Impacts of Climate Change on the Potential Suitable Ecological Niches of the Endemic and Endangered Conifer Pinus bungeana in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Records of Species Distribution
2.2. Environmental Data Acquisition and Processing
2.3. Species Distribution Modeling and Assessment
3. Results
3.1. Evaluation of Model Accuracy
3.2. Dominant Factors Influencing the Distribution of Pinus bungeana
3.3. Current Distribution of Pinus bungeana
3.4. Potential Geographic Distribution of Pinus bungeana Under Future Climate Scenarios
3.5. Shift in the Center-of-Mass of Potentially Suitable Ecological Niches in Pinus bungeana
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, L.C.R.; Sun, G.; Zhu-Barker, X.; Liang, Q.L.; Wu, N.; Horwath, W.R. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change. Sci. Adv. 2016, 2, e1501302. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Habibullah, M.S.; Din, B.H.; Tan, S.H.; Zahid, H. Impact of climate change on biodiversity loss: Global evidence. Environ. Sci. Pollut. Res. 2022, 29, 1073–1086. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers in Climate Change 2021: The Physical Science Basis. Contribution of Working Group to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Dong, Y.Y.; Zhai, J.Q.; Zhao, Y.; Liu, Z.W.; Yang, Q.; Jiang, S.; Lv, Z.Y.; Yan, D.Y.; Liu, K.; Ding, Z.Y. Impacts of large-scale circulation patterns on the temperature extremes in the cold regions of China with global warming. Front. Earth Sci. 2023, 11, 1120800. [Google Scholar] [CrossRef]
- Li, J.Y.; Chang, H.; Liu, T.; Zhang, C. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agr. Forest Meteorol. 2019, 275, 243–254. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Lamsal, P.; Kumar, L.; Shabani, F.; Atreya, K. The greening of the Himalayas and Tibetan Plateau under climate change. Glob. Planet. Change 2017, 159, 77–92. [Google Scholar] [CrossRef]
- He, X.; Burgess, K.S.; Yang, X.F.; Ahrends, A.; Gao, L.M.; Li, D.Z. Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya–Hengduan Mountains region. Ecol. Evol. 2019, 9, 4055–4064. [Google Scholar] [CrossRef]
- Quintero, I.; Wiens, J.J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 2013, 16, 1095–1103. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.G.; Zou, B.; Xu, M.; Feng, Y.X. Unraveling the enigma of NPP variation in Chinese vegetation ecosystems: The interplay of climate change and land use change. Sci. Total Environ. 2024, 912, 169023. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Draper, D.; Nogués-Bravo, D. Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates. Biol. Conserv. 2012, 147, 190–196. [Google Scholar] [CrossRef]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106 (Suppl. S2), 19729–19736. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.H.; Graham, C.P.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.J.; Hijmans, R.; Huettmann, F.R.; Leathwick, J.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Busby, J.R. BIOCLIM: A bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Stockwell, D.R.B.; Peters, D.P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized linear models. J. R. Stat. Soc. A Stat. 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Edwards, T.C.; Guisan, A.; McMahon, S.M.; Normand, S.; Thuiller, W.; Wüest, R.O.; Zimmermann, N.E.; Elith, J. What do we gain from simplicity versus complexity in species distribution models? Ecography 2014, 37, 1267–1281. [Google Scholar] [CrossRef]
- Wu, K.F.; Wang, Y.J.; Liu, Z.S.; Huo, W.T.; Cao, J.Y.; Zhao, G.H.; Zhang, F.G. Prediction of potential invasion of two weeds of the genus Avena in Asia under climate change based on maxent. Sci. Total Environ. 2024, 950, 175192. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.S.; Zhang, J.W.; Wang, Y.N.; Zhuang, H.F. PPDC: An online platform for the prediction of plant distributions in China. J. Plant Ecol. 2024, 17, rtae094. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.G.; Li, N.; Robert, R.M. Pinaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; Volume 4, pp. 11–52. [Google Scholar]
- Yang, Y.X.; Zhi, L.Q.; Jia, Y.; Zhong, Q.Y.; Liu, Z.L.; Yue, M.; Li, Z.H. Nucleotide diversity and demographic history of Pinus bungeana, an endangered conifer species endemic in China. J. Syst. Evol. 2020, 58, 282–294. [Google Scholar] [CrossRef]
- Lv, Z.J.; Tang, L.; Li, D.; Wang, Y.; Chang, M. Geography and climate regime affect needle stoichiometry character of Pinus bungeana across China. Acta Oecol. 2021, 111, 103707. [Google Scholar] [CrossRef]
- Feng, X.P.; Wang, Y.T.; Tang, L.L.; Li, D.W. Polyphenols of Leaf, Litter and Soil of Pinus bungeana across China and Their Responses to Ecological Factors. Chem. Biodivers. 2019, 16, e1900205. [Google Scholar] [CrossRef]
- Guo, C.C.; Shen, Y.B.; Shi, F.H. Effect of temperature, light, and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: The role of seed-covering layers and abscisic acid changes. Forests 2020, 11, 300. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wang, M.L.; Liu, Z.L.; Zhu, J.; Yan, M.Y. Nucleotide polymorphism and phylogeographic history of an endangered conifer species Pinus bungeana. Biochem. Syst. Ecol. 2016, 64, 89–96. [Google Scholar] [CrossRef]
- Zhan, Y.P.; Zhang, X.Z.; Wang, X.A. A study on geographical distribution law of Pinus bungeana natural forests in China. Acta Bot. Boreali-Occident. Sin. 1995, 15, 161–166, (Abstract in English). [Google Scholar]
- Kou, Y.X.; Liu, M.L.; López-Pujol, J.; Zhang, Q.J.; Zhang, Z.Y.; Li, Z.H. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): Implications for conservation. Plant J. 2024, 119, 2967–2981. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.Q.; Li, B.; Zhang, C.H. Genetic diversity analysis of Pinus bungeana natural populations with EST-SSR markers. Forest Res. 2014, 27, 474–480. [Google Scholar]
- Guo, J.F.; Wang, B.; Liu, Z.L.; Mao, J.F.; Wang, X.R.; Zhao, W. Low genetic diversity and population connectivity fuel vulnerability to climate change for the tertiary relict pine Pinus bungeana. J. Syst. Evol. 2023, 61, 143–156. [Google Scholar] [CrossRef]
- Fan, Y.K.; Ren, J.; Wang, R.L.; Zhou, D.D.; Pan, Z.K.; Zhang, X.W.; Zhou, X.L. Prediction of potential suitable distribution area of Pinus bungeana in China under the background of climate Change. Arid. Zone Res. China 2024, 41, 1719–1730. [Google Scholar]
- Lepore, C.; Abernathey, R.; Henderson, N.; Allen, J.T.; Tippett, M.K. Future global convective environments in CMIP6 models. Earth’s Future 2021, 9, e2021EF002277. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Riahi, K. The relationship between short-term emissions and long-term concentration targets. Clim. Change 2011, 104, 793–801. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using MaxEnt. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Shi, X.D.; Yin, Q.; Sang, Z.; Zhu, Z.L.; Jia, Z.K.; Ma, L.Y. Habitat distribution pattern of rare and endangered plant Magnolia wufengensis in China under climate change. Forests 2023, 14, 1767. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Chou, J.M.; Gao, Z.B. Added value of CMIP6 models Over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol. 2021, 42, 1148–1164. [Google Scholar] [CrossRef]
- Evans, J.M.; Fletcher, R.J.; Alavalapati, J. Using species distribution models to identify suitable areas for biofuel feedstock production. Glob. Change Biol. Bioenergy 2010, 2, 63–78. [Google Scholar] [CrossRef]
- Jing, K.T.; Li, M.; Zhao, H.X.; Guo, J.Y.; Yang, N.W.; Yang, M.; Xian, X.Q.; Liu, W.X. Estimating the global geographical distribution patterns of the invasive crop pest Diuraphis noxia Kurdjumov under current and future climatic scenarios. Insects 2023, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.C.; Garcia, N.; Alírio, J.; Arenas-Castro, S.; Teodoro, A.C.; Sillero, N. Ecological Niche models using MaxEnt in google earth engine: Evaluation, guidelines and recommendations. Ecol. Inform. 2023, 76, 102147. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Wan, J.Z.; Wang, C.J.; Yu, F.H. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia 2019, 74, 757–766. [Google Scholar] [CrossRef]
- Daba, D.; Kagnew, B.; Tefera, B.; Nemomissa, S. Modelling the current and future distribution potential areas of Peperomia abyssinica Miq., and Helichrysum citrispinum Steud. ex A. Rich. in Ethiopia. BMC Ecol. Evol. 2023, 23, 71. [Google Scholar] [CrossRef]
- Ab Lah, N.Z.; Yusop, Z.; Hashim, M.; Mohd, S.J.; Numata, S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests 2021, 12, 1449. [Google Scholar] [CrossRef]
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species-climate impact models under climate change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Hampe, A.; Jump, A.S. Climate relicts: Past, present, future. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 313–333. [Google Scholar] [CrossRef]
- Yan, Y.H.; Cen, Y.F.; Zhang, P.Y.; Zhang, Y.; Liu, X.; Li, C.Y.; Xu, S. Predicting distribution pattern and future change of Pinus massoniana in China based on MaxEnt model. J. Ecol. China 2019, 38, 2896. [Google Scholar]
- Jian, F.; Wang, B.L.; Xian, M.R.; Zhou, S.X.; Huang, G.D.; Cui, X.L. Prediction of future potential distributions of Pinus yunnanensis varieties under climate change. Front. For. Glob. Change 2023, 6, 1308416. [Google Scholar]
- Jiao, L.; Xue, R.H.; Qi, C.L.; Chen, K.; Liu, X.P. Comparison of the responses of radial growth to climate change for two dominant coniferous tree species in the eastern Qilian Mountains, northwestern China. Int. J. Biometeorol. 2021, 65, 1823–1836. [Google Scholar] [CrossRef]
- Allen, S.T.; Kirchner, J.W.; Braun, S.; Siegwolf, R.T.W.; Goldsmith, G.R. Seasonal origins of soil water used by trees. Hydrol. Earth Syst. Sci. 2019, 23, 1199–1210. [Google Scholar] [CrossRef]
- Woodward, F.I. Climate and Plant Distribution; Cambridge University Press: London, UK, 1987. [Google Scholar]
- Hu, Y.; Liang, L.N.; Xiao, L.; Li, X.C. Fossils history of Pinus and its implications in biogeography. J. Earth Environ. 2022, 13, 243–256. [Google Scholar]
- Li, G.; Li, H.; Yin, X.J.; Teng, J.; Chen, Z.; Wang, Y. Potential habitat prediction of rare and endangered species of Pinus in China under climate change. J. For. Environ. China 2023, 43, 416–425. [Google Scholar]
- Guo, C.; Shen, Y.; Shi, F. Investigating seed dormancy in Pinus bungeana Zucc. ex Endl.: Understanding the contributions of enclosing tissues and temperature on germination. Forests 2018, 9, 401. [Google Scholar] [CrossRef]
- Young, D.J.N.; Slaton, M.R.; Koltunov, A. Temperature is positively associated with tree mortality in California subalpine forests containing whitebark pine. Ecosphere 2023, 14, e4400. [Google Scholar] [CrossRef]
- Xu, J.; Cao, B.; Bai, C. Prediction of potential suitable distribution of endangered plant Kingdonia uniflorain China with MaxEnt. J. Ecol. China 2015, 34, 3354. [Google Scholar]
- Holtmeier, F.K.; Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 2005, 14, 395–410. [Google Scholar] [CrossRef]
- Zhang, Z.J.; He, J.S.; Li, J.S.; Tang, Z.Y. Distribution and conservation of threatened plants in China. Biol. Conserv. 2015, 192, 454–460. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, G.G.; Zhu, M.X.; Jin, P.; Hu, Y.; Shu, P.Z.; Wang, Z.X.; Fan, A.F.; Qian, P.H.; Han, Y.N.; et al. Potentially suitable habitat prediction of Pinus massoniana Lamb. in China under climate change using Maxent model. Front. For. Glob. Change 2023, 6, 1144401. [Google Scholar] [CrossRef]
- Akyol, A.; Örücü, Ö.K.; Arslan, E.S. Habitat suitability mapping of stone pine (Pinus pinea L.) under the effects of climate change. Biologia 2020, 75, 2175–2187. [Google Scholar] [CrossRef]
- Yang, X.L.; Zhou, B.T.; Xu, Y.; Han, Z.Y. CMIP6 evaluation and projection of temperature and precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Gou, Y.C.; Jin, Z.; Kou, P.L.; Tao, Y.X.; Xu, Q.; Zhu, W.C.; Tian, H.B. Mechanisms of climate change impacts on vegetation and prediction of changes on the Loess Plateau, China. Environ. Earth Sci. 2024, 83, 234. [Google Scholar] [CrossRef]
- Xiao, D.P.; Liu, D.L.; Wang, B.; Feng, P.Y.; Bai, H.Z.; Tang, J.Z. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 1998, 391, 678–682. [Google Scholar] [CrossRef]
Type | Field | Description and Unit | Type | Field | Description and Unit |
---|---|---|---|---|---|
Climatic factors | bio1 | Annual mean temperature °C | Soil factors | t-esp | Exchangeable sodium salt % |
bio2 | Mean diurnal range °C | soilmoisture * | Soil moisture | ||
bio3 * | Isothermality | t-ece | Soil conductivity dS/m | ||
bio4 * | Temperature seasonality | t-texture | Top soil texture | ||
bio5 | Max temperature of the warmest month °C | t-clay * | Clay content %wt | ||
bio6 * | Min temperature of the coldest month °C | t-cec-soil | Cation exchange capacity cmol/kg | ||
bio7 | Temperature annual range °C | t-cec-clay * | Soil cation exchange content cmol/kg | ||
bio8 | Mean temperature of the wettest quarter °C | t-CaSO4 | Soil sulfate content %weight | ||
bio9 | Mean temperature of the driest quarter °C | t-CaCO3 * | Soil carbonate content %weight | ||
bio10 | Mean temperature of the warmest quarter °C | t-bs * | Basic soil saturation % | ||
bio11 | Mean temperature of the coldest quarter °C | t-gravel * | Soil gravel content %vol. | ||
bio12 | Annual precipitation mm | t-oc * | Soil organic carbon content %weight | ||
bio13 | Precipitation of the wettest month mm | t-ph-H2O * | Soil pH-log(H+) | ||
bio14 | Precipitation of the driest month mm | t-ref-bulk | Soil capacity kg/dm3 | ||
bio15 * | Precipitation seasonality | t-sand | Sand content %wt. | ||
bio16 * | Precipitation of the wettest quarter mm | t-silt * | Silt content %wt. | ||
bio17 | Precipitation of the driest quarter mm | t-teb * | Soil exchangeable salts cmol/kg | ||
bio18 | Precipitation of the warmest quarter mm | t-usda-tex-clay | Soil texture classification name | ||
bio19 * | Precipitation of the coldest quarter mm | Topographic factors | aspect * | Aspect ° | |
Drought | ai | Aridity index % | alt * | Altitude m | |
factors | et0 | Potential evaporation mm | slope * | Slope ° |
Period | Scenario | Training AUC |
---|---|---|
current | -- | 0.973 |
2040–2060s | SSP126 | 0.975 |
SSP585 | 0.982 | |
2060–2080s | SSP126 | 0.986 |
SSP585 | 0.977 | |
2080–2100s | SSP126 | 0.989 |
SSP585 | 0.970 |
Code | Current | 2040–2060s | 2060–2080s | 2080–2100s | |||
---|---|---|---|---|---|---|---|
SSP126 | SSP585 | SSP126 | SSP585 | SSP126 | SSP585 | ||
soilmoisture | 23.4% | 20.9% | 22.2% | 20.2 | 18.9 | 21.5 | 22.7 |
bio6 | 20.9% | 22.7% | 23.1% | 19.6 | 20.4 | 24 | 18.4 |
bio4 | 8.8% | 10.2% | 9.1% | 11.8 | 9.3 | 8.5 | 10.7 |
bio3 | 8.7% | 7.8% | 9.5% | 6.9 | 10 | 6.5 | 9.6 |
alt | 8.4% | 5.8% | 5.3% | 7.1 | 6.9 | 7.7 | 5.7 |
bio16 | 4.6% | 7.9% | 6.2% | 8.3 | 10.7 | 8.8 | 4.9 |
Suitable Ecological Niches (SENs) | Current Area/104 km2 | 2040–2060s | 2060–2080s | 2080–2100s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSP126 Area/104 km2 | Percentage Change in Area/% | SSP585 Area/104 km2 | Percentage Change in Area/% | SSP126 Area/104 km2 | Percentage Change in Area/% | SSP585 Area/104 km2 | Percentage Change in Area/% | SSP126 Area/104 km2 | Percentage Change in Area/% | SSP585 area/104 km2 | Percentage Change in Area/% | ||
High-SENs | 7.51 | 6.54 | −12.86% | 7.23 | −3.63% | 7.25 | −3.33% | 6.12 | −18.44 | 7.28 | −3.03 | 7.25 | −3.35 |
Medium-SENs | 28.61 | 31.78 | 11.15% | 31.45 | 9.98% | 26.20 | −8.36% | 31.72 | 10.92 | 30.39 | 6.26 | 29.13 | 1.86 |
Low-SENs | 39.49 | 45.34 | 14.82% | 43.24 | 9.51% | 42.52 | 7.67% | 41.20 | 4.33 | 42.25 | 6.99 | 42.80 | 8.38 |
Total | 75.59 | 83.66 | 10.68% | 81.92 | 8.38% | 75.98 | 0.51% | 79.03 | 4.56 | 79.91 | 5.72 | 79.18 | 4.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Fan, Y.; Niu, F.; Lu, S.; Du, W.; Wang, X.; Zhou, X. Impacts of Climate Change on the Potential Suitable Ecological Niches of the Endemic and Endangered Conifer Pinus bungeana in China. Forests 2025, 16, 462. https://doi.org/10.3390/f16030462
Zhang X, Fan Y, Niu F, Lu S, Du W, Wang X, Zhou X. Impacts of Climate Change on the Potential Suitable Ecological Niches of the Endemic and Endangered Conifer Pinus bungeana in China. Forests. 2025; 16(3):462. https://doi.org/10.3390/f16030462
Chicago/Turabian StyleZhang, Xiaowei, Yuke Fan, Furong Niu, Songsong Lu, Weibo Du, Xuhu Wang, and Xiaolei Zhou. 2025. "Impacts of Climate Change on the Potential Suitable Ecological Niches of the Endemic and Endangered Conifer Pinus bungeana in China" Forests 16, no. 3: 462. https://doi.org/10.3390/f16030462
APA StyleZhang, X., Fan, Y., Niu, F., Lu, S., Du, W., Wang, X., & Zhou, X. (2025). Impacts of Climate Change on the Potential Suitable Ecological Niches of the Endemic and Endangered Conifer Pinus bungeana in China. Forests, 16(3), 462. https://doi.org/10.3390/f16030462