Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Datasets
2.2.1. Map of Plantation Forests
2.2.2. The C Sequestration Indicators
2.2.3. Nitrogen (N) Deposition Dataset
2.2.4. Temperature and Precipitation Dataset
2.3. Climate Responses of the C Sequestration Indicators
3. Results
3.1. Changes in Plantation Areas in Jiangsu Province, China, During 1990–2020
3.2. Long-Term Trends and Seasonal Variations in C Sequestration from Plantation Forests in Jiangsu
3.3. Climate Responses of C Sequestration Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duveneck, M.J.; Scheller, R.M. Climate-Suitable Planting as a Strategy for Maintaining Forest Productivity and Functional Diversity. Ecol. Appl. 2015, 25, 1653–1668. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, C.; Gao, J.; Yuan, J.; Huang, Y.; Wang, B.; Peng, Y. Approaches to carbon sequestration enhancement in China’s plantation ecosystem for carbon peaking and carbon neutrality goals. Acta Ecol. Sin. 2023, 43, 5662–5673. (In Chinese) [Google Scholar]
- Feng, R.F.; Yang, W.Q.; Zhang, J. Artificial forest management for global change mitigation. Acta Ecol. Sin. 2006, 26, 3870–3877. (In Chinese) [Google Scholar]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower Land-Use Emissions Responsible for Increased Net Land Carbon Sink during the Slow Warming Period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Yao, L.; Liu, T.; Qin, J.; Jiang, H.; Yang, L.; Smith, P.; Chen, X.; Zhou, C.; Piao, S. Carbon Sequestration Potential of Tree Planting in China. Nat. Commun. 2024, 15, 8398. [Google Scholar] [CrossRef]
- Xu, H.; Yue, C.; Zhang, Y.; Liu, D.; Piao, S. Forestation at the Right Time with the Right Species Can Generate Persistent Carbon Benefits in China. Proc. Natl. Acad. Sci. USA 2023, 120, e2304988120. [Google Scholar] [CrossRef]
- Peng, S.-S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.X.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China Cools Local Land Surface Temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Tian, J.; He, J.; He, H.; Liu, G.; Zhang, Z.; Zhou, L. The Spatial and Temporal Distribution of China’s Forest Carbon. Front. Ecol. Evol. 2023, 11, 1110594. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Tao, S.; Su, Y.; Guan, H.; Ren, Y.; Hu, T.; Li, W.; Xu, G.; Chen, M.; et al. Carbon Storage through China’s Planted Forest Expansion. Nat. Commun. 2024, 15, 1–11. [Google Scholar] [CrossRef]
- Future Land Carbon Removals in China Consistent with National Inventory—PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11608317/ (accessed on 4 March 2025).
- Jiangsu Provincial Forestry Bureau. Main Results of the Eighth National Forest Resource Inventory (2009–2013). 2014. Available online: https://lyj.jiangsu.gov.cn/art/2014/5/12/art_7084_3014207.html (accessed on 10 December 2024). (In Chinese)
- Wang, H.; Yang, J.; Xu, R. Influencing Factors on Forest Biomass Carbon Storage in Eastern China–A Case Study of Jiangsu Province. BioResources 2014, 9, 357–371. [Google Scholar] [CrossRef]
- Cao, X.; Mo, Y.; Yan, W.; Zhang, Z.; Peng, Y. Evaluation of Soil Quality in Five Ages of Chinese Fir Plantations in Subtropical China Based on a Structural Equation Model. Forests 2023, 14, 1217. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Wang, J.; Wei, X.; Schuler, J.; Sun, P.; Harper, R.; Zegre, N. Natural Forests Exhibit Higher Carbon Sequestration and Lower Water Consumption than Planted Forests in China. Glob. Change Biol. 2019, 25, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ma, J.; Yan, P.; Tian, F.; Peñuelas, J.; Rao, M.P.; Fu, Y.; Hu, Z. Planted Forests in China Have Higher Drought Risk Than Natural Forests. Glob. Change Biol. 2025, 31, e70055. [Google Scholar] [CrossRef] [PubMed]
- Camarero, J.J.; Gazol, A.; Linares, J.C.; Fajardo, A.; Colangelo, M.; Valeriano, C.; Sánchez-Salguero, R.; Sangüesa-Barreda, G.; Granda, E.; Gimeno, T.E. Differences in Temperature Sensitivity and Drought Recovery between Natural Stands and Plantations of Conifers Are Species-Specific. Sci. Total Environ. 2021, 796, 148930. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.G.; Hu, H.B.; Li, Y.J.; Dong, Z.P.; Lu, X.R.; Bai, M.W.; Zheng, Z.P.; Fang, K.Y. Differences in the ecological resilience of planted and natural Pinus massoniana and Cunning-hamnia lanceolata forests in response to drought in subtropical China. Chin. J. Appl. Ecol. 2021, 32, 3531–3538. (In Chinese) [Google Scholar] [CrossRef]
- Gong, H.; Song, W.; Wang, J.; Wang, X.; Ji, Y.; Zhang, X.; Gao, J. Climate Factors Affect Forest Biomass Allocation by Altering Soil Nutrient Availability and Leaf Traits. J. Integr. Plant Biol. 2023, 65, 2292–2303. [Google Scholar] [CrossRef]
- Bi, J.; Blanco, J.; Seely, B.; Kimmins, J.P.; Ding, Y.; Welham, C. Yield Decline in Chinese-Fir Plantations: A Simulation Investigation with Implications for Model Complexity. Can. J. For. Res. 2007, 37, 1615–1630. [Google Scholar] [CrossRef]
- Ma, X.Q.; Ye, S.J.; Chen, S.H. Effect of Rotation on Site Productivity Maintenance of Chinese Fir Plantation. Sci. Silvae Sin. 2000, 36, 47–52. (In Chinese) [Google Scholar]
- Wang, W.F.; Duan, Y.X.; Zhang, L.X.; Wang, B.; Li, X.J. Effects of Different Rotations on Carbon Sequestration in Chinese Fir Plantations. Chin. J. Plant Ecol. 2016, 40, 669–678. (In Chinese) [Google Scholar] [CrossRef]
- Luo, C.W.; Li, K. The Relation of Species Diversity to Pest Control in Forest Plantations. Sci. Silvae Sin. 2006, 42, 109–115. (In Chinese) [Google Scholar]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Pe-ña-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-Offs of Forest Restoration Approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Jiangsu Provincial Forestry Bureau. The 5th Jiangsu Provincial Forestry Work Conference Was Held in Nanjing. 2021. Available online: https://lyj.jiangsu.gov.cn/art/2021/2/4/art_81539_9668692.html (accessed on 10 December 2024). (In Chinese)
- China Academy of Forestry, Institute of Resource Information. Statistical Table of Forest Resources by Ownership from the Third National First-Class Forest Inventory; CSTR:17575.11.0120220428003.0004.V1; National Forestry and Grassland Science Data Center, National Science & Technology Infrastructure of China: Beijing, China, 1988. [Google Scholar]
- China Academy of Forestry, Institute of Resource Information. Statistical Table of Forest Resources by Ownership from the Fourth National First-Class Forest Inventory; CSTR:17575.11.0120190809111.0015.V1; National Forestry and Grassland Science Data Center, National Science & Technology Infrastructure of China: Beijing, China, 1993. [Google Scholar]
- Jiangsu Provincial Development and Reform Commission. Jiangsu Ecological Protection and Construction Plan (2014–2020). 2015. Available online: https://fzggw.jiangsu.gov.cn/art/2015/6/30/art_83784_10119328.html (accessed on 10 December 2024). (In Chinese)
- Jiangsu Forestry Bureau. The General Office of the State Council’s Opinions on Improving the Ecological Protection Compensation Mechanism. 2017. Available online: https://lyj.jiangsu.gov.cn/art/2017/9/1/art_86531_10574280.html (accessed on 10 December 2024). (In Chinese)
- Xing, W.; Qi, W.-L.; Zhao, Q.; Ge, Z.W. Analysis of Carbon Storage in Poplar Plantations in Jiangsu Province. J. Jiangsu For. Sci. Technol. 2015, 42, 15–18. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, K.; Su, Y.; Guan, H.; Tao, S.; Ren, Y.; Hu, T.; Ma, K.; Tang, Y.; Guo, Q. Mapping China’s planted forests using high resolution imagery and massive amounts of crowdsourced samples. ISPRS J. Photogramm. Remote Sens. 2023, 196, 356–371. [Google Scholar] [CrossRef]
- He, Q.; Ju, W.; Dai, S.; He, W.; Song, L.; Wang, S.; Li, X.; Mao, G. Drought Risk of Global Terrestrial Gross Primary Productivity Over the Last 40 Years Detected by a Remote Sensing-Driven Process Model. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005944. [Google Scholar] [CrossRef]
- Chen, J.M.; Ju, W.; Ciais, P.; Viovy, N.; Liu, R.; Liu, Y.; Lu, X. Vegetation Structural Change since 1981 Significantly Enhanced the Terrestrial Carbon Sink. Nat. Commun. 2019, 10, 4259. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G. Impacts of Droughts on Carbon Sequestration by China’s Terrestrial Ecosystems from 2000 to 2011. Biogeosciences 2014, 11, 2583–2599. [Google Scholar] [CrossRef]
- Ju, W.; Chen, J.M. Simulating the Effects of Past Changes in Climate, Atmospheric Composition, and Fire Disturbance on Soil Carbon in Canada’s Forests and Wetlands. Glob. Biogeochem. Cycles 2008, 22, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J.; Park, W.M. A Process-Based Boreal Ecosystem Productivity Simulator Using Remote Sensing Inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily Canopy Photosynthesis Model through Temporal and Spatial Scaling for Remote Sensing Applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef]
- Ju, W.; Chen, J.M.; Black, T.A.; Barr, A.G.; Liu, J.; Chen, B. Modelling Multi-Year Coupled Carbon and Water Fluxes in a Boreal Aspen Forest. Agric. For. Meteorol. 2006, 140, 136–151. [Google Scholar] [CrossRef]
- Luo, X.; Keenan, T.F.; Fisher, J.B.; Jiménez-Muñoz, J.-C.; Chen, J.M.; Jiang, C.; Ju, W.; Perakalapudi, N.-V.; Ryu, Y.; Tadić, J.M. The Impact of the 2015/2016 El Niño on Global Photosynthesis Using Satellite Remote Sensing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170409. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Thomas, S.C.; Yin, Y.; Maclaren, V.; Liu, J.; Pan, J.; Liu, G.; Tian, Q.; Zhu, Q.; Pan, J.-J.; et al. Enhancing Forest Carbon Sequestration in China: Toward an Integration of Scientific and Socio-Economic Perspectives. J. Environ. Manag. 2007, 85, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, J.M.; Ju, W.M.; Feng, X.; Chen, M.; Chen, P.; Yu, G. Carbon Sinks and Sources in China’s Forests during 1901–2001. J. Environ. Manag. 2007, 85, 524–537. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J. Simulation Study of China’s Net Primary Production. Chin. Sci. Bull. 2008, 53, 434–443. [Google Scholar] [CrossRef]
- Liu, Y.; Ju, W.; He, H.; Wang, S.; Sun, R.; Zhang, Y. Changes of Net Primary Productivity in China during Recent 11 Years Detected Using an Ecological Model Driven by MODIS Data. Front. Earth Sci. 2013, 7, 112–127. [Google Scholar] [CrossRef]
- Mao, F.; Du, H.; Zhou, G.; Li, X.; Xu, X.; Li, P.; Sun, S. Coupled LAI Assimilation and BEPS Model for Analyzing the Spatiotemporal Pattern and Heterogeneity of Carbon Fluxes of the Bamboo Forest in Zhejiang Province, China. Agric. For. Meteorol. 2017, 242, 96–108. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Ju, W.M.; Liu, Y.B. Characteristics and driving factors of global terrestrial ecosystem carbon fluxes from 1981 to 2019. Trans. Atmos. Sci. 2022, 45, 332–344. (In Chinese) [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, X.; Liu, L.; Lu, X.; Wang, Y. A Database of Atmospheric Inorganic Nitrogen Deposition Fluxes in China from Satellite Monitoring. Sci. Data 2023, 10, 698. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.Z. 1-Km Monthly Precipitation Dataset for China (1901–2023); National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar]
- Peng, S.Z. 1-Km Monthly Mean Temperature Dataset for China (1901–2023); National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal Change and Trend Analysis of Potential Evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1-Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of Climate Change Trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Jevšenak, J. New Features in the dendroTools R Package: Bootstrapped and Partial Correlation Coefficients for Monthly and Daily Climate Data. Dendrochronologia 2020, 63, 125753. [Google Scholar] [CrossRef]
- Shi, Z.; Crowell, S.; Luo, Y.; Moore, B. Model Structures Amplify Uncertainty in Predicted Soil Carbon Responses to Climate Change. Nat. Commun. 2018, 9, 2171. [Google Scholar] [CrossRef]
- Schimel, J. Modeling Ecosystem-Scale Carbon Dynamics in Soil: The Microbial Dimension. Soil. Biol. Biochem. 2023, 178, 108948. [Google Scholar] [CrossRef]
- Wei, S.; Yi, C.; Fang, W.; Hendrey, G. A Global Study of GPP Focusing on Light-Use Efficiency in a Random Forest Regression Model. Ecosphere 2017, 8, e01724. [Google Scholar] [CrossRef]
- Li, X.; Liang, S.; Yu, G.; Yuan, W.; Cheng, X.; Xia, J.; Zhao, T.; Feng, J.; Ma, Z.; Ma, M.; et al. Estimation of Gross Primary Production over the Terrestrial Ecosystems in China. Ecol. Model. 2013, 261–262, 80–92. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Lv, J. Interannual Variations in GPP in Forest Ecosystems in Southwest China and Regional Differences in the Climatic Contributions. Ecol. Inform. 2022, 69, 101591. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Lin, A.; Zou, L.; Qin, W.; Du, Q. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Chen, X.; Hu, S. Variability, Tendencies, and Climate Controls of Terrestrial Evapotranspiration and Gross Primary Productivity in the Recent Decade over China. Ecohydrology 2018, 11, e1951. [Google Scholar] [CrossRef]
- Adachi, M.; Ito, A.; Ishida, A.; Kadir, W.R.; Ladpala, P.; Yamagata, Y. Carbon Budget of Tropical Forests in Southeast Asia and the Effects of Deforestation: An Approach Using a Process-Based Model and Field Measurements. Biogeosciences 2011, 8, 2635–2647. [Google Scholar] [CrossRef]
- Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichstein, M.; Papale, D.; Piao, S.L.; Schulze, E.-D.; Wingate, L.; Matteucci, G.; et al. CO2 Balance of Boreal, Temperate, and Tropical Forests Derived from a Global Database. Glob. Change Biol. 2007, 13, 2509–2537. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Wang, Q. Magnitude, Pattern and Controls of Carbon Flux and Carbon Use Efficiency in China’s Typical Forests. Glob. Planet. Chang. 2019, 172, 464–473. [Google Scholar] [CrossRef]
- Malhi, Y.; Aragão, L.E.O.C.; Metcalfe, D.B.; Paiva, R.; Quesada, C.A.; Almeida, S.; Anderson, L.; Brando, P.; Chambers, J.Q.; Costa, A.C.L.D.; et al. Comprehensive Assessment of Carbon Productivity, Allocation and Storage in Three Amazonian Forests. Glob. Change Biol. 2009, 15, 1255–1274. [Google Scholar] [CrossRef]
- Alves, M.P.; da Silva, R.B.C.; Silva, C.M.S.E.; Bezerra, B.G.; Rêgo Mendes, K.; Marinho, L.A.; Barbosa, M.L.; Nunes, H.G.G.C.; Dos Santos, J.G.M.; de Araújo Tiburtino Neves, T.T.; et al. Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates. Remote Sens. 2024, 16, 3606. [Google Scholar] [CrossRef]
- Zhang-Zheng, H.; Adu-Bredu, S.; Duah-Gyamfi, A.; Moore, S.; Addo-Danso, S.D.; Amissah, L.; Valentini, R.; Djagbletey, G.; Anim-Adjei, K.; Quansah, J.; et al. Contrasting Carbon Cycle along Tropical Forest Aridity Gradients in West Africa and Amazonia. Nat. Commun. 2024, 15, 3158. [Google Scholar] [CrossRef]
- Mendes, K.R.; Campos, S.; Mutti, P.R.; Ferreira, R.R.; Ramos, T.M.; Marques, T.V.; dos Reis, J.S.; de Lima Vieira, M.M.; Silva, A.C.N.; Marques, A.M.S.; et al. Assessment of SITE for CO2 and Energy Fluxes Simulations in a Seasonally Dry Tropical Forest (Caatinga Ecosystem). Forests 2021, 12, 86. [Google Scholar] [CrossRef]
- Hutley, L.B.; Beringer, J.; Fatichi, S.; Schymanski, S.J.; Northwood, M. Gross Primary Productivity and Water Use Efficiency Are Increasing in a High Rainfall Tropical Savanna. Glob. Change Biol. 2022, 28, 2360–2380. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Du, H.; Mao, F.; Li, X.; Zhou, G.; Xu, C.; Sun, J. Spatiotemporal Patterns of Net Primary Productivity of Subtropical Forests in China and Its Response to Drought. Sci. Total Environ. 2024, 913, 169439. [Google Scholar] [CrossRef]
- Pan, S.; Tian, H.; Lu, C.; Dangal, S.R.S.; Liu, M. Net Primary Production of Major Plant Functional Types in China: Vegetation Classification and Ecosystem Simulation. Acta Ecol. Sin. 2015, 35, 28–36. [Google Scholar] [CrossRef]
- Mao, J.; Dan, L.; Wang, B.; Dai, Y. Simulation and Evaluation of Terrestrial Ecosystem NPP with M-SDGVM over Continental China. Adv. Atmos. Sci. 2010, 27, 427–442. [Google Scholar] [CrossRef]
- Tao, B.; Li, K.; Shao, X. Temporal and Spatial Pattern of Net Primary Production of Terrestrial Ecosystems in China. Acta Geogr. Sin. 2003, 58, 372–380. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhu, B.; Tan, K. Forest Biomass Carbon Stocks in China over the Past 2 Decades: Estimation Based on Integrated Inventory and Satellite Data. J. Geophys. Res. Biogeosci. 2005, 110, 1–10. [Google Scholar] [CrossRef]
- Moore, S.; Adu-Bredu, S.; Duah-Gyamfi, A.; Addo-Danso, S.D.; Ibrahim, F.; Mbou, A.T.; Grandcourt, A.D.; Valentini, R.; Nicolini, G.; Djagbletey, G.; et al. Forest Biomass, Productivity and Carbon Cycling along a Rainfall Gradient in West Africa. Glob. Change Biol. 2018, 24, e496–e510. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Cao, M.; Li, K.; Gu, F.; Ji, J.; Huang, M.; Zhang, L. Spatial Patterns of Terrestrial Net Ecosystem Productivity in China during 1981–2000. Sci. China Ser. D-Earth Sci. 2007, 50, 745–753. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Tang, X.; Jiang, H.; Sun, X.; Zhuang, Q.; Li, H. Impacts of Land Use Changes on Net Ecosystem Production in the Taihu Lake Basin of China from 1985 to 2010. J. Geophys. Res. Biogeosci. 2017, 122, 690–707. [Google Scholar] [CrossRef]
- Lei, Z.; Shaoqiang, W.; Weimin, J.U.; Zhe, X.; Kindermann, G.; Jingming, C.; Hao, S.H.I. Assessment of Carbon Dynamics of Forest Ecosystems in the Poyang Lake Basin Responding to Afforestation and Future Climate Change. J. Resour. Ecol. 2013, 4, 11–19. [Google Scholar] [CrossRef]
- Yu, G.-R.; Zhu, X.-J.; Fu, Y.-L.; He, H.-L.; Wang, Q.-F.; Wen, X.-F.; Li, X.-R.; Zhang, L.-M.; Zhang, L.; Su, W.; et al. Spatial Patterns and Climate Drivers of Carbon Fluxes in Terrestrial Ecosystems of China. Glob. Change Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef]
- Jiangsu Provincial Development and Reform Commission. Jiangsu Province Wetland Conservation Plan (2015–2030). 2015. Available online: https://fzggw.jiangsu.gov.cn/art/2015/4/30/art_83784_10119305.html (accessed on 10 December 2024). (In Chinese)
- Chen, X.; Yu, S.; Xie, Z. A Preliminary Study on the Construction of Eco-protection Forests on Embankments in Eastern Coastal Cities. For. Investig. Des. 2018, 2, 8–12. (In Chinese) [Google Scholar] [CrossRef]
- Cao, H.; Chang, W.; Xu, H. Building an Oasis in Coastal Tidal Flats: The New Landscape of Dongtai Yellow Sea National Forest Park in Yancheng, Jiangsu Province. Land Green. 2019, 10, 56–58. (In Chinese) [Google Scholar]
- Jiangsu Provincial Forestry Bureau. 2015 Jiangsu Forestry Overview. 2016. Available online: https://lyj.jiangsu.gov.cn/art/2016/4/19/art_86524_10574012.html (accessed on 10 December 2024). (In Chinese)
- Jiangsu Provincial Forestry Bureau. Forest Cities: Creating a Greener Life. 2019. Available online: https://lyj.jiangsu.gov.cn/art/2019/7/30/art_7118_8646744.html (accessed on 10 December 2024). (In Chinese)
- Xu, Y.Q.; Xiao, F.J.; Yu, L. Review of spatio-temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecol. Sin. 2020, 40, 4710–4723. (In Chinese) [Google Scholar]
- Peng, F.; Sun, G. Variation of Leaf Area Index in China from 1982 to 1999 and Its Relationship with Climate Change. Clim. Environ. Res. 2017, 22, 162–176. [Google Scholar] [CrossRef]
- Liu, K.J.; He, N.P.; Hou, J.H. Spatial patterns and influencing factors of specific leaf area in typical temperate forests. Acta Ecol. Sin. 2022, 42, 872–883. (In Chinese) [Google Scholar]
- Cui, J.; Zheng, M.; Bian, Z.; Pan, N.; Tian, H.; Zhang, X.; Qiu, Z.; Xu, J.; Gu, B. Elevated CO2 Levels Promote Both Carbon and Nitrogen Cycling in Global Forests. Nat. Clim. Chang. 2024, 14, 511–517. [Google Scholar] [CrossRef]
- Kong, X.Q.; Wang, B.; Bian, S.J.; Chen, Y.X.; Li, M.Z.; Fan, W.Y. Spatial and Temporal Trends in the Response of Global Forest GPP and NEP to CO2 Fertilization Effects from 1982 to 2015. J. Remote Sens. 2025, 29, 102–117. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef]
- Gu, H.; Qiao, Y.; Xi, Z.; Rossi, S.; Smith, N.G.; Liu, J.; Chen, L. Warming-Induced Increase in Carbon Uptake Is Linked to Earlier Spring Phenology in Temperate and Boreal Forests. Nat. Commun. 2022, 13, 3698. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Uebbing, L.; de Vries, W. Global-Scale Impacts of Nitrogen Deposition on Tree Carbon Sequestration in Tropical, Temperate, and Boreal Forests: A Meta-Analysis. Glob. Change Biol. 2018, 24, e416–e431. [Google Scholar] [CrossRef]
- CO2 Fluxes over an Old, Temperate Mixed Forest in Northeastern China. Agric. For. Meteorol. 2006, 137, 138–149. [CrossRef]
- Mohammed, A.-R.; Tarpley, L. Impact of High Nighttime Temperature on Respiration, Membrane Stability, Antioxidant Capacity, and Yield of Rice Plants. Crop Sci. 2009, 49, 313–322. [Google Scholar] [CrossRef]
- Zhen, Z.Q.; Zhan, Z.Y.; Liu, M.L.; Xiong, J.Q. Characteristic of Temperature Changes in Jiangsu Province over the Last 60 Years. Inn. Mong. Environ. Sci. 2024, 36, 42–46. (In Chinese) [Google Scholar]
- Jing, J.; Sun, J.; Zhao, T.; Fu, B. Response of Vegetation NPP to Multiscale Meteorological Drought in Southwest China. J. Soil. Water Conserv. 2024, 38, 335–344. [Google Scholar]
- Jiang, P.; Yan, J.; Liu, R.; Zhang, X.; Fan, S. Patterns of Deep Fine Root and Water Utilization amongst Trees, Shrubs and Herbs in Subtropical Pine Plantations with Seasonal Droughts. Front. Plant Sci. 2023, 14, 1275464. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Zhang, X.-S.; Huang, Z.-Y. Drought Tolerance in Three Hybrid Poplar Clones Submitted to Different Watering Regimes. J. Plant Ecol. 2010, 3, 79–87. [Google Scholar] [CrossRef]
- Liu, D.; Wang, T.; Peñuelas, J.; Piao, S. Drought Resistance Enhanced by Tree Species Diversity in Global Forests. Nat. Geosci. 2022, 15, 800–804. [Google Scholar] [CrossRef]
Indicator | Value (gC·m−2·yr−1) | Study Region | Methods | Source | Reference |
---|---|---|---|---|---|
GPP | 1966–2257 | Southern China | Model | RFR-LUE | Suhua Wei et al. (2017) [55] |
1430–1619 | Southern China | Model | EC-LUE | Xianglan Li et al. (2013) [56] | |
1174.65–1982.54 | Southern China | Model | MODIS, PML, and VPM | Yuzhen Li et al. (2022) [57] | |
1211–1604 | Southern China | Model | MODIS algorithm parameterized by FLUXNET sites | Wang, L. et al. (2017) [58] | |
1509 ± 734 | Southern China | Model | VIP | Xingguo Mo et al. (2018) [59] | |
3150 | Tropical forests in Malaysia | Model | VPISIT | M. Adachi et al. (2011) [60] | |
3551 ± 160 | Global tropical forests | Observation and model | Data synthesis | S. Luyssaert et al. (2007) [61] | |
1709 ± 80 | Sites in Southern China | Site observation | FLUXNET | Zhi Chen et al. (2019) [62] | |
1826 | Sites in Southern China | Site observation | FLUXNET | Wang, L. et ail. (2017) [58] | |
3040–3140 | Tropical forests in the Amazon | Site observation | FLUXNET | Malhi et al. (2009) [63] | |
4860 | Tropical forests in the Amazon | Site observation | FLUXNET | Alves et al. (2024) [64] | |
4010 | Tropical forests in West African | Site observation | In situ biometric measurements | Zhang-Zheng et al. (2024) [65] | |
1314 | Caatinga ecosystem in Brazil | Site observation | FLUXNET | Mendes et al. (2021) [66] | |
2144 ± 123 | Savanna ecosystem in North Australia | Site observation | FLUXNET | Lindsay et al. (2021) [67] | |
1216.66 | Jiangsu Province, China | Model | BEPS | This study | |
NPP | 687 | Southern China | Model | BEPS | Shiyan Yin et al. (2024) [68] |
1018 | Southern China | Model | DLEM | Shufen Pan et al. (2015) [69] | |
891 | Southern China | Model | M-SDGVM | Mao et al. (2010) [70] | |
721 | Southern China | Model | CEVSA | Tao et al. (2003) [71] | |
417.9 | Southern China | Model | CASA | Piao et al. (2005) [72] | |
864 ± 96 | Global tropical forests | Site observation and model | Data synthesis | S. Luyssaert et al. (2007) [61] | |
1300 ± 50 | Evergreen forests in Ghana, West Africa | Site observation | In situ biometric measurements | Sam Moore et al. (2017) [73] | |
1000–1440 | Tropical forests in the Amazon | Site observation | FLUXNET | Malhi et al. (2009) [63] | |
536.27 | Jiangsu Province, China | Model | BEPS | This study | |
NEP | 15–60 | Southern China | Model | CEVESA | Tao, B. et al. (2007) [74] |
160.4–193.3 | Taihu Lake Basin, China | Model | BIOME-BGC | Xibao Xu et al. (2017) [75] | |
266 | Poyang Lake Basin, China | Model | InTEC | Zhou Lei et al. (2013) [76] | |
30 | Tropical forests in Malaysia | Model | VPISIT | M. Adachi et al. (2011) [60] | |
424 ± 95 | Savanna ecosystem in North Australia | Site observation | FLUXNET | Lindsay et al. (2021) [67] | |
403 ± 102 | Global tropical forests | Site observation and model | Data synthesis | S. Luyssaert et al. (2007) [61] | |
254 | Poyang Lake Basin, China | Site observation | FLUXNET | Zhou Lei et al. (2013) [76] | |
385.36 ± 117.81 | Sites in Southern China | Site observation | FLUXNET | Yu GR et al. (2012) [77] | |
668 | Tropical forests in the Amazon | Site observation | FLUXNET | Alves et al. (2024) [64] | |
16.32 | Jiangsu Province, China | Model | BEPS | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Wu, M.; Lin, Z.; Chen, Y.; Ruan, H. Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China. Forests 2025, 16, 756. https://doi.org/10.3390/f16050756
Cui Y, Wu M, Lin Z, Chen Y, Ruan H. Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China. Forests. 2025; 16(5):756. https://doi.org/10.3390/f16050756
Chicago/Turabian StyleCui, Yuxue, Miaomiao Wu, Zhongyi Lin, Yizhao Chen, and Honghua Ruan. 2025. "Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China" Forests 16, no. 5: 756. https://doi.org/10.3390/f16050756
APA StyleCui, Y., Wu, M., Lin, Z., Chen, Y., & Ruan, H. (2025). Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China. Forests, 16(5), 756. https://doi.org/10.3390/f16050756