Heart Rate Monitoring for Physiological Workload in Forestry Work: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Database and Screening
2.4. Synthesis of the Results
3. Results
3.1. Literature
3.2. Work Conditions
3.3. Tasks
3.4. Participants
3.5. HRs
3.6. Other Parametes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CL | confidence limit |
HR | heart rate |
HRI | heart rate index |
%HRR | the percentage of heart rate reserve |
HRrest | heart rate at rest |
HRwork | heart rate at work |
References
- Banister, E.W.; Brown, S.R. The relative energy requirements of physical activity. In Exercise Physiology; Falls, H.B., Ed.; Academic Press, Inc.: New York, NY, USA, 1968; pp. 267–322. [Google Scholar]
- Apud, E.; Meyer, F.; Espinoza, J.; Oñate, E.; Freire, J.; Maureira, F. Ergonomics and labor in forestry. In Tropical Forestry Handbook; Pancel, L., Köhl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3211–3310. [Google Scholar]
- Magagnotti, N.; Aalmo, G.O.; Brown, M.; Spinelli, R. A new device for reducing winching cost and worker effort in steep terrain operations. Scand. J. For. Res. 2016, 31, 602–610. [Google Scholar] [CrossRef]
- Aalmo, G.O.; Magagnotti, N.; Spinelli, R. Forest workers and steep terrain winching: The impact of environmental and anthropometric parameters on performance. Croat. J. For. Eng. 2016, 37, 97–105. [Google Scholar]
- Stampfer, K.; Leitner, T.; Visser, R. Efficiency and ergonomic benefits of using radio controlled chokers in cable yarding. Croat. J. For. Eng. 1996, 31, 1–9. [Google Scholar]
- Poje, A.; Lipužič, B.; Bilobrk, I.; Pandur, Z. Time composition, efficiency, workload, and noise exposure during tree felling and processing with petrol and battery-powered chainsaws in mixed high forest stands. Forests 2024, 15, 798. [Google Scholar] [CrossRef]
- Parker, R.; Sullman, M.; Kirk, P.; Ford, D. Chainsaw size for delimbing. Ergonomics 1999, 42, 897–903. [Google Scholar] [CrossRef]
- Ackerman, P.; Belbo, H.; Eliasson, L.; de Jong, A.; Lazdins, A.; Lyons, J. The COST model for calculation of forest operations costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Oka, M.; Nakazawa, M.; Sasaki, T.; Yoshida, C.; Uemura, T.; Kashima, J.; Kato, T. Studies on the forestry death disaster of introduction of high perfomance forestry machines in 10th year. J. Jpn. For. Eng. Soc. 2011, 26, 27–34. [Google Scholar] [CrossRef]
- Lundbäck, M.; Persson, H.; Häggström, C.; Nordfjell, T. Global analysis of the slope of forest land. For. Int. J. For. Res. 2020, 94, 54–69. [Google Scholar] [CrossRef]
- Fjeld, D.; Hagen, K. A comparison of motor-manual cleaning methods on the Norwegian west coast. J. For. Eng. 1997, 8, 37–45. [Google Scholar]
- Parker, J.; Bentley, T.A.; Ashby, L.J. Human factors testing in the forest industry. In Handbook of Human Factors Testing & Evaluation, 2nd ed.; Charlton, S.G., O’Brien, T.G., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 2008; pp. 319–362. [Google Scholar]
- Dias, M.; Silva, L.; Folgado, D.; Nunes, M.L.; Cepeda, C.; Cheetham, M.; Gamboa, H. Cardiovascular load assessment in the workplace: A systematic review. Int. J. Ind. Ergon. 2023, 96, 103476. [Google Scholar] [CrossRef]
- Çalıskan, E.; Çaglar, S. An assessment of physiological workload of forest workers in felling operations. Afr. J. Biotechnol. 2010, 9, 5651–5658. [Google Scholar]
- Griffiths, C.; Bowen, J.; Hinze, A. Investigating wearable technology for fatigue identification in the workplace. In Proceedings of the Human-Computer Interaction-INTERACT 2017, Mumbai, India, 25–29 September 2017; pp. 370–380. [Google Scholar]
- Åstrand, P.-O.; Rodahl, K. Chapter 11 Applied work physiology. In Textbook of Work Physiology Physiological Bases of Exercise, 3rd ed.; McGraw-Hill, Inc.: Singapore, 1986. [Google Scholar]
- Wicks, J.R.; Oldridge, N.B.; Nielsen, L.K.; Vickers, C.E. HR index—A simple method for the prediction of oxygen uptake. Med. Sci. Sports Exerc. 2011, 43, 2005–2012. [Google Scholar] [CrossRef]
- Okuda, M.; Kawamoto, Y.; Tado, H.; Fujita, Y.; Inomata, Y. Energy expenditure estimation for forestry workers moving on flat and inclined ground. Forests 2023, 14, 1038. [Google Scholar] [CrossRef]
- Swain, D.P.; Leutholtz, B.C. Heart rate reserve is equivalent to %VO2 reserve, not to %VO2max. Med. Sci. Sports Exerc. 1997, 29, 410–414. [Google Scholar] [CrossRef]
- Yovi, E.Y. %VdotO2max as physical load indicator unit in forest work operation. J. Manaj. Hutan Trop. 1970, 13, 140–145. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Occupational Classification by the Ministry of Health, Labour and Welfare, Japan. Available online: https://www.mhlw.go.jp/web/t_doc?dataId=00tc6704&dataType=1&pageNo=1 (accessed on 10 June 2024).
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Info Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Miake-Lye, I.M.; Hempel, S.; Shanman, R.; Shekelle, P.G. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst. Rev. 2016, 5, 28. [Google Scholar] [CrossRef]
- Kukkonen-Harjula, K.; Rauramaa, R. Oxygen consumption of lumberjacks in logging with a power-saw. Ergonomics 1984, 27, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Melemez, K.; Tunay, M. Determining physical workload of chainsaw operators working in forest harvesting. Technology 2010, 13, 237–243. [Google Scholar]
- Eroglu, H.; Yilmaz, R.; Kayacan, Y. A study on determining the physical workload of the forest harvesting and nursery-afforestation workers. Anthropologist 2015, 21, 168–181. [Google Scholar] [CrossRef]
- Cheţa, M.; Marcu, M.V.; Borz, S.A. Workload, exposure to noise, and risk of musculoskeletal disorders: A case study of motor-manual tree feeling and processing in poplar clear cuts. Forests 2018, 9, 300. [Google Scholar] [CrossRef]
- Marogel-Popa, T.; Cheţa, M.; Marcu, M.V.; Duţă, C.I.; Ioraş, F.; Borz, S.A. Manual cultivation operations in poplar stands: A characterization of job difficulty and risks of health impairment. Int. J. Environ. Res. Public Health 2019, 16, 1911. [Google Scholar] [CrossRef]
- Borz, S.A.; Talagai, N.; Cheţa, M.; Chirioiu, D.; Vinicio, A.; Montoya, G.; Vizuete, D.D.C.; Marcu, M.V. Physical strain, exposure to noise and postural assessment in motor-manual felling of willow short rotation coppice: Results of a preliminary study. Croat. J. For. Eng. 2019, 40, 377–388. [Google Scholar] [CrossRef]
- Halilović, V.; Musić, J.; Knežević, J. Physiological workload of chainsaw felling and processing workers in uneven-aged mixed stand. Work. Fac. For. Univ. Sarajevo (Rad. Šumar. Fak. Univ. Sarajev.) 2021, 51, 26–34. [Google Scholar] [CrossRef]
- Grzywiński, W.; Turowski, R.; Jelonek, T.; Tomczak, A. Physiological workload of workers employed during motor-manual timber harvesting in young alder stands in different seasons. Int. J. Occup. Med. Environ. Health 2022, 35, 437–447. [Google Scholar] [CrossRef]
- Kirk, P.; Parker, R. The effect of spiked boots on logger safety, productivity and workload. Appl. Ergon. 1994, 25, 106–110. [Google Scholar] [CrossRef]
- Kirk, P.M.; Parker, R.J. Heart rate strain in New Zealand manual tree pruners. Int. J. Ind. Ergon. 1996, 18, 317–324. [Google Scholar] [CrossRef]
- Kirk, P.M.; Sullman, M.J.M. Heart rate strain in cable hauler choker setters in New Zealand logging operations. Appl. Ergon. 2001, 32, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Sullman, M.J.M.; Byers, J. An ergonomic assessment of manual planting Pinus radiata seedlings. J. For. Eng. 2000, 11, 53–62. [Google Scholar]
- Kurumatani, N.; Yamaguchi, B.; Dejima, M.; Enomoto, Y.; Moriyama, T. Aerobic capacity of forestry workers and physical demands of forestry operations. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Kobayashi, H. Operators’ physical strain in operating the high proficient forestry machines. J. For. Res. 1996, 1, 111–115. [Google Scholar] [CrossRef]
- Arman, Z.; Nikooy, M.; Tsioras, P.A.; Heidari, M.; Majnounian, B. Physiological workload evaluation by means of heart rate monitoring during motor-manual clearcutting operations. Int. J. For. Eng. 2021, 32, 91–102. [Google Scholar] [CrossRef]
- Trites, D.G.; Robinson, D.G.; Banister, E.W. Cardiovascular and muscular strain during a tree planting season among british columbia silviculture workers. Ergonomics 1993, 36, 935–949. [Google Scholar] [CrossRef]
- Seixas, F.; Ducatti, F.A. Evaluation of job rotation effects on chain saw operators. J. For. Eng. 1995, 6, 59–63. [Google Scholar] [CrossRef]
- Dubé, P.A.; Imbeau, D.; Dubeau, D.; Lebel, L.; Kolus, A. Removing the thermal component from heart rate provides an accurate estimation in forest work. Appl. Ergon. 2016, 54, 148–157. [Google Scholar] [CrossRef]
- Wästerlund, D.S.; Chaseling, J.; Burström, L. The effect of fluid consumption on the forest workers’ performance strategy. Appl. Ergon. 2004, 35, 29–36. [Google Scholar] [CrossRef]
- Scott, P.A.; Christie, C.J. An indirect method to assess the energy expenditure of manual labourers in situ. South. Afr. J. Sci. 2004, 100, 694–698. [Google Scholar] [CrossRef]
- Christie, C.J.-A. Relationship between energy intake and expenditure during harvesting tasks. Occup. Ergon. 2008, 8, 1–10. [Google Scholar] [CrossRef]
- Wästerlund, D.S.; Chaseling, J. Physiological and labour-productive effects of fluid consumption during forestry work. In Proceedings of the Contemporary Ergonomics 2005, Hatfield, UK, 5–7 April 2005; pp. 217–221. [Google Scholar]
- Silayo, D.S.A.; Kiparu, S.S.; Mauya, E.W.; Shemwetta, D.T.K. Working conditions and productivity under private and public logging companies in Tanzania. Croat. J. For. Eng. 2010, 31, 65–74. [Google Scholar]
- Leszczyński, K.; Stańczykiewicz, A. Workload analysis in logging technology employing a processor aggregated with a farm tractor. For. Syst. 2015, 24, e024. [Google Scholar] [CrossRef]
- Sundström-Frisk, C. Behavioural control through piece-rate wages. J. Occup. Accid. 1984, 6, 49–59. [Google Scholar] [CrossRef]
- Lilley, R.; Feyer, A.-M.; Kirk, P.; Gander, P. A survey of forest workers in New Zealand: Do hours of work, rest, and recovery play a role in accidents and injury? J. Saf. Res. 2002, 33, 53–71. [Google Scholar] [CrossRef]
- Bowen, J.; Hinze, A.; Griffiths, C. Investigating real-time monitoring of fatigue indicators of New Zealand forestry workers. Accid. Anal. Prev. 2019, 126, 122–141. [Google Scholar] [CrossRef]
- Dubé, P.A.; Imbeau, D.; Dubeau, D.; Auger, I.; Leone, M. Prediction of work metabolism from heart rate measurements in forest work: Some practical methodological issues. Ergonomics 2015, 58, 2040–2056. [Google Scholar] [CrossRef]
- González-Alonso, J.; Mora-Rodríguez, R.; Coyle, E.F. Stroke volume during exercise: Interaction of environment and hydration. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H321–H330. [Google Scholar] [CrossRef]
- Itou, T.; Yamada, Y. Analysis of workload and weed suppression effects from changing the brush-cutting season. J. Jpn. For. Soc. 2001, 83, 191–196. [Google Scholar] [CrossRef]
- Åstrand, P.-O.; Rodahl, K.; Dahl, H.A.; Strømme, S.B. Textbook of Work Physiology, 4th ed.; Human Kinetics: Chamaign, IL, USA, 2003. [Google Scholar]
- Wu, H.-C.; Wang, M.-J.J. Relationship between maximum acceptable work time and physical workload. Ergonomics 2002, 45, 280–289. [Google Scholar] [CrossRef]
- Åstrand, I.; Åstrand, P.-O.; Rodahl, K. Maximal heart rate during work in older men. J. Appl. Physiol. 1959, 14, 562–566. [Google Scholar] [CrossRef]
- Malchaire, J.; d’Ambrosio Alfano, F.R.; Palella, B.I. Evaluation of the metabolic rate based on the recording of the heart rate. Ind. Health 2017, 55, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fushimi, T.; Inoue, S. Workers heart-rates and continuous work periods for forest brush-cutting work on a steep area. Nihon Ringakkai Shi/J. Jpn. For. Soc. 1990, 72, 216–222. [Google Scholar]
- Hagen, K.B.; Vik, T.; Opsahl, P.A. Physical workload, perceived exertion, and output of cut wood as related to age in motor-manual cutting. Ergonomics 1993, 36, 479–488. [Google Scholar] [CrossRef]
- Martinić, I. Evaluation of physical exertion by statistical analysis of worker’s heart rate at log skidding. Arh. Hig. Rada Toksikol. 1995, 46, 23–32. [Google Scholar] [CrossRef]
- Achuthan, K.; Gandaseca, S.; Bakar, B.F.A. Effect of heat-stress and physical workload on work-rest cycle and productivity in mangrove forest of Peninsular Malaysia. J. Exp. Biol. Agric. Sci. 2020, 8, 859–866. [Google Scholar] [CrossRef]
- Sammito, S.; Thielmann, B.; Klussmann, A.; Deußen, A.; Braumann, K.-M.; Böckelmann, I. Guideline for the application of heart rate and heart rate variability in occupational medicine and occupational health science. J. Occup. Med. Toxicol. 2024, 19, 15. [Google Scholar] [CrossRef]
- Harstela, P. Work postures and strain of workers in nordic forest work: A selective review. Int. J. Ind. Ergon. 1990, 5, 219–226. [Google Scholar] [CrossRef]
- Grzywiński, W.; Jelonek, T.; Tomczak, A.; Jakubowski, M.; Bembenek, M. Does body posture during tree felling influence the physiological load of a chainsaw operator? Ann. Agric. Environ. Med. 2017, 24, 401–405. [Google Scholar] [CrossRef]
- Tsioras, P.A.; Khooshdohbat, M.; Nikooy, M.; Naghdi, R.; Heidari, M. The impact of body posture on heart rate strain during tree felling. Int. J. Environ. Res. Public Health 2022, 19, 11198. [Google Scholar] [CrossRef]
Author | Country | Operations | N | Gender | Age, y | Measurement at Rest | Breaks. | HRrest, bpm | HRwork, bpm | HRI | %HRR |
---|---|---|---|---|---|---|---|---|---|---|---|
Kukkonen-Harjula (1984) [27] | Finland | Harvest | 6 | Male | 34 ± 3 | - | in. | - | 123 ± 4 | - | - |
Kurumatani (1992) [39] | Japan | Harvest | 6 | Male | 51 | - | in. | - | 99.7 | - | - |
Trites (1993) [42] | Canada | Silviculture | 10 | Mixed | 26 ± 4 | - | - | 66.5 * | 116.5 ± 9.0 | 1.74 * | 39.2 ± 4.0 |
Kirk (1994) [35] | New Zealand | Harvest | 4 | - | 35 ± 2.8 | - | ex. | - | 117.5 ± 9.8 | - | - |
Seixas (1995) [43] | Brazil | Harvest | 2 | - | 34.5 | - | ex. | 59 | 114.6 | 1.94 * | 44.0 * |
Inoue (1996) [40] | Japan | Machinery | 84 | - | 36.1 | - | - | 67.4 | 86.8 | 1.29 * | 16.7 * |
Kirk (1996) [36] | New Zealand | Silviculture | 6 | Male | 22 ± 5 | end | in. | 78 ± 6 | 112 ± 10 | 1.45 ± 0.1 | 29 ± 7 |
Sullman (2000) [38] | New Zealand | Silviculture | 6 | Male | 23 | end | in. | 62 ± 3.0 | 134 ± 7.2 | 2.2 ± 0.2 | 52.6 ± 6.2 |
Kirk (2001) [37] | New Zealand | Harvest | 4 | - | 28.8 ± 10.1 | mean | - | 58 ± 5.6 | 106 ± 6.9 | 1.84 ± 0.11 | 36.4 ± 3.1 |
Wästerlund (2004) [45] | Zimbabwe | Harvest | 4 | Male | 28.0 ± 8.6 | end | - | 65 ± 3.4 | 126 ± 8 | 1.94 * | 48.1 ± 3.1 |
Scott (2004) [46] | South Africa | Harvest | 23 | Male | 35.5 ± 8.7 | - | - | - | 118 ± 13.3 | - | - |
Christie (2008) [47] | South Africa | Harvest | 29; 29 | Male | 35.8 ± 6.3; 36.1 ± 9.3 | - | - | - | 123.3 ± 10.8; 117.6 ± 13.0 | - | - |
Çalışkan (2010) [15] | Turkey | Harvest | 10 | - | 33.9 | - | - | 70.5 | 122.8 | 1.74 | 44.8 |
Melemez (2010) [28] | Turkey | Harvest | 46; 92 | Male | 46; 30 | mean | ex. | 73; 72 | 115 ± 7; 91 ± 8 | 1.58; 1.26 | 42; 17 |
Eroglu (2015) [29] | Turkey | Harvest | 31 | Male | 43.1 | - | - | 61.3 | 108 | 1.76 | 40.9 |
Dubé (2016) [44] | Canada | Silviculture | 41 | Male | 46.3 ± 13.2 | 1%tile | ex. | 63 ± 7 | 123 ± 19 | 1.95 * | 54 ± 13 |
Cheţa (2018) [30] | Romania | Harvest | 1 | Male | 42 | min | in. | 70.0 * | 107.1 | 1.53 | 34.4 |
Marogel-Popa (2019) [31] | Romania | Silviculture | 14 | Male | 46.4 | min | in. | 71.9 | 107.2 | 1.49 * | 36.8 |
Borz (2019) [32] | Romania | Harvest | 1 | - | 42 | min | in. | 71 | 108.4 | 1.53 * | 34.9 |
Arman (2021) [41] | Iran | Harvest | 13 | Male | 44.61 ± 6.46 | undefined | in. | 70.5 ± 3.0 | 116.1 ± 12.4 | 1.67 ± 0.07 | 43.5 ± 3.5 |
Halilovic (2021) [33] | Bosnia Herzegovina | Harvest | 2 | Male | 39.5 | min | in. | 53 | 116 | 2.19 * | 48.6 |
Grzywiński (2022) [34] | Poland | Harvest | 4 | - | 35.2 ± 10.6 | min | in. | win, 67; sum, 64.5 | win, 135.1; sum, 110.6 | win, 2.02; sum, 1.71 | win, 58.0; sum, 38.7 |
HRrest, bpm | HRwork, bpm | HRI | %HRR, % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||||||||
Operations † | |||||||||||
Silviculture | 66.2 ± 4.9 | 119.3 ± 7.5 | p = 0.004 | 1.82 ± 0.23 | 46.9 ± 9.0 | p = 0.005 | |||||
Harvest | 69.6 ± 4.7 | 104.4 ± 12.6 | 1.51 ± 0.24 | 31.6 ± 13.0 | |||||||
Machine | 67.4 ± 1.1 | 86.8 ± 3.4 | 1.29 ± 0.05 | 16.7 ± 2.9 | |||||||
ANOVA | p = 0.358 | p < 0.001 | p = 0.007 | p = 0.003 | |||||||
Labors ‡ | |||||||||||
Manual | 70.7 ± 3.9 | 103.8 ± 14.2 | p < 0.001 | 1.40 ± 0.27 | p < 0.001 | 22.8 ± 11.0 | p = 0.007 | ||||
Motor-manual | 68.2 ± 5.5 | 115.8 ± 7.0 | 1.69 ± 0.13 | 42.6 ± 3.5 | p = 0.018 | ||||||
Machine | 67.4 ± 1.1 | 86.8 ± 3.4 | 1.29 ± 0.05 | 16.7 ± 2.9 | |||||||
ANOVA | p = 0.385 | p < 0.001 | p = 0.006 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuda, M.; Kawamoto, Y.; Tado, H.; Fujita, Y. Heart Rate Monitoring for Physiological Workload in Forestry Work: A Scoping Review. Forests 2025, 16, 520. https://doi.org/10.3390/f16030520
Okuda M, Kawamoto Y, Tado H, Fujita Y. Heart Rate Monitoring for Physiological Workload in Forestry Work: A Scoping Review. Forests. 2025; 16(3):520. https://doi.org/10.3390/f16030520
Chicago/Turabian StyleOkuda, Masayuki, Yutaka Kawamoto, Hiroyuki Tado, and Yoshimasa Fujita. 2025. "Heart Rate Monitoring for Physiological Workload in Forestry Work: A Scoping Review" Forests 16, no. 3: 520. https://doi.org/10.3390/f16030520
APA StyleOkuda, M., Kawamoto, Y., Tado, H., & Fujita, Y. (2025). Heart Rate Monitoring for Physiological Workload in Forestry Work: A Scoping Review. Forests, 16(3), 520. https://doi.org/10.3390/f16030520