Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Granier thermal diffusion probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5374 KB  
Article
Seasonal Dynamics of Trunk Sap Flow of Typical Tree Species in Dry and Hot Valleys and Responses to Environmental Factors
by Lingxiao Peng, Yongyu Sun, Zhenmin He, Xiangfei Li, Zhifeng Luo, Shan Zhou and Zhaorong Ou
Forests 2025, 16(3), 387; https://doi.org/10.3390/f16030387 - 21 Feb 2025
Viewed by 1621
Abstract
Trunk sap flow is essential for assessing plant water use efficiency and adaptation, yet the mechanisms underlying drought resistance and water utilization strategies in dry and hot valleys remain poorly understood. This study investigates the sap flow dynamics of four tree species ( [...] Read more.
Trunk sap flow is essential for assessing plant water use efficiency and adaptation, yet the mechanisms underlying drought resistance and water utilization strategies in dry and hot valleys remain poorly understood. This study investigates the sap flow dynamics of four tree species (Albizia kalkora, Diospyros dumetorum, Terminalia franchetii, and Acacia auriculiformis) in a dry and hot valley using Granier’s thermal diffusion probe method. The aims were to analyze interspecific differences and their response mechanisms to environmental factors using a fitted model of sap flow density and transpiration variables, supplemented by Pearson’s and Mantel’s tests. The results showed that (1) the trunk sap flow of each tree species is significantly higher in the wet season than in the dry season. (2) In the dry and wet seasons, the average trunk sap flow rates were in the order Albizia kalkora > Diospyros dumetorum > Terminalia franchetii > Acacia auriculiformis. (3) The correlation between environmental factors and trunk sap flow was in the order photosynthetically active radiation > atmospheric temperature > saturated water vapor pressure difference > relative humidity > wind speed. (4) Deciduous plants demonstrated stronger water-conducting capacities than evergreen plants and native plants exhibited better drought resistance than introduced plants. (5) Acacia auriculiformis and Albizia kalkora were identified as rainfall-sensitive plants, while Diospyros dumetorum and Terminalia franchetii were rainfall-insensitive. By optimizing species selection based on water use efficiency, rainfall sensitivity, and environmental conditions such as light and temperature, this research contributes to enhancing the stability and resilience of ecosystem restoration in arid regions. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop