Seasonal Dynamics of Trunk Sap Flow of Typical Tree Species in Dry and Hot Valleys and Responses to Environmental Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Test Time
2.3. Test Material
2.4. Test Methods
2.4.1. Measurement of Trunk Sap Flow
2.4.2. Meteorological Data Monitoring
2.5. Data Processing
3. Results
3.1. Daily Dynamics of Trunk Sap Flow Rates of Typical Tree Species
3.2. Seasonal Dynamics of Trunk Sap Flow Rates of Typical Tree Species
3.3. Correlation Analysis Between Dynamic Characteristics of Trunk Sap Flow Rate of Typical Tree Species and Environmental Factors Specific
4. Discussion
4.1. Circadian and Seasonal Rhythms in Trunk Sap Flow of Various Tree Species
4.2. Interspecific Differences in Trunk Sap Flow Among Tree Species
4.3. Comparison of Water Use Strategies Among Tree Species
4.4. Correlative Analysis Between Environmental Factors and Trunk Sap Flow
4.5. Differences in Drought Adaptation Between Native and Introduced Tree Species
4.6. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fassio, C.; Heath, R.; Arpaia, M.L.; Castro, M. Sap flow in ’Hass’ avocado trees on two clonal rootstocks in relation to xylem anatomy. Sci. Hortic. 2009, 120, 8–13. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Y.; Xu, X.; Zhang, J. Study on the dynamics of stem sap flow in minqin wind and sand control haloxylon Ammodendron forest, China. Sustainability 2023, 15, 609. [Google Scholar] [CrossRef]
- Gansert, D. Xylem sap flow as a major pathway for oxygen supply to the sapwood of birch (Betula pubescens Ehr.). Plant Cell Environ. 2003, 26, 1803–1814. [Google Scholar] [CrossRef]
- Etzold, S.; Zweifel, R.; Ruehr, N.K.; Eugster, W.; Buchmann, N. Long-term stem CO2 concentration measurements in Norway spruce in relation to biotic and abiotic factors. New Phytol. 2013, 197, 1173–1184. [Google Scholar] [CrossRef]
- Kluitenberg, G.J.; Ham, J.M. Improved theory for calculating sap flow with the heat pulse method. Agric. For. Meteorol. 2004, 126, 169–173. [Google Scholar] [CrossRef]
- Bowman, W.P.; Barbour, M.M.; Turnbull, M.H.; Tissue, D.T.; Whitehead, D.; Griffin, K.L. Sap flow rates and sapwood density are critical factors in within-and between-tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees. New Phytol. 2005, 167, 815–828. [Google Scholar] [CrossRef]
- Clearwater, M.J.; Luo, Z.; Mazzeo, M.; Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009, 32, 1652–1663. [Google Scholar] [CrossRef]
- Chabot, R.; Bouarfa, S.; Zimmer, D.; Chaumont, C.; Moreau, S. Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy. Agric. Water Manag. 2005, 75, 10–24. [Google Scholar] [CrossRef]
- Poyatos, R.; Granda, V.; Molowny, R.; Mencuccini, M.; Steppe, K.; Martínez, J. Sapfluxnet: Towards a global database of sap flow measurements. Tree Physiol. 2016, 36, 1449–1455. [Google Scholar] [CrossRef]
- Patakas, A.; Noitsakis, B.; Chouzouri, A. Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agric. Ecosyst. Environ. 2005, 106, 253–259. [Google Scholar] [CrossRef]
- Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zheng, Y.; Zhang, C. Tree Introduction and Domestication for Vegetation Restoration at Harsh Site Conditions; China Forestry Press: Beijing, China, 2016; pp. 1–33. [Google Scholar]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Mao, D.; Jin, Q.; Liu, Y. Oasification: An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China. Catena 2019, 179, 197–209. [Google Scholar] [CrossRef]
- The Comprehensive Scientific Expedition to The Qinghai–Tibetan Plateau, Chinese Academy of Sciences. The Dry Valleys of the Hengduan Mountains Region; Science Publishing House: Beijing, China, 1992; pp. 7–75. [Google Scholar]
- Zhong, X. Degradation of ecosystem and ways of its rehabilitation and reconstruction in dry and hot valley-Take representative area of Jinsha River, Yunnan Province as an example. Resour. Environ. Yangtze Basin 2000, 9, 376–383. [Google Scholar] [CrossRef]
- Fan, Z.; Bräuning, A.; Thomas, A.; Li, J.; Cao, K. Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. Int. J. Climatol. 2011, 31, 2078–2090. [Google Scholar] [CrossRef]
- Zong, H.; Sun, J.; Zhou, L.; Bao, F.; Zheng, X. Effect of altitude and climatic parameters on shrub-meadow community composition and diversity in the dry valley region of the eastern Hengduan Mountains. China. J. Mt. Sci. 2022, 19, 1139–1155. [Google Scholar] [CrossRef]
- Dong, Y.; Xiong, D.; Li, J.; Yang, D.; Shi, L.; Liu, G. The distribution of and factors influencing the vegetation in a gully in the Dry-hot Valley of southwest China. Catena 2014, 116, 60–67. [Google Scholar] [CrossRef]
- Xiong, D.; Zhou, H.; Yang, Z.; Zhang, X. Slope lithologic property, soil moisture condition and revegetation in dry-hot valley of Jinsha River. Chin. Geogr. Sci. 2005, 15, 186–192. [Google Scholar] [CrossRef]
- Zheng, J.; Feng, W.; Wang, F.; Yuan, D.; Gong, X.; Huang, Y. Spatial definition and its range variation of arid valley in the upper reaches of Minjiang River. Arid Land Geogr. 2017, 40, 541–548. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M.; Li, Y.; Xing, X.; Fan, S.; Cao, Y.; Dong, L.; Chen, D. Karren habitat as the key in influencing plant distribution and species diversity in Shilin Geopark, southwest China. Sustainability 2020, 12, 5808. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Li, Z.; Xu, C.; Luo, W. Improvements in soil quality with vegetation succession in subtropical China karst. Sci. Total Environ. 2021, 775, 145876. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Z.; Hu, J.; Han, J.; Yang, J.; Ying, L. Protection and utilization of plant biodiversity resources in dry valleys of Southwest China. Biodivers. Sci. 2016, 24, 475. [Google Scholar] [CrossRef]
- Duan, A. Characteristics of Water Consumption Through Transpiration and Evaluation of Adaptability Mechanism of Main Trees for Vegetation Restoration in the Dry-Hot River Valley. Ph.D. Thesis, Chinese Academy of Forestry Sciences, Beijing, China, 2008. [Google Scholar]
- Peng, L.; He, Z.; Luo, Z.; Ou, Z.; Sun, Y. The photosynthetic and water physiological characteristics of wild Diospyros dumetorum in Southwest China. J. Northeast Univ. 2024, 6, 33–42. [Google Scholar] [CrossRef]
- Duan, A.; Zhang, J.; Zhang, S.; Zhang, J.; Wang, J.; He, C.; Li, Y. Transpiration of tree species for vegetation restoration in dry-hot river valleys. Acta Ecol. Sin. 2009, 29, 6691–6701. [Google Scholar] [CrossRef]
- Moustakas, A.; Sakkos, K.; Wiegand, K.; Ward, D.; Meyer, K.M.; Eisinger, D. Are savannas patch-dynamic systems? a landscape model. Ecol. Model. 2009, 220, 3576–3588. [Google Scholar] [CrossRef]
- Julier, A.C.; Jardine, P.E.; Adu-Bredu, S.; Coe, A.L.; Duah-Gyamfi, A.; Fraser, W.T.; Lomax, B.H.; Malhi, Y.; Moore, S.; Owusu-Afriyie, K. The modern pollen–vegetation relationships of a tropical forest–savannah mosaic landscape, Ghana, West Africa. Palynology 2018, 42, 324–338. [Google Scholar] [CrossRef]
- Muumbe, T.P.; Baade, J.; Singh, J.; Schmullius, C.; Thau, C. Terrestrial laser scanning for vegetation analyses with a special focus on savannas. Remote Sens. 2021, 13, 507. [Google Scholar] [CrossRef]
- Lewis, K.; Barros, F.D.V.; Moonlight, P.W.; Hill, T.C.; Oliveira, R.S.; Schmidt, I.B.; Sampaio, A.B.; Pennington, R.T.; Rowland, L. Identifying hotspots for ecosystem restoration across heterogeneous tropical savannah-dominated regions. Philos. Trans. Soc. B. 2023, 378, 20210075. [Google Scholar] [CrossRef] [PubMed]
- Poilecot, P.; Gaidet, N. A quantitative study of the grass and woody layers of a Mopane (Colophospermum mopane) savannah in the mid-Zambezi Valley, Zimbabwe. Afr. J. Ecol. 2011, 49, 150–164. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, Y.; Yan, L.; Liu, F. Flora of the savanna-like vegetation in hot dry valleys, southwestern China with implications to their origin and evolution. Bot. Review 2020, 86, 281–297. [Google Scholar] [CrossRef]
- Li, K.; Zeng, J. A study on transpiration of some tree species planted in hot and arid valley of Jinsha River. Forest Res. 1999, 12, 244. [Google Scholar] [CrossRef]
- Fan, J.; Yang, C.; Bao, W.; Liu, J.; Li, X. Distribution scope and district statistical analysis of dry valleys in southwest China. Mt Res. 2020, 38, 303–313. [Google Scholar] [CrossRef]
- Ma, H. Silviculture in Dry-Hot Valley; Yunnan Science and Technology Press: Kunming, China, 2001; pp. 2–16. [Google Scholar]
- Duan, A.; Zhang, J.G.; Zhang, J.P.; He, C. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys. J. Beijing For. Univ. 2010, 32, 13–19. [Google Scholar] [CrossRef]
- Liu, F.; Li, K.; Chen, M. Primary Color Atlas of Typical Plants in the Dry and Hot Valley of the Jinsha River; Science Publishing House: Beijing, China, 2016; pp. 35–65. [Google Scholar]
- Song, L.; Zhu, J.; Zhang, J.; Wang, K.; Lü, L.; Wang, F.; Wang, G. Divergent growth responses to warming and drying climates between native and non-native tree species in Northeast China. Trees 2019, 33, 1143–1155. [Google Scholar] [CrossRef]
- Gao, C.; Li, K.; Tang, G.; Zhang, C.; Li, B. Nutrient accumulation and cycling in pure and mixed plantations of Azadirachta indica and Acacia auriculiformis in a dry-hot valley, Yunnan Province, southwest China. J. Appl. Ecol. 2014, 25, 1889–1897. [Google Scholar] [CrossRef]
- Liu, F.Y.; Wang, X.Q.; Chen, M. Flowering phenology and breeding system of Terminalia franchetii (Combretaceae) in the dry-hot valley of the Jinsha River. China. Acta Ecol. Sin. 2015, 35, 7043–7051. [Google Scholar] [CrossRef]
- Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Fuchs, S.; Leuschner, C.; Link, R.; Coners, H.; Schuldt, B. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agric. Meteorol. 2017, 244, 151–161. [Google Scholar] [CrossRef]
- Dix, M.J.; Aubrey, D.P. Calibration approach and range of observed sap flow influences transpiration estimates from thermal dissipation sensors. Agric. Meteorol. 2021, 307, 108534. [Google Scholar] [CrossRef]
- Chang, L.; Liu, M.; Lyu, J.; Sheng, D. Characteristics of soil moisture limitation and non-limitation in the response of sap flow to transpiration driving factors. J. Appl. Ecol. 2024, 35, 1064–1072. [Google Scholar] [CrossRef]
- Campbell, G.; Norman, J. An introduction to environmental physics. Biol. Plant. 1977, 21, 104. [Google Scholar] [CrossRef]
- Wu, F.; Chen, Y.; Yu, Z. Growing season sap-flow dynamics of Robinia pseudoacacia plantation in the semi-arid region of Loess Plateau, China. Chin J Plant Ecol. 2010, 4, 469–476. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhao, P.; Zheng, H.; Ren, Y.; Gao, F.; Ouyang, Z. Transpiration rates of urban trees, Aesculus chinensis. J. Environ. Sci. 2012, 24, 1278–1287. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, W.; Chen, S. Sap flow characteristics of Platycladus orientalis and Caragana korshinskii and its response to environmental factors in the loess plateau. Ecol. Environ. 2024, 33, 389. [Google Scholar] [CrossRef]
- Lei, H.; Zhi, Z.; Xin, L. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, China. Hydrol. Process. Int. J. 2010, 24, 1248–1253. [Google Scholar] [CrossRef]
- Xu, T.; Niu, X.; Wang, B.; Song, Q.; Wang, N.; Sun, J.; Liu, R. Responses of sap flow characteristics under different Chinese fir provenances to meteorological factors under different soil moisture conditions. Sci. Soil Water Conserv. 2023, 5, 99–105. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Jia, G.; Lei, Z.; Zhang, L.; Liu, R.; Lu, X.; Dai, Y. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis. Chin. J. Plant Ecol. 2023, 47, 1585–1599. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, J.; Liao, T.; Wang, Y.; Guo, L.; Yao, Y.; Cao, J. Histological dissection of cutting-inducible adventitious rooting in Platycladus orientalis reveals developmental endogenous hormonal homeostasis. Ind. Crop. Prod. 2021, 170, 113817. [Google Scholar] [CrossRef]
- Choat, B.; Ball, M.C.; Luly, J.G.; Holtum, J.A.M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees. 2005, 19, 305–311. [Google Scholar] [CrossRef]
- Nakai, T.; Abe, H.; Muramoto, T.; Nakao, T. The relationship between sap flow rate and diurnal change of tangential strain on inner bark in Cryptomeria japonica saplings. J. Wood Sci. 2005, 51, 441–447. [Google Scholar] [CrossRef]
- Liu, F.; You, Q.; Xue, X.; Zhang, L. Stem sap flow variation of Tamarix ramosissima in oasis-desert ecotone and its response to environmental factors. J. Arid Land Res. Environ. 2024, 3, 112–122. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Li, W.; Huang, X.; Zhu, C.; Ma, X. Sap flow characteristics of four typical species in desert shelter forest and their responses to environmental factors. Environ. Earth Sci. 2012, 67, 151–160. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Li, K.; Zhang, C.; Li, B. Seasonal dynamics of Albizia kalkora stem sap flow in Yunmou dry hot valley of Southwest China. Chin. J. Ecol. 2013, 32, 597. [Google Scholar] [CrossRef]
- Pataki, D.E.; Oren, R.; Smith, W.K. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought. Ecology. 2000, 81, 2557–2566. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Mangirón, M.; Ogaya, R.; Sauret, M.; Serrano, L.; Peñuelas, J.; Piñol, J. Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiol. 2003, 23, 747–758. [Google Scholar] [CrossRef]
- Wang, A.; Lu, Y.; Cui, H.; Liu, S.; Li, S.; Hao, G. Xylem hydraulics of two temperate tree species with contrasting growth rates. Plants 2024, 13, 3575. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Cao, K. Inter-species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south-western China. Ecol. Res. 2009, 24, 65–73. [Google Scholar] [CrossRef]
- Stöhr, A.; Lösch, R. Xylem sap flow and drought stress of Fraxinus excelsior saplings. Tree Physiol. 2004, 24, 169–180. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Li, K.; Zhang, C.; Li, B. Stem sap flow characteristics of Acacia auriculaeformis in dry-hot valley and their relations to meteorological factors. For. Res. 2013, 26, 145–150. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, P.; Niu, J.; Ni, G.; Zhu, L.; Gao, J.; Zhao, X.; Zhang, Z.; Zhou, J. Seasonal variations of sap flow and transpiration water consumption of introduced tree species Acacia auriculaeformis and Eucalyptus citriodora. Chin. J. Ecol. 2014, 33, 2588. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Du, S. Research progress in the characteristics and driving factors of time lags in stem sap flow. Chin. J. Appl. Environ. Biol. 2023, 2, 507–514. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Li, K.; Zhang, C.; Li, B.; Hou, R. Time lag characteristics of stem sap flow of main afforestation tree species during their growth season in Yuanmou dry-hot valley of southwest China. Acta Agric Univ. Jiang. 2013, 35, 462–467. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, S.; Zhang, J.; Sun, Y.; Yang, X.; Ou, Z. Topographic effect of county-level land-use landscape pattern in the dry-hot valley of Jinsha River, Yunnan Province. Chin. J. Ecol. 2023, 42, 1982. [Google Scholar] [CrossRef]
- Lu, S.; Chen, Y.; Sardans, J.; Peñuelas, J. Water and nutrient use efficiency of three tree species in monoculture and mixed stands and potential drivers in the Loess Hilly Region, China. Plant Soil. 2024, 496, 657–675. [Google Scholar] [CrossRef]
Tree Species | Diameter at Breast Height (cm) | Basal Diameter (cm) | Crown Width (cm) | Tree Height (m) | Sapwood Layer Area (cm2) |
---|---|---|---|---|---|
Albizia kalkora | 23.4 | 32.50 | 420.80 | 3.61 | 43.60 |
Diospyros dumetorum | 25.4 | 33.20 | 371.20 | 4.48 | 51.37 |
Terminalia franchetii | 23.0 | 32.40 | 346.30 | 3.85 | 42.12 |
Acacia auriculiformis | 21.8 | 39.10 | 341.60 | 4.71 | 37.84 |
Season | Date | Tree Species | Date of Maximum Stem Sap Flow Rate | Time of Maximum Stem Sap Flow Rate | Maximum Stem Sap Flow Rate/mL·h−1 | Monthly Mean Stem Sap Flow Rate/mL·h−1 |
---|---|---|---|---|---|---|
Wet Seasons | Jun 2023 | Albizia kalkora | 26 June | 12:45–13:00 | 1.00 × 103 | 2.96 × 102 |
Diospyros dumetorum | 18 June | 11:45–12:00 | 6.67 × 102 | 2.32 × 102 | ||
Terminalia franchetii | 26 June | 16:00–16:15 | 2.50 × 102 | 9.21 × 101 | ||
Acacia auriculiformis | 2 June | 16:45–17:00 | 3.22 × 102 | 9.78 × 101 | ||
Jul 2023 | Albizia kalkora | 2 July | 13:00–13:15 | 1.15 × 103 | 3.38 × 102 | |
Diospyros dumetorum | 15 July | 12:45–13:00 | 7.39 × 102 | 2.30 × 102 | ||
Terminalia franchetii | 16 July | 12:15–12:30 | 3.91 × 102 | 8.88 × 101 | ||
Acacia auriculiformis | 15 July | 13:45–14:00 | 2.61 × 102 | 8.57 × 101 | ||
August 2023 | Albizia kalkora | 3 August | 13:30–13:45 | 1.39 × 103 | 5.23 × 102 | |
Diospyros dumetorum | 4 August | 14:00–14:15 | 7.14 × 102 | 2.12 × 102 | ||
Terminalia franchetii | 17 August | 13:30–13:45 | 1.16 × 103 | 3.42 × 102 | ||
Acacia auriculiformis | 15 August | 17:15–17:30 | 4.38 × 102 | 1.15 × 102 | ||
Septemebr 2023 | Albizia kalkora | 12 September | 12:45–13:00 | 1.31 × 103 | 4.84 × 102 | |
Diospyros dumetorum | 21 September | 13:00–13:15 | 6.96 × 102 | 2.44 × 102 | ||
Terminalia franchetii | 4 September | 10:45–11:00 | 9.70 × 102 | 3.64 × 102 | ||
Acacia auriculiformis | 3 September | 12:30–12:45 | 4.40 × 102 | 1.62 × 102 | ||
October 2023 | Albizia kalkora | 4 October | 12:45–13:00 | 1.17 × 103 | 4.61 × 102 | |
Diospyros dumetorum | 28 October | 13:15–13:30 | 6.51 × 102 | 2.19 × 102 | ||
Terminalia franchetii | 15 October | 16:15–16:30 | 3.99 × 102 | 1.34 × 102 | ||
Acacia auriculiformis | 20 October | 12:00–12:15 | 4.19 × 102 | 9.03 × 101 | ||
Dry Seasons | Novemebr 2023 | Albizia kalkora | 3 November | 13:15–13:30 | 9.86 × 102 | 3.15 × 102 |
Diospyros dumetorum | 6 November | 10:30–10:45 | 7.93 × 102 | 2.13 × 102 | ||
Terminalia franchetii | 5 November | 14:45–15:00 | 6.99 × 102 | 1.62 × 102 | ||
Acacia auriculiformis | 8 November | 12:45–13:00 | 2.90 × 102 | 9.28 × 101 | ||
Decemebr 2023 | Albizia kalkora | 20 December | 13:45–14:00 | 8.54 × 102 | 2.15 × 102 | |
Diospyros dumetorum | 2 December | 15:30–15:45 | 3.94 × 102 | 1.18 × 102 | ||
Terminalia franchetii | 3 December | 15:45–16:00 | 2.40 × 102 | 6.33 × 101 | ||
Acacia auriculiformis | 4 December | 14:30–14:45 | 2.36 × 102 | 5.62 × 101 | ||
January 2024 | Albizia kalkora | 12 January | 14:15–14:30 | 5.87 × 102 | 1.52 × 102 | |
Diospyros dumetorum | 19 January | 12:30–12:45 | 2.98 × 102 | 9.35 × 101 | ||
Terminalia franchetii | 20 January | 13:30–13:45 | 2.75 × 102 | 7.94 × 101 | ||
Acacia auriculiformis | 14 January | 14:45–15:00 | 1.73 × 102 | 4.67 × 101 | ||
February 2024 | Albizia kalkora | 9 February | 15:45–16:00 | 4.69 × 102 | 1.28 × 102 | |
Diospyros dumetorum | 20 February | 15:45–16:00 | 2.29 × 102 | 5.38 × 101 | ||
Terminalia franchetii | 4 February | 16:30–16:45 | 1.89 × 102 | 5.26 × 101 | ||
Acacia auriculiformis | 13 February | 14:45–15:00 | 1.20 × 102 | 3.62 × 101 | ||
March 2024 | Albizia kalkora | 28 March | 14:30–14:45 | 5.22 × 102 | 1.55 × 102 | |
Diospyros dumetorum | 3 March | 14:45–15:00 | 3.60 × 102 | 1.11 × 102 | ||
Terminalia franchetii | 2 March | 13:45–14:00 | 2.29 × 102 | 8.66 × 101 | ||
Acacia auriculiformis | 25 March | 14:15–14:30 | 1.28 × 102 | 4.19 × 101 |
Tree Species Type | Tree Species | Pre-Rainfall (95% CI) | After Rainfall (95% CI) | Coefficient of Determination |
---|---|---|---|---|
Evergreen | Diospyros dumetorum | a = 0.175 ± 0.065 | a = 0.169 ± 0.022 | R2 (Pre-Rainfall) = 0.90 |
b = 0.010 ± 0.005 | b = 0.021 ± 0.005 | R2 (After Rainfall) = 0.84 | ||
Acacia auriculiformis | a = 0.109 ± 0.023 | a = 0.189 ± 0.010 | R2 (Pre-Rainfall) = 0.87 | |
b = 0.016 ± 0.005 | b = 0.032 ± 0.004 | R2 (After Rainfall) = 0.93 | ||
Deciduous | Albizia kalkora | a = 0.223 ± 0.021 | a = 0.433 ± 0.021 | R2 (Pre-Rainfall) = 0.92 |
b = 0.027 ± 0.005 | b = 0.084 ± 0.014 | R2 (After Rainfall) = 0.82 | ||
Terminalia franchetii | a = 0.531 ± 0.759 | a = 0.387 ± 0.019 | R2 (Pre-Rainfall) = 0.84 | |
b = 0.003 ± 0.005 | b = 0.038 ± 0.005 | R2 (After Rainfall) = 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Sun, Y.; He, Z.; Li, X.; Luo, Z.; Zhou, S.; Ou, Z. Seasonal Dynamics of Trunk Sap Flow of Typical Tree Species in Dry and Hot Valleys and Responses to Environmental Factors. Forests 2025, 16, 387. https://doi.org/10.3390/f16030387
Peng L, Sun Y, He Z, Li X, Luo Z, Zhou S, Ou Z. Seasonal Dynamics of Trunk Sap Flow of Typical Tree Species in Dry and Hot Valleys and Responses to Environmental Factors. Forests. 2025; 16(3):387. https://doi.org/10.3390/f16030387
Chicago/Turabian StylePeng, Lingxiao, Yongyu Sun, Zhenmin He, Xiangfei Li, Zhifeng Luo, Shan Zhou, and Zhaorong Ou. 2025. "Seasonal Dynamics of Trunk Sap Flow of Typical Tree Species in Dry and Hot Valleys and Responses to Environmental Factors" Forests 16, no. 3: 387. https://doi.org/10.3390/f16030387
APA StylePeng, L., Sun, Y., He, Z., Li, X., Luo, Z., Zhou, S., & Ou, Z. (2025). Seasonal Dynamics of Trunk Sap Flow of Typical Tree Species in Dry and Hot Valleys and Responses to Environmental Factors. Forests, 16(3), 387. https://doi.org/10.3390/f16030387