Responses of Soil Enzyme Activity and Microbial Nutrient Limitations to Vegetation Types in a Degraded Karst Trough Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Experimental Design and Soil Sampling
2.3. Calculation of Microbial Nutrient Limitation
2.4. Data Analysis
3. Results
3.1. Changes in Soil Physicochemical Properties with Vegetation Type
3.2. Comparative Analysis of Soil Enzyme Activity and Its Stoichiometry Across Vegetation Types
3.3. Analysis of Soil Enzymes and Soil Physicochemical Properties
3.4. Redundancy Analysis of Soil Enzyme and Soil Physicochemical Properties
3.5. Microbial Nutrient Limitation with Vegetation Type
4. Discussion
4.1. Response of Soil Physicochemical Properties and Soil Enzyme Activity to Vegetation Type on Dip and Anti-Dip Erosion Slopes
4.2. Driving Factors of Soil Enzyme Activity and Microbial Resource Limitation Under Different Vegetation Type on Dip and Anti-Dip Erosion Slopes
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ananbeh, H.; Stojanović, M.; Pompeiano, A.; Voběrková, S.; Trasar-Cepeda, C. Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems. Sci. Total Environ. 2019, 694, 133692. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.C.; Wang, H.; Yan, G.Y.; Wang, M.; Jiang, S.; Wang, X.C.; Xue, J.S.; Xu, M.; Xing, Y.; Wang, Q. Soil enzyme activities and microbial nutrient limitation during the secondary succession of boreal forests. Catena 2023, 230, 107268. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, Z.Q.; Fan, B.; Mao, X.H.; Luo, H.; Jiang, F.Y.; Liang, C.F.; Chen, J.H.; Qin, H.; Xu, Q.F.; et al. Litter Inputs Control the Pattern of Soil Aggregate-Associated Organic Carbon and Enzyme Activities in Three Typical Subtropical Forests. Forests 2022, 13, 1210. [Google Scholar] [CrossRef]
- Aponte, H.; Meli, P.; Butler, B.; Jorge, P.; Matus, F.; Merino, C.; Cornejo, P.; Kuzyakov, Y. Meta-Analysis of heavy metal effects on soil enzyme activities. Sci. Total Environ. 2020, 737, 139744. [Google Scholar] [CrossRef]
- Bai, X.J.; A, D.M.; An, S.S.; Wang, B.R.; Zhang, H.X.; Sebastian, L. Extracellular enzyme activity and stoichiometry: The effect of soil microbial element limitation during leaf litter decomposition. Ecol. Indic. 2021, 121, 107200. [Google Scholar] [CrossRef]
- Díaz-López, M.; Siles, J.A.; Ros, C.; Bastida, F.; Nicolás, E. The effects of ozone treatments on the agro-physiological parameters of tomato plants and the soil microbial community. Sci. Total Environ. 2022, 812, 151429. [Google Scholar] [CrossRef]
- Liu, C.; Song, Y.Y.; Dong, X.F.; Wang, X.W.; Ma, X.Y.; Zhao, G.Y.; Zang, S.Y. Soil Enzyme Activities and Their Relationships with Soil C, N, and P in Peatlands From Different Types of Permafrost Regions, Northeast China. Front. Environ. Sci. 2021, 9, 670769. [Google Scholar] [CrossRef]
- Guo, D.L.; Ou, Y.S.; Zhou, X.H.; Wang, X.; Zhao, Y.F.; Li, J.; Xiao, J.J.; Hao, Z.G.; Wang, K.C. Response of Soil Enzyme Activities to Natural Vegetation Restorations and Plantation Schemes in a Landslide-Prone Region. Forests 2022, 13, 880. [Google Scholar] [CrossRef]
- Guo, Y.F.; Cheng, S.L.; Fang, H.J.; Yang, Y.; Li, Y.N.; Zhou, Y. Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. Sci. Total Environ. 2022, 844, 157119. [Google Scholar] [CrossRef]
- Nakayama, Y.H.; Wade, J.; Li, C.Y.; Daughtridge, R.C.; Margenot, A.J. Quantifying the relative importance of controls and assay conditions for reliable measurement of soil enzyme activities with para-nitrophenol substrates. Geoderma 2023, 429, 116234. [Google Scholar] [CrossRef]
- Ren, C.J.; Zhang, W.; Zhong, Z.K.; Han, X.H.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci. Total Environ. 2018, 610, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.J.; Wang, Y.H.; Wang, Q.; Ju, W.L.; Zhang, Z.Q.; Cui, Y.X.; Beiyuan, J.Z.; Fan, Q.H.; Wei, S.Y.; Li, S.Q.; et al. Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. Environ. Pollut. 2022, 300, 118978. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.H.; Qu, A.R.; Feng, E.; Chen, R.; Yang, X.T.; Lai, Y. Seasonal Dynamics of Soil Enzymatic Activity under Different Land-Use Types in Rocky Mountainous Region of North China. Forests 2023, 14, 536. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Gunina, A.; Zamanian, K.; Tian, J.; Luo, Y.; Xu, X.; Yudina, A.; Aponte, H.; Alharbi, H.; Ovsepyan, L.; et al. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Front. Agric. Sci. Eng. 2020, 7, 282–288. [Google Scholar] [CrossRef]
- Li, Q.; Song, X.Z.; Kim, Y.; Lv, J.H.; Li, Y.F.; Wu, J.S.; Qin, H. Biochar mitigates the effect of nitrogen deposition on soil bacterial community composition and enzyme activities in a Torreya grandis orchard. For. Ecol. Manag. 2020, 457, 117717. [Google Scholar] [CrossRef]
- Sinsabaugh Robert, L.; Lauber Christian, L.; Weintraub Michael, N.; Bony, A.; Allison Steven, D.; Chelsea, C.; Zeglin Lydia, H. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Ghani, M.I.; Ali, A.; Atif, M.J.; Pathan, S.I.; Pietramellara, G.; Ali, M.; Amin, B.; Cheng, Z.H. Diversified crop rotation improves continuous monocropping eggplant production by altering the soil microbial community and biochemical properties. Plant Soil 2022, 480, 603–624. [Google Scholar] [CrossRef]
- Silvena, B.; Anelia, K.; Michaella, P.; Stela, G.; Christo, C.; Galina, R. Soil enzyme activities after application of fungicide QuadrisR at increasing concentration rates. Plant Soil Environ. 2022, 68, 382–392. [Google Scholar]
- Curtright, A.J.; Tiemann, L.K. Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agric. Ecosyst. Environ. 2021, 319, 107489. [Google Scholar] [CrossRef]
- Datta, A.; Gujre, N.; Gupta, D.; Agnihotri, R.; Mitra, S. Application of enzymes as a diagnostic tool for soils as affected by municipal solid wastes. J. Environ. Manag. 2021, 286, 112169. [Google Scholar] [CrossRef]
- Mao, L.; He, X.X.; Ye, S.M.; Wang, S.Q. Soil Aggregate-Associated Carbon-Cycle and Nitrogen-Cycle Enzyme Activities as Affected by Stand Age in Chinese Fir Plantations. J. Soil Sci. Plant Nutr. 2023, 23, 4361–4372. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, K.; Zhang, J.; Li, D.; Zhang, Y.; Xiang, H. Grass cultivation alters soil organic carbon fractions in a subtropical orchard of southern China. Soil Tillage Res. 2018, 181, 110–116. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Q.; Zhou, H.; Nong, Z.; Ye, S.; Deng, Q. Introduction of Dalbergia odorifera enhances nitrogen absorption on Eucalyptus through stimulating microbially mediated soil nitrogen-cycling. For. Ecosyst. 2021, 8, 59. [Google Scholar] [CrossRef]
- Hazrati, S.; Farahbakhsh, M.; Cerdà, A.; Heydarpoor, G. Functionalization of ultrasound enhanced sewage sludge-derived biochar: Physicochemical improvement and its effects on soil enzyme activities and heavy metals availability. Chemosphere 2021, 269, 128767. [Google Scholar] [CrossRef]
- Pan, F.; Zhang, W.; Liang, Y.; Liu, S.; Wang, K. Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation sucessions in karst ecosystem, southwestern China. Environ. Sci. Pollut. Res. 2018, 25, 16979–16990. [Google Scholar] [CrossRef]
- Mori, T.; Aoyagi, R.; Kitayama, K.; Mo, J.M. Does the ratio of β-1,4-glucosidase to β-1,4 N acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biol. Biochem. 2021, 160, 108363. [Google Scholar] [CrossRef]
- Gan, F.L.; He, B.H.; Qin, Z.Y.; Li, W.B. Role of rock dip angle in runoff and soil erosion processes on dip/anti-dip slopes in a karst trough valley. J. Hydrol. 2020, 588, 125093. [Google Scholar] [CrossRef]
- Gan, F.L.; He, B.H.; Qin, Z.Y. Hydrological response and soil detachment rate from dip/anti-dip slopes as a function of rock strata dip in karst valley revealed by rainfall simulations. J. Hydrol. 2020, 581, 124416. [Google Scholar] [CrossRef]
- Gan, F.L.; He, B.H.; Qin, Z.Y.; Li, W.B. Contribution of bedrock dip angle impact to nitrogen and phosphorus leakage loss under artificial rainfall simulations on slopes parallel to and perpendicular to the bedrock dip in a karst trough valley. Catena 2021, 196, 104884. [Google Scholar] [CrossRef]
- Gan, F.L.; Shi, H.L.; Gou, J.F.; Zhang, L.X.; Dai, Q.H.; Yan, Y.J. Responses of soil aggregate stability and soil erosion resistance to different bedrock strata dip and land use types in the karst trough valley of Southwest China. Int. Soil Water Conserv. Res. 2024, 12, 684–696. [Google Scholar] [CrossRef]
- Gan, F.L.; Shi, H.L.; Gou, J.F.; Zhang, L.X.; Liu, C.H. Effects of bedrock strata dip on soil infiltration capacity under different land use types in a karst trough valley of Southwest China. Catena 2023, 230, 107253. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, Q.H. Drivers of soil erosion and subsurface loss by soil leakage during karst rocky desertification in SW China. Int. Soil Water Conserv. Res. 2022, 10, 217–227. [Google Scholar] [CrossRef]
- Crews, T.E.; Farrington, H.; Vitousek, P.M. Changes in Asymbiotic, Changes in Asymbiotic, Heterotrophic Nitrogen Fixation on Leaf Litter of Metrosideros polymorpha with Long-Term Ecosystem Development in Hawaii. Ecosystems 2000, 3, 386–395. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, A.; Haider, G.; Asad, M.; Munsif, F. Microplastics alter soil enzyme activities and microbial community structure without negatively affecting plant growth in an agroecosystem. Chemosphere 2023, 322, 138188. [Google Scholar] [CrossRef]
- Gan, F.L.; Shi, H.L.; Yan, Y.J.; Pu, J.B.; Dai, Q.H.; Gou, J.F.; Fan, Y.C. Soil quality assessment of karst trough valley under different bedrock strata dip and land-use types, based on a minimum data set. Catena 2024, 241, 108048. [Google Scholar] [CrossRef]
- Shi, X.Y.; Mao, D.H.; Song, K.S.; Xiang, H.X.; Li, S.J.; Wang, Z.M. Effects of landscape changes on water quality: A global meta-analysis. Water Res. 2024, 260, 121946. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ren, C.J.; Feng, X.X.; Zhang, L.; Doughty, R.; Zhao, F.Z. Temperature sensitivity of soil carbon decomposition due to shifts in soil extracellular enzymes after afforestation. Geoderma 2020, 374, 114426. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; An, N.; Jiang, D.; Cao, B.; Jiang, Z.; Yan, Y.W.; Ming, C.S.; Meng, Q.J.; Han, W. Short-term response of soil enzyme activities and bacterial communities in black soil to a herbicide mixture: Atrazine and Acetochlor. Appl. Soil Ecol. 2023, 181, 104652. [Google Scholar] [CrossRef]
- Ren, C.J.; Kang, D.; Wu, J.P.; Zhao, F.Z.; Yang, G.H.; Han, X.H.; Feng, Y.Z.; Ren, G.X. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma 2016, 282, 103–111. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Y.X.; Ge, J.H.; Xu, X.Y.; Lei, X.H.; Wang, J.L.; Wan, C.X.; Wang, P.K.; Gao, X.L.; Gao, J.F. Soil enzyme activities, physiological indicators, agronomic traits and yield of common buckwheat under herbicide combined with safeners. Sci. Total Environ. 2023, 903, 166261. [Google Scholar] [CrossRef]
- Jouni, F.; Sanchez-Hernandez, J.C.; Brouchoud, C.; Capowiez, Y.; Rault, M. Role of soil texture and earthworm casts on the restoration of soil enzyme activities after exposure to an organophosphorus insecticide. Appl. Soil Ecol. 2023, 187, 104840. [Google Scholar] [CrossRef]
- McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Wen, L.S.; Peng, Y.; Zhou, Y.R.; Cai, G.; Lin, Y.Y.; Li, B.Y. Effects of conservation tillage on soil enzyme activities of global cultivated land: A meta-analysis. J. Environ. Manag. 2023, 345, 118904. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, G.B.; Li, P.; Xue, S. Dynamics of soil specific enzyme activities and temperature sensitivities during grassland succession after farmland abandonment. Catena 2021, 199, 105081. [Google Scholar] [CrossRef]
- Ding, B.B.; Zhang, Y.E.; Yu, X.X.; Jia, G.D.; Wang, Y.S.; Wang, Y.S.; Zheng, P.F.; Li, Z.D. Effects of forest cover type and ratio changes on runoff and its components. Int. Soil Water Conserv. Res. 2022, 10, 445–456. [Google Scholar] [CrossRef]
- Peng, X.D.; Li, C.L.; Dai, Q.H.; Xu, S.B.; Zang, J. Morphological development of drying shrinkage cracks at the rock-soil—Soil interface in a karst rocky desertification area. J. Hydrol. Reg. Stud. 2024, 54, 101894. [Google Scholar] [CrossRef]
- Tang, W.Z.; Yang, H.S.; Wang, W.E.; Wang, C.X.; Pang, Y.Y.; Chen, D.Y.; Hu, X.T. Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis. Agronomy 2022, 12, 1974. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L.; Hill, B.H.; Weintraub, M.N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 2016, 93, 1–7. [Google Scholar] [CrossRef]
- Wang, B.T.; Chen, H.M.; Qu, P.; Lin, R.; He, S.M.; Li, W.F.; Zhang, C.L.; Shi, X.D.; Liu, Y.; Du, H.B.; et al. Effect of Different Cultivation Patterns on Amomum villosum Yield and Quality Parameters, Rhizosphere Soil Properties, and Rhizosphere Soil Microbes. Horticulturae 2023, 9, 306. [Google Scholar] [CrossRef]
- Xiao, Q.Q.; He, B.P.; Wang, S. Effect of the Different Fertilization Treatments Application on Paddy Soil Enzyme Activities and Bacterial Community Composition. Agronomy 2023, 13, 712. [Google Scholar] [CrossRef]
(a) Dip Slope | ||||
---|---|---|---|---|
Soil Property | Explains % | Contribution % | Pseudo-F | p |
TN | 27.4 | 32.1 | 3.8 | 0.024 |
BD | 24.4 | 28.5 | 4.6 | 0.02 |
TP | 14.1 | 16.4 | 3.3 | 0.072 |
OC | 8.6 | 10 | 2.4 | 0.142 |
pH | 6.9 | 8.1 | 2.2 | 0.13 |
SWC | 1.9 | 2.2 | 0.6 | 0.632 |
TSP | 2.3 | 2.6 | 0.6 | 0.596 |
(b) Anti-Dip Slope | ||||
Soil Property | Explains % | Contribution % | Pseudo-F | p |
TP | 34.4 | 45.6 | 5.3 | 0.006 |
pH | 13.6 | 17.9 | 2.3 | 0.12 |
TSP | 8.0 | 10.5 | 1.4 | 0.256 |
SWC | 4.4 | 5.8 | 0.8 | 0.51 |
OC | 5.4 | 7.2 | 1.0 | 0.322 |
BD | 8.0 | 10.6 | 1.5 | 0.248 |
TN | 1.8 | 2.4 | 0.3 | 0.802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, F.; Shi, H.; Tan, X.; Jiang, L.; Li, W.; Xia, Y.; Pu, J.; Dai, Q.; Yan, Y.; Fan, Y. Responses of Soil Enzyme Activity and Microbial Nutrient Limitations to Vegetation Types in a Degraded Karst Trough Valley. Forests 2025, 16, 279. https://doi.org/10.3390/f16020279
Gan F, Shi H, Tan X, Jiang L, Li W, Xia Y, Pu J, Dai Q, Yan Y, Fan Y. Responses of Soil Enzyme Activity and Microbial Nutrient Limitations to Vegetation Types in a Degraded Karst Trough Valley. Forests. 2025; 16(2):279. https://doi.org/10.3390/f16020279
Chicago/Turabian StyleGan, Fengling, Hailong Shi, Xiaohong Tan, Lisha Jiang, Wuyi Li, Yuanyue Xia, Junbing Pu, Quanhou Dai, Youjin Yan, and Yuchuan Fan. 2025. "Responses of Soil Enzyme Activity and Microbial Nutrient Limitations to Vegetation Types in a Degraded Karst Trough Valley" Forests 16, no. 2: 279. https://doi.org/10.3390/f16020279
APA StyleGan, F., Shi, H., Tan, X., Jiang, L., Li, W., Xia, Y., Pu, J., Dai, Q., Yan, Y., & Fan, Y. (2025). Responses of Soil Enzyme Activity and Microbial Nutrient Limitations to Vegetation Types in a Degraded Karst Trough Valley. Forests, 16(2), 279. https://doi.org/10.3390/f16020279