Analysis of the Application of Machine Learning Algorithms Based on Sentinel-1/2 and Landsat 8 OLI Data in Estimating Above-Ground Biomass of Subtropical Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection and Processing
2.3. RS Data Collection and Processing
2.4. RS Feature Extraction
2.5. Feature Optimization and Model Building
2.6. Model Accuracy Assessment
3. Results
3.1. Feature Optimization Results and Analyses
3.2. AGB Model Inversion Results and Analysis
4. Discussion
4.1. Effects of Remote Sensing Variables on AGB in Subtropical Forests
4.2. Impact of Different Machine Learning Models on Forest AGB
4.3. Impact of Remote Sensing Data Sources on Forest AGB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Wang, C.; Hu, Y.; Liu, S. General Review on Remote Sensing-Based Biomass Estimation. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 631–635. [Google Scholar]
- Tian, C. Remote Sensing Estimation of Aboveground Biomass in Subtropical Forests Based on Active Remote Sensing Data, Passive Remote Sensing Data, and Spaceborne LiDAR Data—A Case Study of Chenzhou City, Hunan Province. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2023. [Google Scholar]
- Xu, Z.; Li, C.; Li, M.; Li, C.; Wang, L. Forest Biomass Retrieval Based on Sentinel-1a and Landsat 8 Image. J. Cent. South Univ. For. Technol. 2020, 40, 147–155. [Google Scholar]
- Zhou, W.; Lv, Y.; Lin, Q. Retrieval of Above-ground biomass in Taiping Lake Forests Using Optical and SAR Dataset. J. Northwest For. Univ. 2023, 38, 193–200. [Google Scholar]
- Pan, L.; Sun, Y.; Wang, Y.; Chen, L.; Cao, Y. Estimation of Aboveground Biomass in a Chinese Fir (Cunninghamia lanceolata) Forest Combining Data of Sentinel-1 and Sentinel-2. J. Nanjing For. Univ. 2020, 44, 149. [Google Scholar]
- Hao, Q.; Huang, C. A Review of Forest Aboveground Biomass Estimation Based on Remote Sensing Data. Chin. J. Plant Ecol. 2023, 47, 1356. [Google Scholar] [CrossRef]
- Yan, H.; Jiang, X.; Wang, W.; Wu, Z.; Liu, F.; Wei, Y. Aboveground Biomass Inversion Based on Sentinel-2 Remote Sensing Images in Chongli District. J. Cent. South Univ. For. Technol. 2024, 44, 53–61. [Google Scholar]
- Liu, Q.; Yang, L.; Liu, Q.; Li, J. Review of Forest above-ground biomass Inversion Methods Based on Remote Sensing Technology. Remote Sens. 2015, 19, 62–74. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest Aboveground Biomass Estimation Using Landsat 8 and Sentinel-1a Data with Machine Learning Algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Li, Y.; Shi, J.; Yan, M.; Ji, Y. Forest above-Ground Biomass Inversion Using Optical and Sar Images Based on a Multi-Step Feature Optimized Inversion Model. Remote Sens. 2022, 14, 1608. [Google Scholar] [CrossRef]
- Ding, J.; Huang, W.; Liu, Y.; Hu, Y. Estimation of Forest Aboveground Biomass in Northwest Hunan Province Based on Machine Learning and Multi-Source Data. Sci. Silvae Sin. 2021, 57, 36–48. [Google Scholar]
- Ji, Y.; Zhang, W.; Xu, K.; Ju, Y.; Li, W.; Jing, Q.; Wang, L.; Li, Y. Estimation of Forest Aboveground Biomass Based on Gf-3 Quad-Polarization Sar Data. Remote Sens. Technol. Appl. 2023, 38, 362–371. [Google Scholar]
- Guo, Y. Optimu Non-Parametric Method for Forest Above-Ground Biomass Estimation Based on Remote Sensing Data. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2012. [Google Scholar]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Quegan, S.; Carreiras, J.; Persson, H.J.; Fransson, J.E.S.; Hoscilo, A.; Ziółkowski, D.; Krzysztof, S.; Lohberger, S.; Matthias, S. Forest Biomass Retrieval Approaches from Earth Observation in Different Biomes. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 53–68. [Google Scholar] [CrossRef]
- Ou, G.; Li, C.; Lv, Y.; Wei, A.; Xiong, H.; Xu, H.; Wang, G. Improving Aboveground Biomass Estimation of Pinus Densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and Method Comparison. Remote Sens. 2019, 11, 738. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined Lidar and Landsat 8 Data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Awad, M.M. Flexiblenet: A New Lightweight Convolutional Neural Network Model for Estimating Carbon Sequestration Qualitatively Using Remote Sensing. Remote Sens. 2023, 15, 272. [Google Scholar] [CrossRef]
- Zadbagher, E.; Marangoz, A.; Becek, K. Estimation of above-Ground Biomass Using Machine Learning Approaches with Insar and Lidar Data in Tropical Peat Swamp Forest of Brunei Darussalam. iForest Biogeosci. For. 2024, 17, 172–179. [Google Scholar] [CrossRef]
- Fang, K.; Wu, J.; Zhu, J.; Xie, B. A Review of Technologies on Random Forests. J. Stat. Inf. 2011, 26, 32–38. [Google Scholar]
- Tan, Y.; Tian, Y.; Haung, Z.; Zhang, Q.; Tao, J.; Liu, H.; Yang, Y.; Zhang, Y.; Lin, J.; Deng, J. Aboveground Biomass of Sonneratia Apetala Mangroves in Mawei Sea of Beibu Gulf Based on Xgboost Machine Learning Algorithm. Acta Ecol. Sin. 2023, 43, 1–15. [Google Scholar]
- Wu, J.; Zhu, Y.; Jin, S.; Yang, T.; Feng, J.; Wu, Z.; Xue, T.; Jiang, Y. Area Prediction of Cyanobacterial Blooms Based on Three Machine Learning Methods in Taihu Lake. J. Hohai Univ. (Nat. Sci.) 2020, 48, 542–551. [Google Scholar]
- Liu, Y. Merged Airborne LiDAR and Hyperspectral Data for Tree Species Classification in Puer’s Mountainous Area. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2016. [Google Scholar]
- Xu, M.; Wang, J.; Xu, H.; Ou, G. Relationship between Spatial Structure of Pinus Kesiya Var. Langbianensis Natural Forest and the above-Ground Biomass of Individual Trees. J. Yunnan Univ. Nat. Sci. Ed. 2020, 42, 364–373. [Google Scholar]
- Liu, X.; Ou, S.; Lu, S.; Yue, C. Estimation of Forest Volume Based on Sentinel-1a Microwave Remote Sensing Data. J. West China For. Sci. 2020, 49, 128–136. [Google Scholar]
- Xu, H.; Zhang, H. Study on Tree Biomass Models, 1st ed.; Hu, P., Sun, W., Eds.; Yunnan Science and Technology Press: Kunming, China, 2002. [Google Scholar]
- Yin, T.; Zhang, J.; Liao, Y.; Wang, F.; Gao, J.; He, Y.; Chen, C.; Xiao, Q. Estimating the Pinus Densata Carbon Storage of Shangri-La by Environmental Variables. J. West China For. Sci. 2024, 53, 119–128. [Google Scholar]
- Sun, X. Biomass Estimation Model of Pinus Densata Forests in Shangri-La City Based on Landsat8-Oli by Remote Sensing. Master’s Thesis, Southwest Forestry University, Kunming, China, 2016. [Google Scholar]
- Tian, C.; Li, M.; Li, T.; Li, D.; Tian, L. Estimation of Forest Net Primary Productivity Based on Sentinel Active and Passive Remote Sensing Data and Canopy Height. J. Nanjing For. Univ. 2024, 48, 132. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Su, H.; Shen, W.; Wang, J.; Ali, A.; Li, M. Machine Learning and Geostatistical Approaches for Estimating Aboveground Biomass in Chinese Subtropical Forests. For. Ecosyst. 2020, 7, 64. [Google Scholar]
- Han, H.; Wan, R.; Li, B. Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China. Remote Sens. 2022, 14, 176. [Google Scholar]
- Ma, J.; Zhang, W.; Ji, Y.; Huang, J.; Huang, G.; Wang, L. Total and Component Forest Aboveground Biomass Inversion Via Lidar-Derived Features and Machine Learning Algorithms. Front. Plant Sci. 2023, 14, 17. [Google Scholar]
- Pandit, S.; Tsuyuki, S.; Dube, T. Estimating above-Ground Biomass in Sub-Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef]
- Wang, P.; Tan, S.; Zhang, G.; Wang, S.; Wu, X. Remote Sensing Estimation of Forest Aboveground Biomass Based on Lasso-Svr. Forests 2022, 13, 1597. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products. Remote Sens. 2020, 12, 4015. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef]
- Gašparović, M.; Dobrinić, D. Comparative Assessment of Machine Learning Methods for Urban Vegetation Mapping Using Multitemporal Sentinel-1 Imagery. Remote Sens. 2020, 12, 1952. [Google Scholar] [CrossRef]
- Su, H.; Li, J.; Chen, X.; Liao, J.; Wen, D. Forest Biomass Based on the Forest Communities and Image Spectral Curve Character-Istics: A Remote Sensing Estimation in Fujian Province. Acta Ecol. Sin. 2016, 37, 5742–5755. [Google Scholar]
- Jiang, F.; Sun, H.; Li, C.; Ma, K.; Chen, S.; Long, J.; Ren, L. Retrieving the Forest Aboveground Biomass by Combining the Red Edge Bands of Sentinel-2 and Gf-6. Acta Ecol. Sin. 2021, 41, 8222–8236. [Google Scholar]
- Jian, Y.; Han, Z.; Huang, G.; Wang, X.; Li, Y.; Zhou, J.; Dian, Y. Estimation of Forest Biomass Using High Spatial Resolution Remote Sensing Imagery in North Subtropical Forests. Acta Ecol. Sin. 2021, 41, 2161–2169. [Google Scholar]
- Chen, L.; Hao, W.; Gao, D. The Latest Applications of Optical Image Texture in Forestry. J. Beijing For. Univ. 2015, 37, 1–12. [Google Scholar]
- Zhang, X.; Shen, H.; Huang, T.; Wu, Y.; Guo, B.; Liu, Z.; Luo, H.; Tang, J.; Zhou, H.; Wang, L. Improved Random Forest Algorithms for Increasing the Accuracy of Forest Aboveground Biomass Estimation Using Sentinel-2 Imagery. Ecol. Indic. 2024, 159, 111752. [Google Scholar]
- Xu, Z. Forest Biomass Retrieval Based on Sentinel-1a and Landsat 8 Image in Guidong County. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2020. [Google Scholar]
- Li, Y.; Peng, D.; Yuan, Y. Airborne Lidar Data Inversion of Forest Aboveground Biomass Using Xgboost Algorithm. J. Northeast Foresrty Univ. 2023, 51, 106–112. [Google Scholar]
- Li, J.; Bao, W.; Wang, X.; Song, Y.; Liao, T.; Xu, X.; Guo, M. Estimating Aboveground Biomass of Boreal Forests in Northern China Using Multiple Data Sets. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4408410. [Google Scholar]
- Yan, Y.; Deng, Z.; Li, B.; Zhao, T. Estimation Models of Aboveground Biomass in Plantations Based on Landsat 8 Data. J. Northwest For. Univ. 2024, 39, 53–60, 77. [Google Scholar]
- David, R.M.; Rosser, J.; Donoghue, D. Improving above-ground biomass Estimates of Southern Africa Dryland Forests by Combining Sentinel-1 Sar and Sentinel-2 Multispectral Imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Hang, T.; Ou, G.; Wu, Y.; Xu, X.; Wang, Z.; Lin, R.; Xu, C. Multi-source Remote Sensing Estimation of Forest Biomass Based on Machine Learning Algorithm. J. Northwest For. Univ. 2024, 39, 10–18. [Google Scholar]
- Zhang, L.; Zhang, X.; Shao, Z.; Jiang, W.; Gao, H. Integrating Sentinel-1 and 2 with Lidar Data to Estimate Aboveground Biomass of Subtropical Forests in Northeast Guangdong, China. Int. J. Digit. Earth 2023, 16, 158–182. [Google Scholar] [CrossRef]
- Ma, Y.; Eziz, A.; Halik, Ü.; Abliz, A.; Kurban, A. Precipitation and Temperature Influence the Relationship between Stand Structural Characteristics and Aboveground Biomass of Forests—A Meta-Analysis. Forests 2023, 14, 896. [Google Scholar] [CrossRef]
Tree Species | Above-Ground Biomass Models |
---|---|
Pinus kesiya var. langbianensis (A.Chev.) Gaussen ex Bui | |
Schima superba Gardner & Champ. | |
Eucalyptus robusta Sm. | |
Cupressus funebris Endl. | |
Cunninghamia lanceolata (Lamb.) Hook | |
Quercus × leana Nutt. | |
Castanopsis fargesii Franch. | |
Various kinds of birch in southwest China | |
Hard broadleaved | |
Soft broadleaved |
Data Source | Features Name |
---|---|
S1 | Sigma0_VH/VV, VV_VH (VV-VH), VH_VV (VH+VV) |
S2 | B2-B8A, ARVI, DVI, GEMI, GNDVI, IPVI, IRECI, MSAVI, MSAVI2, MTCI, NDVI, NDVI45, PSSRa, PVI, REIP, RVI, S2REP, SAVI, WDVI, TSAVI, TNDVI, EVI, NDVI85, NDVI86, NDVI87, NDVI8A4, NDVI8A5, NDVI8A6, NDVI8A7 |
L8 | B2-B7, DVI, NDVI, RVI, EVI, SAVI, ND32, ND43, ND67, ND452, ND563 |
S1/S2/LT8 | Bi_N_Me (Mean), Bi_N_Var (Variance), Bi_N_Homo (Homogeneity), Bi_N_Con (Contrast), Bi_N_Dis (Dissimilarity), Bi_N_En (Entropy), Bi_N_Sec (Second-order Moment), Bi_N_Cor (Correlation) |
Forest Type | Data Source | Features Name |
---|---|---|
Broad-leaved forest | S1 | VH_3_Homo, VH_3_Dis, VH_5_Homo, VH_5_Con, VH_7_Var, VH_7_Sec, VV_9_Me, VH_9_Con, VH_9_Dis, VV_VH |
S2 | B5_3_Cor, B5_5_Me, B5_9_Me, B6_7_Me, B6_9_Me, B7_9_Me, B8_3_Cor, B8A_3_En, MTCI, NDVI_85 | |
LT8 | LB3_7_Me, LB4_7_Sec, LB4_9_Dis, LB5_5_Cor, LB5_7_Homo, LB5_9_En, LB6_3_Var, LB6_5_Con, LB6_9_Var, NDVI_LT | |
S1 + LT8 | VH_7_Cor, VH_9_Con, VV_5_Var, LB4_7_Dis, LB4_9_Dis, LB5_5_Cor, LB5_7_Homo, LB6_3_Var, LB6_5_Var, ND32 | |
S1 + S2 | VH_7_Var, VH_7_Cor, VH_9_Cor, B2_7_Dis, B5_3_Cor, B5_9_Me, B6_9_Me, B8_3_Cor, NDVI_8A4, B7 | |
S1 + S2 + LT8 | VH_5_Var, VV_3_Me, VV_9_Dis, B2_3_En, B8_3_Cor, LB4_7_Sec, LB4_7_Dis, LB5_5_Cor, NDVI_85, B7 | |
Coniferous forest | S1 | Sigma0_VH_db, VH_3_Homo, VH_5_Me, VH_7_Sec, VH_7_Cor, VH_9_Homo, VH_9_En, VH_9_Sec, VV_9_Me, VV_9_Cor |
S2 | B3_5_Me, B3_5_Var, B3_5_Sec, B3_7_Sec, B6_7_Cor, B7_7_Cor, B8A_7_Cor, B8, NDVI_85, MTCI | |
LT8 | LB3, LB5_5_Var, LB5_5_Dis, LB5_5_En, LB5_7_Var, LB5_7_Homo, LB6_9_Var, LB7_5_Var, LB7_5_Homo, ND563 | |
S1 + LT8 | VH_7_Cor, VH_9_Homo, LB5_5_Homo, LB5_5_Dis, LB5_7_Homo, LB5_9_Sec, LB6_3_Cor, LB6_5_Var, LB6_9_Var, LB7_5_Var | |
S1 + S2 | VH_7_Cor, VH_9_Homo, B5_3_Me, B5_7_Me, B6_3_Var, B8_7_Cor, B8A_7_Cor, NDVI_8A4, NDVI_85, MTCI | |
S1 + S2 + LT8 | VH_7_Cor, VH_9_Homo, B5_3_Me, B8A_7_Cor, B8A_9_Dis, LB3_9_Cor, LB5_9_Homo, LB6_9_Sec, LB7_5_Var, NDVI_85 | |
Mixed forest | S1 | VH_3_Cor, VH_7_Me, VH_9_Me, VH_9_Cor, VV_5_Cor, VV_7_Me, VV_7_Con, VV_9_Me, VV_9_Con, VV_9_Dis |
S2 | B6_7_Me, B8A_3_En, B8A_3_Sec, RVI, NDVI, IPVI, ARVI, NDI45, PSSRa, TNDVI | |
LT8 | LB3_5_En, LB4_5_Cor, LB4_7_Cor, LB6_7_En, LB7_7_Me, LB7_7_En, LB7_9_Me, ND43, EVI_LT, DVI_LT | |
S1 + LT8 | VH_3_Cor, VH_9_Cor, VV_7_Con, VV_9_Con, LB3_5_Dis, LB3_5_En, LB4_7_Cor, LB7_9_Me, EVI_LT, ND43 | |
S1 + S2 | VH_3_Cor, VV_7_Con, B8A_3_Sec, RVI, NDVI, IPVI, ARVI, NDI45, PSSRa, TNDVI | |
S1 + S2 + LT8 | VV_7_Con, VV_9_Dis, B7_7_Me, RVI, NDVI, IPVI, ARVI, NDI45, PSSRa, TNDVI |
Forest Type | Data Type | Models | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
BLF | RF | SVR | XGBoost | |||||||
R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | ||
S1 | 0.17 | 33.77 | 45.2 | 0.43 | 24.53 | 37.82 | 0.52 | 27.94 | 34.86 | |
S2 | 0.29 | 31.17 | 42.98 | 0.32 | 31.17 | 41.19 | 0.45 | 29.72 | 36.87 | |
LT8 | 0.22 | 30.01 | 44.25 | 0.39 | 37.63 | 51.25 | 0.29 | 33.38 | 42.43 | |
S1L8 | 0.12 | 34.76 | 46.61 | 0.60 | 39.14 | 52.43 | 0.22 | 31.65 | 44.44 | |
S1S2 | 0.38 | 29.51 | 40.32 | 0.36 | 28.00 | 39.66 | 0.58 | 25.22 | 32.32 | |
S1S2L8 | 0.28 | 32.59 | 42.96 | 0.18 | 32.19 | 45.05 | 0.44 | 29.13 | 37.32 | |
CF | RF | SVR | XGBoost | |||||||
R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | ||
S1 | 0.53 | 13.95 | 16.28 | 0.57 | 16.80 | 22.34 | 0.60 | 11.85 | 14.00 | |
S2 | 0.43 | 13.39 | 16.60 | 0.36 | 13.88 | 17.66 | 0.52 | 12.23 | 14.88 | |
LT8 | 0.11 | 17.27 | 21.26 | 0.62 | 16.98 | 22.30 | 0.28 | 17.45 | 20.20 | |
S1L8 | 0.59 | 11.83 | 14.72 | 0.42 | 16.77 | 22.34 | 0.61 | 11.05 | 13.69 | |
S1S2 | 0.55 | 13.50 | 16.08 | 0.49 | 13.16 | 15.68 | 0.62 | 10.91 | 13.52 | |
S1S2L8 | 0.64 | 10.86 | 14.37 | 0.58 | 16.84 | 22.49 | 0.68 | 10.05 | 12.43 | |
MF | RF | SVR | XGBoost | |||||||
R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | ||
S1 | 0.32 | 30.88 | 39.13 | 0.24 | 33.50 | 40.34 | 0.33 | 30.77 | 38.78 | |
S2 | 0.48 | 26.82 | 33.53 | 0.22 | 30.94 | 40.48 | 0.53 | 25.46 | 31.25 | |
LT8 | 0.27 | 32.80 | 39.73 | 0.17 | 34.56 | 41.60 | 0.28 | 31.68 | 39.86 | |
S1L8 | 0.34 | 30.07 | 37.53 | 0.13 | 36.29 | 42.75 | 0.49 | 29.41 | 38.47 | |
S1S2 | 0.56 | 26.18 | 30.92 | 0.24 | 31.06 | 39.86 | 0.71 | 20.18 | 25.33 | |
S1S2L8 | 0.58 | 23.17 | 30.20 | 0.34 | 28.81 | 37.67 | 0.67 | 21.37 | 26.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hancock, S.; Dong, W.; Ji, Y.; Zhao, H.; Wang, M. Analysis of the Application of Machine Learning Algorithms Based on Sentinel-1/2 and Landsat 8 OLI Data in Estimating Above-Ground Biomass of Subtropical Forests. Forests 2025, 16, 559. https://doi.org/10.3390/f16040559
Wang Y, Hancock S, Dong W, Ji Y, Zhao H, Wang M. Analysis of the Application of Machine Learning Algorithms Based on Sentinel-1/2 and Landsat 8 OLI Data in Estimating Above-Ground Biomass of Subtropical Forests. Forests. 2025; 16(4):559. https://doi.org/10.3390/f16040559
Chicago/Turabian StyleWang, Yuping, Steven Hancock, Wenquan Dong, Yongjie Ji, Han Zhao, and Mengjin Wang. 2025. "Analysis of the Application of Machine Learning Algorithms Based on Sentinel-1/2 and Landsat 8 OLI Data in Estimating Above-Ground Biomass of Subtropical Forests" Forests 16, no. 4: 559. https://doi.org/10.3390/f16040559
APA StyleWang, Y., Hancock, S., Dong, W., Ji, Y., Zhao, H., & Wang, M. (2025). Analysis of the Application of Machine Learning Algorithms Based on Sentinel-1/2 and Landsat 8 OLI Data in Estimating Above-Ground Biomass of Subtropical Forests. Forests, 16(4), 559. https://doi.org/10.3390/f16040559