Prediction and Spatiotemporal Dynamics of Vegetation Index Based on Deep Learning and Environmental Factors in the Yangtze River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Data Sets
2.3.1. NDVI, EVI, and kNDVI
2.3.2. Historical Environmental and Future Climate Simulation Data
2.4. Research Methods
2.4.1. Pearson Correlation Analysis to Select Environmental Factors Correlated with VIs
2.4.2. VI Predictive Modeling Based on Deep Learning Method
2.4.3. VI Time Series Prediction in the Yangtze River Basin from 2021 to 2040
3. Results
3.1. Impact of Environmental Factors on VIs
3.2. Optimal Model Configuration and Performance Comparison
3.3. Scenario Analysis of EVI Change
3.4. Characteristics of EVI Spatial Distribution Variation
4. Discussion
4.1. Directions for Improving the CNN-BiLSTM-AM Model
4.2. Effects of Different Climate Scenarios on Vegetation Dynamics
4.3. Impacts of Human Activities on Vegetation Dynamics and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Li, Y.; Tian, L.; Liu, Y.; Wang, Y. Vegetation dynamics and associated driving forces in Eastern China during 1999–2008. Remote Sens. 2015, 7, 13641–13663. [Google Scholar] [CrossRef]
- Liu, H.; Jiao, F.; Yin, J.; Li, T.; Gong, H.; Wang, Z.; Lin, Z. Nonlinear relationship of vegetation greening with nature and human factors and its forecast—A case study of Southwest China. Ecol. Indic. 2020, 111, 106009. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Change Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Xu, H.-J.; Wang, X.-P.; Yang, T.-B. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013. Sci. Total Environ. 2017, 579, 1658–1674. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Álvarez, J.L.; Martínez-Ramón, M.; Munoz-Mari, J.; Camps-Valls, G. Digital Signal Processing with Kernel Methods; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ferchichi, A.; Abbes, A.B.; Barra, V.; Farah, I.R. Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review. Ecol. Inform. 2022, 68, 101552. [Google Scholar] [CrossRef]
- Aghelpour, P.; Mohammadi, B.; Biazar, S.M. Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theor. Appl. Climatol. 2019, 138, 1471–1480. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, J.; Li, T. A novel hybrid decompose-ensemble strategy with a VMD-BPNN approach for daily streamflow estimating. Water Resour. Manag. 2021, 35, 5119–5138. [Google Scholar] [CrossRef]
- Kuila, S.; Dhanda, N.; Joardar, S. ECG signal classification and arrhythmia detection using ELM-RNN. Multimed. Tools Appl. 2022, 81, 25233–25249. [Google Scholar] [CrossRef]
- Panwar, V.S.; Pandey, A.; Hasan, M.E. Generalised regression neural network (GRNN) architecture-based motion planning and control of an e-puck robot in V-Rep software platform. Acta Mech. Et Autom. 2021, 15, 209–214. [Google Scholar] [CrossRef]
- Zarei, A.R.; Mahmoudi, M.R. Ability assessment of the stationary and cyclostationary time series models to predict drought indices. Water Resour. Manag. 2020, 34, 5009–5029. [Google Scholar] [CrossRef]
- Huang, S.; Ming, B.; Huang, Q.; Leng, G.; Hou, B. A case study on a combination NDVI forecasting model based on the entropy weight method. Water Resour. Manag. 2017, 31, 3667–3681. [Google Scholar] [CrossRef]
- Wu, T.; Fu, H.; Feng, F.; Bai, H. A new approach to predict normalized difference vegetation index using time-delay neural network in the arid and semi-arid grassland. Int. J. Remote Sens. 2019, 40, 9050–9063. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.; Baetz, B.; Huang, W. A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment. J. Hydrol. 2015, 530, 716–733. [Google Scholar] [CrossRef]
- Di, G.; Qian, L.; Yong-xing, D.; Bao-shan, L. Research on NDVl Prediction Based on BiLSTM-Attention Model. Comput. Simul. 2023, 40, 278–283+439. [Google Scholar]
- Cao, J.; Zhang, Z.; Luo, Y.; Zhang, L.; Zhang, J.; Li, Z.; Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. Eur. J. Agron. 2021, 123, 126204. [Google Scholar] [CrossRef]
- Dang, C.; Liu, Y.; Yue, H.; Qian, J.; Zhu, R. Autumn crop yield prediction using data-driven approaches: Support vector machines, random forest, and deep neural network methods. Can. J. Remote Sens. 2021, 47, 162–181. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Zhang, J.; Han, J.; Xie, J. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric. For. Meteorol. 2021, 297, 108275. [Google Scholar] [CrossRef]
- Kim, N.; Na, S.-I.; Park, C.-W.; Huh, M.; Oh, J.; Ha, K.-J.; Cho, J.; Lee, Y.-W. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data. Appl. Sci. 2020, 10, 3785. [Google Scholar] [CrossRef]
- Hu, F.; Yang, Q.; Yang, J.; Luo, Z.; Shao, J.; Wang, G. Incorporating multiple grid-based data in CNN-LSTM hybrid model for daily runoff prediction in the source region of the Yellow River Basin. J. Hydrol. Reg. Stud. 2024, 51, 101652. [Google Scholar] [CrossRef]
- Bounoua, I.; Saidi, Y.; Yaagoubi, R.; Bouziani, M. Deep Learning Approaches for Water Stress Forecasting in Arboriculture Using Time Series of Remote Sensing Images: Comparative Study between ConvLSTM and CNN-LSTM Models. Technologies 2024, 12, 77. [Google Scholar] [CrossRef]
- Fu, B.; Li, S.; Yu, X.; Yang, P.; Yu, G.; Feng, R.; Zhuang, X. Chinese ecosystem research network: Progress and perspectives. Ecol. Complex. 2010, 7, 225–233. [Google Scholar] [CrossRef]
- Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar]
- Ren, S.; Li, Y.; Peichl, M. Diverse effects of climate at different times on grassland phenology in mid-latitude of the Northern Hemisphere. Ecol. Indic. 2020, 113, 106260. [Google Scholar] [CrossRef]
- Gong, X.; Du, S.; Li, F.; Ding, Y. Study of mesoscale NDVI prediction models in arid and semiarid regions of China under changing environments. Ecol. Indic. 2021, 131, 108198. [Google Scholar] [CrossRef]
- Lehner, F.; Hawkins, E.; Sutton, R.; Pendergrass, A.G.; Moore, F.C. New potential to reduce uncertainty in regional climate projections by combining physical and socio-economic constraints. AGU Adv. 2023, 4, e2023AV000887. [Google Scholar] [CrossRef]
- Reddy, D.S.; Prasad, P.R.C. Prediction of vegetation dynamics using NDVI time series data and LSTM. Model. Earth Syst. Environ. 2018, 4, 409–419. [Google Scholar] [CrossRef]
- Li, M.; Hou, X.; Ying, L.; Lu, X.; Zhu, M. Spatial-temporal dynamics of NDVI and its response to temperature and precipitation in the Yellow River Delta during the period 1998–2008. Resour. Sci. 2011, 33, 322–327. [Google Scholar]
- Liu, X.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, Y.; Zhang, D.; Lin, Z. Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000–2011. J. Geogr. Sci. 2014, 24, 288–302. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, H. NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data. J. Arid Environ. 2009, 73, 557–562. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Pacheco, N.R. Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol. Process. 2007, 22, 3115–3134. [Google Scholar] [CrossRef]
- Sitch, S.; Huntingford, C.; Gedney, N.; Levy, P.E.; Lomas, M.; Piao, S.L.; Betts, R.; Ciais, P.; Cox, P.; Friedlingstein, P.; et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 2008, 14, 2015–2039. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Booth, B.B.; Dunne, J.; Eyring, V.; Fisher, R.A.; Friedlingstein, P.; Gidden, M.; Hajima, T.; Jones, C.D.; Jones, C.; et al. The need for carbon emissions-driven climate projections in CMIP7. Geosci. Model Dev. 2024, 17, 8141–8172. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Feng, X.; Tian, J.; Wang, Y.; Wu, J.; Liu, J.; Ya, Q.; Li, Z. Spatio-temporal variation and climatic driving factors of vegetation coverage in the Yellow River Basin from 2001 to 2020 based on kNDVI. Forests 2023, 14, 620. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Change 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Gao, G.; Yao, X.; Zhou, J. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2883–2892. [Google Scholar] [CrossRef]
- Tchebakova, N.M.; Parfenova, E.; Soja, A. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ. Res. Lett. 2009, 4, 045013. [Google Scholar] [CrossRef]
- Munson, S.M.; Belnap, J.; Okin, G.S. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proc. Natl. Acad. Sci. USA 2011, 108, 3854–3859. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Kong, R.; Zhang, Z.; Huang, R.; Tian, J.; Feng, R.; Chen, X. Projected global warming-induced terrestrial ecosystem carbon across China under SSP scenarios. Ecol. Indic. 2022, 139, 108963. [Google Scholar] [CrossRef]
- Miao, Q.; Huang, M.; Li, R.-Q. The impacts of climate change on vegetation net primary productivity of the Yangtze River Basin. J. Nat. Resour. 2010, 25, 1296–1305. [Google Scholar]
- Chen, Q.; Zhou, Q.; Zhang, H.; Liu, F. Spatial disparity of NDVI response in vegetation growing season to climate change in the Three-River Headwaters Region. Ecol. Environ. 2010, 19, 1284. [Google Scholar]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Li, X.; Ciais, P.; Babst, F.; Guo, W.; Zhang, C.; Magliulo, V.; Pavelka, M.; Liu, S. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 2018, 24, 504–516. [Google Scholar] [CrossRef]
- Xu, H.-J.; Wang, X.-P.; Zhao, C.-Y.; Yang, X.-M. Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014. Agric. For. Meteorol. 2018, 262, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Singh, V.P.; Shi, P. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Glob. Planet. Change 2017, 152, 1–11. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Yang, J.; Lin, K.; Du, G. NDVI indicated inter-seasonal non-uniform time-lag responses of terrestrial vegetation growth to daily maximum and minimum temperature. Glob. Planet. Change 2019, 177, 27–38. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Fang, W. Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena 2020, 189, 104474. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Tang, X.; Ding, Z.; Ma, M.; Yu, P. The response of land surface temperature changes to the vegetation dynamics in the Yangtze River Basin. Remote Sens. 2022, 14, 5093. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; Tu, Z.; Zhang, Y.; Tsendbazar, N.-E. Monitoring vegetation change and their potential drivers in Yangtze River Basin of China from 1982 to 2015. Environ. Monit. Assess. 2020, 192, 642. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Rousta, I.; Olafsson, H.; Krzyszczak, J. Evaluating vegetation dynamics in the Yangtze river basin in relation to climatological parameters using remote sensing data from 2001 to 2022. Int. Agrophys. 2024, 38, 407–422. [Google Scholar] [CrossRef]
Time | Name | Spatial Resolution (km) | Model Name |
---|---|---|---|
Historical environmental data 2001–2020 | TMP (°C) | 1 | |
Pre (mm) | 1 | ||
Et (mm) | 1 | ||
SM (g/m3) | 1 | ||
WD (m/s) | 25 | ||
RH (%RH) | 25 | ||
Future climate simulation data 2021–2040 | Tmp (°C) | 1 | MRI-ESM2-0 |
Pre (mm) | 1 | MRI-ESM2-0 | |
Et (mm) | 1 | MRI-ESM2-0 |
Scenario | Climate Factors | ||
---|---|---|---|
Pre (mm) | Tmp (°C) | Et (mm) | |
Historical | 669.1 | 7.2 | 747.3 |
SSP1-1.9 | 735.1 | 8.4 | 775.1 |
SSP2-4.5 | 688.3 | 8.5 | 775.7 |
SSP5-8.5 | 729.0 | 8.6 | 776.3 |
Variables | NDVI | EVI | kNDVI |
---|---|---|---|
Tmp (°C) | 0.718 | 0.752 | 0.682 |
Pre (mm) | 0.550 | 0.623 | 0.599 |
Et (mm) | 0.643 | 0.749 | 0.640 |
WD (m/s) | −0.121 | −0.384 | −0.444 |
RH (%RH) | 0.497 | 0.492 | 0.492 |
SM (kg/m3) | 0.474 | 0.447 | 0.437 |
Name | Method | Validation Data | Test Data | |||||
---|---|---|---|---|---|---|---|---|
RMSE | R2 | MAE | Training Time (s) | RMSE | R2 | MAE | ||
EVI | LSTM | 0.108 | 0.876 | 0.068 | 35.5 | 0.106 | 0.940 | 0.076 |
CNN-BiLSTM | 0.102 | 0.896 | 0.057 | 42.0 | 0.098 | 0.945 | 0.068 | |
BiLSTM-AM | 0.084 | 0.906 | 0.046 | 37.1 | 0.063 | 0.958 | 0.025 | |
CNN-BiLSTM-AM | 0.023 | 0.951 | 0.015 | 38.0 | 0.022 | 0.981 | 0.019 | |
NDVI | LSTM | 0.160 | 0.692 | 0.081 | 21.9 | 0.131 | 0.915 | 0.105 |
CNN-BiLSTM | 0.104 | 0.871 | 0.075 | 44.8 | 0.104 | 0.927 | 0.075 | |
BiLSTM-AM | 0.102 | 0.877 | 0.075 | 33.4 | 0.109 | 0.938 | 0.078 | |
CNN-BiLSTM-AM | 0.034 | 0.913 | 0.029 | 47.6 | 0.037 | 0.960 | 0.032 | |
kNDVI | LSTM | 0.124 | 0.836 | 0.072 | 20.9 | 0.107 | 0.934 | 0.084 |
CNN-BiLSTM | 0.103 | 0.887 | 0.076 | 34.8 | 0.103 | 0.941 | 0.074 | |
BiLSTM-AM | 0.097 | 0.901 | 0.066 | 28.6 | 0.097 | 0.917 | 0.066 | |
CNN-BiLSTM-AM | 0.025 | 0.941 | 0.021 | 34.0 | 0.041 | 0.945 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, N.; Chen, M.; Zhao, Y.; Guo, F.; Huang, J.; Peng, D.; Wang, X. Prediction and Spatiotemporal Dynamics of Vegetation Index Based on Deep Learning and Environmental Factors in the Yangtze River Basin. Forests 2025, 16, 460. https://doi.org/10.3390/f16030460
Wang Y, Zhang N, Chen M, Zhao Y, Guo F, Huang J, Peng D, Wang X. Prediction and Spatiotemporal Dynamics of Vegetation Index Based on Deep Learning and Environmental Factors in the Yangtze River Basin. Forests. 2025; 16(3):460. https://doi.org/10.3390/f16030460
Chicago/Turabian StyleWang, Yin, Nan Zhang, Mingjie Chen, Yabing Zhao, Famiao Guo, Jingxian Huang, Daoli Peng, and Xiaohui Wang. 2025. "Prediction and Spatiotemporal Dynamics of Vegetation Index Based on Deep Learning and Environmental Factors in the Yangtze River Basin" Forests 16, no. 3: 460. https://doi.org/10.3390/f16030460
APA StyleWang, Y., Zhang, N., Chen, M., Zhao, Y., Guo, F., Huang, J., Peng, D., & Wang, X. (2025). Prediction and Spatiotemporal Dynamics of Vegetation Index Based on Deep Learning and Environmental Factors in the Yangtze River Basin. Forests, 16(3), 460. https://doi.org/10.3390/f16030460