32, 929–946. [Google Scholar] [CrossRef]
- Alhowyan, A.; Mahdi, W.A.; Obaidullah, A.J. Computational intelligence investigations on evaluation of salicylic acid solubility in various solvents at different temperatures. Sci. Rep. 2025, 15, 7142. [Google Scholar] [CrossRef]
- Cook, R.D. Detection of Influential Observation in Linear Regression. Technometrics 1977, 19, 15–18. [Google Scholar] [CrossRef]
- Martinez, A.d.l.I.; Labib, S.M. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environ. Res. 2023, 220, 115155. [Google Scholar] [CrossRef]
- Guisan, A.; Edwards, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Min, C.; He, H.; Yu, G.; Liu, M.; Zhu, X.; Wang, Q. Estimation of the North-South Transect of Eastern China forest biomass using remote sensing and forest inventory data. Int. J. Remote Sens. 2013, 34, 5598–5610. [Google Scholar] [CrossRef]
- Yao, Y. Spatial pattern of forest aboveground biomass and its environmental influencing factors in Qinling–Daba Mountains, central China. Sci. Rep. 2024, 14, 21411. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.; Cao, Y. C:N:P Stoichiometry and Carbon Storage in a Naturally-Regenerated Secondary Quercus variabilis Forest Age Sequence in the Qinling Mountains, China. Forests 2017, 8, 281. [Google Scholar] [CrossRef]
- Yuan, J.; Jose, S.; Zheng, X.; Cheng, F.; Hou, L.; Li, J.; Zhang, S. Dynamics of Coarse Woody Debris Characteristics in the Qinling Mountain Forests in China. Forests 2017, 8, 403. [Google Scholar] [CrossRef]
- Koerner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, Q.; Xie, F.; He, N.; He, R.; Zhang, K.; Zhang, Q.; Dang, H. Disparity in elevational shifts of upper species limits in response to recent climate warming in the Qinling Mountains, North-central China. Sci. Total Environ. 2020, 706, 135718. [Google Scholar] [CrossRef]
- Zhang, W.; Gou, X.; Liu, W.; Li, J.; Su, J.; Dilawar, N.; Zhu, F.; Xia, J.; Du, M.; Wang, L.; et al. Divergent tree radial growth patterns of Qinghai spruce (Picea crassifolia) at the alpine timberline along a moisture gradient in the Qilian mountains, Northwest China. Agric. For. Meteorol. 2023, 328, 109240. [Google Scholar] [CrossRef]
- Hikosaka, K.; Kurokawa, H.; Arai, T.; Takayanagi, S.; Tanaka, H.O.; Nagano, S.; Nakashizuka, T. Intraspecific variations in leaf traits, productivity and resource use efficiencies in the dominant species of subalpine evergreen coniferous and deciduous broad-leaved forests along the altitudinal gradient. J. Ecol. 2021, 109, 1804–1818. [Google Scholar] [CrossRef]
- Díaz-Calafat, J.; Uria-Diez, J.; Brunet, J.; De Frenne, P.; Vangansbeke, P.; Felton, A.; Öckinger, E.; Cousins, S.A.O.; Bauhus, J.; Ponette, Q.; et al. From broadleaves to conifers: The effect of tree composition and density on understory microclimate across latitudes. Agric. For. Meteorol. 2023, 341, 109684. [Google Scholar] [CrossRef]
- Blanco-Cano, L.; Navarro-Cerrillo, R.M.; González-Moreno, P. Biotic and abiotic effects determining the resilience of conifer mountain forests: The case study of the endangered Spanish fir. For. Ecol. Manag. 2022, 520, 120356. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, L.; Sun, J.; Zong, H. Spatial distribution of tree-shrub patches and their diversity along the altitude gradient in the transition zone between the first and second steps of the northern Hengduan Mountains. Acta Ecol. Sin. 2023, 43, 10320–10333. [Google Scholar]
- Ensslin, A.; Rutten, G.; Pommer, U.; Zimmermann, R.; Hemp, A.; Fischer, M. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 2015, 6, art45. [Google Scholar] [CrossRef]
- Colwell, R.K.; Lees, D.C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 2000, 15, 70–76. [Google Scholar] [CrossRef]
- Wang, X.; Fang, J. The mid-domain effect hypothesis: Models, evidence and limitations. Biodivers. Sci. 2009, 17, 568. [Google Scholar]
- Gebrehiwot, K.; Demissew, S.; Woldu, Z.; Fekadu, M.; Desalegn, T.; Teferi, E. Elevational changes in vascular plants richness, diversity, and distribution pattern in Abune Yosef mountain range, Northern Ethiopia. Plant Divers. 2019, 41, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Zong, N.; Shi, P. Enhanced community production rather than structure improvement under nitrogen and phosphorus addition in severely degraded alpine meadows. Sustainability 2019, 11, 2023. [Google Scholar] [CrossRef]
- Dorji, T.; Moe, S.R.; Klein, J.A.; Totland, O. Plant species richness, evenness, and composition along environmental gradients in an alpine meadow grazing ecosystem in central Tibet, China. Arct. Antarct. Alp. Res. 2014, 46, 308–326. [Google Scholar] [CrossRef]
- Ma, M.; Shen, G.; Xiong, G.; Zhao, C.; Xu, W.; Zhou, Y.; Xie, Z. Characteristic and representativeness of the vertical vegetation zonation along the altitudinal gradient in Shennongjia Natural Heritage. Chin. J. Plant Ecol. 2017, 41, 1127–1139. [Google Scholar]
- Turunen, M.; Latola, K. UV-B radiation and acclimation in timberline plants. Environ. Pollut. 2005, 137, 390–403. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Webb, A.A.; Li, Z.; Tian, X.; Han, Z.; Wang, S.; Yu, P. Influence of climatic and geographic factors on the spatial distribution of Qinghai spruce forests in the dryland Qilian Mountains of Northwest China. Sci. Total Environ. 2018, 612, 1007–1017. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C. Satellites reveal global migration patterns of natural mountain treelines during periods of rapid warming. Forests 2024, 15, 1780. [Google Scholar] [CrossRef]
- Hansson, A.; Dargusch, P.; Shulmeister, J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 2021, 18, 291–306. [Google Scholar] [CrossRef]
- Sasanifar, S.; Alijanpour, A.; Shafiei, A.B.; Rad, J.E.; Molaei, M.; Álvarez-Álvarez, P. Understanding how forest ecosystem services are affected by conservation practices and differences in elevation: A study in the Arasbaran biosphere reserve, Iran. Ecol. Eng. 2024, 203, 107230. [Google Scholar] [CrossRef]
Generalized Functional Group | Equation | Coefficient | Reference | ||
---|---|---|---|---|---|
a | b | c | |||
Deciduous Shrubs | 1.128 | −3.007 | 2.428 | [53] | |
Evergreen Shrubs | 0.1169 | 0.0294 | [50] | ||
Hard Broadleaf Species | 0.075 | 0.821 | [54] | ||
0.011 | 0.943 | ||||
0.013 | 0.752 | ||||
Soft Broadleaf Species | 0.04955 | 0.9524 | [52] |
Forest Type | Proportions of Broadleaf Species | Proportions of Coniferous Species | Proportions of Shrub Species |
---|---|---|---|
Broadleaf Forest | ≥65% | <35% | <35% |
Coniferous Forest | <35% | ≥65% | <35% |
Mixed Coniferous Broadleaf Forests | <65% | <65% | <65% |
Shrubland | <35% | <35% | ≥65% |
Forest Type | Number of Samples | Average Elevation (m) | Average AGB (Mg/ha) | Model Fit Evaluation Metrics | ||
---|---|---|---|---|---|---|
R2 | p-Value | Edf | ||||
Broadleaf Forest | 199 | 1083 | 159.67 | 0.4 | <0.001 | 5.84 |
Coniferous Forest | 41 | 1624 | 155.19 | 0.64 | <0.001 | 2.21 |
Mixed Coniferous–Broadleaf Forests | 47 | 1265 | 136.55 | 0.46 | <0.001 | 2.14 |
Shrubland | 24 | 1047 | 39.48 | 0.45 | 0.017 | 5.02 |
Sampling Sites | Average Elevation (m) | Average AGB and Model Fit Evaluation Metrics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total AGB | Broadleaf Species AGB | Coniferous Species AGB | |||||||||||
Average AGB (Mg/ha) | R2 | p-Value | Edf | Average AGB (Mg/ha) | R2 | p-Value | Edf | Average AGB (Mg/ha) | R2 | p-Value | Edf | ||
Eastern S-N transect | 756 | 84.1 | 0.65 | <0.001 | 4.7 | 61.5 | 0.61 | <0.001 | 2.8 | 20.6 | 0.06 | 0.13 | 2.1 |
Central S-N transect | 883 | 162.2 | 0.3 | <0.001 | 1.8 | 105.6 | 0.18 | <0.05 | 1.9 | 52.3 | 0.07 | <0.05 | 1 |
Western S-N transect | 1131 | 110.2 | 0.01 | 0.64 | 1 | 68.5 | 0.13 | 0.12 | 2.9 | 40.3 | 0.24 | <0.05 | 3.1 |
E-W transect | 1050 | 131.8 | 0.21 | <0.001 | 1 | 77.8 | 0.13 | <0.05 | 2.8 | 52.6 | 0.37 | <0.001 | 2.1 |
Mt. Baotianman | 1424 | 312.1 | 0.37 | <0.05 | 2.6 | 294.7 | 0.35 | <0.05 | 2.6 | 15.4 | 0.1 | 0.08 | 1 |
Mt. Shengnongjia | 2145 | 232.9 | 0.44 | <0.05 | 5.5 | 144.8 | 0.69 | <0.001 | 6.5 | 83.6 | 0.4 | <0.001 | 1 |
Mt. Guangwu | 1756 | 213.5 | 0.39 | <0.05 | 2.8 | 195.3 | 0.37 | <0.05 | 2.6 | 4.8 | 0.11 | 0.07 | 1 |
Mt. Xionghuang | 2401 | 259.5 | 0.22 | 0.058 | 1 | 193.3 | 0.35 | 0.25 | 4.3 | 57.9 | 0.98 | <0.001 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhou, W.; Zhang, B.; Li, D.; Yao, X. Aboveground Forest Biomass Generally Increases with Elevation Gradients in China’s Qinling–Daba Mountains. Forests 2025, 16, 796. https://doi.org/10.3390/f16050796
Hu Y, Zhou W, Zhang B, Li D, Yao X. Aboveground Forest Biomass Generally Increases with Elevation Gradients in China’s Qinling–Daba Mountains. Forests. 2025; 16(5):796. https://doi.org/10.3390/f16050796
Chicago/Turabian StyleHu, Yichen, Wenzuo Zhou, Baiping Zhang, Dan Li, and Xinyu Yao. 2025. "Aboveground Forest Biomass Generally Increases with Elevation Gradients in China’s Qinling–Daba Mountains" Forests 16, no. 5: 796. https://doi.org/10.3390/f16050796
APA StyleHu, Y., Zhou, W., Zhang, B., Li, D., & Yao, X. (2025). Aboveground Forest Biomass Generally Increases with Elevation Gradients in China’s Qinling–Daba Mountains. Forests, 16(5), 796. https://doi.org/10.3390/f16050796