Changes in Runoff Responses After Replantation Following Clearcutting in a Mixed Forest Headwater Catchment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Data Collection
2.3. Data Analysis
3. Results
3.1. Precipitation Patterns and Catchment Runoff Responses


3.2. Catchment Runoff Component Analysis


3.3. Interaction Between Catchment Runoff Component and Precipitation
4. Discussion
4.1. Influence of Clearcutting and Replantation on Runoff Responses
4.2. Dominant Catchment Flow After Clearcutting and Replantation
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fedrowitz, K.; Gustafsson, L. Does the amount of trees retained at clearfelling of temperate and boreal forests influence biodiversity response? Environ. Evid. 2012, 1, 5. [Google Scholar] [CrossRef]
- Allen, R.B.; Platt, K.H.; Coker, R.E.J. Understory species composition patterns in a Pinus radiata D. Don plantation on the central North Island volcanic plateau, New Zealand. N. Z. J. For. Sci. 1995, 25, 301–317. [Google Scholar]
- Keenan, R.J.; Kimmins, J.P. The ecological effects of clear-cutting. Environ. Rev. 1993, 1, 121–144. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, X.; Zhao, X.; Zhang, L.; Tan, B.; Li, J.; Xu, H. Effects of Strip Clearcutting and Replanting on the Soil Aggregate Composition and Stability in Cunninghamia lanceolata Plantations in Subtropical China. Forests 2025, 16, 873. [Google Scholar] [CrossRef]
- Patric, J.H. Effects of wood products harvest on forest soils and water relations. J. Environ. Qual. 1980, 9, 73–80. [Google Scholar] [CrossRef]
- Buttle, J.M.; Beall, F.D.; Webster, K.L.; Hazlett, P.W.; Creed, L.F.; Semkin, R.G.; Jeffries, D.S. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover. J. Hydrol. 2018, 557, 805–825. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Harr, R.D. Potential for augmenting water yield through forest practices in western Washington and western Oregon. Water Resour. Bull. 1983, 19, 383–393. [Google Scholar] [CrossRef]
- Stednick, J.D. Monitoring the effects of timber harvest on annual water yield. J. Hydrol. 1996, 176, 79–95. [Google Scholar] [CrossRef]
- Hornbeck, J.W.; Adams, M.B.; Corbett, E.S.; Verry, E.S.; Lynch, J.A. Long-Term impacts of forest treatments on water yield: A summary for Northeastern USA. J. Hydrol. 1993, 150, 323–344. [Google Scholar] [CrossRef]
- Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Ide, J.I.; Finér, L.; Laurén, A.; Piirainen, S.; Launiainen, S. Effects of clear-cutting on annual and seasonal runoff from a boreal forest catchment in eastern Finland. For. Ecol. Manag. 2013, 304, 482–491. [Google Scholar] [CrossRef]
- Greacen, E.L.; Sands, R. A review of compaction of forest soils. Aust. J. Soil Res. 1980, 18, 163–189. [Google Scholar] [CrossRef]
- Wagenbrenner, J.W.; Robichaud, P.R.; Brown, R.E. Rill erosion in burned and salvage logged western montane forests: Effects of logging equipment type, traffic level, and slash treatment. J. Hydrol. 2016, 541, 889–901. [Google Scholar] [CrossRef]
- Baharuddin, K.; Mokharuddin, A.M.; Nik Muhamad, M. Surface runoff and soil loss from a skid trail and a logging road in a tropical forest. J. Trop. For. Sci. 1995, 7, 558–559. [Google Scholar]
- Malmer, A.l.; Grip, H. Soil disturbance and loss of infiltrability caused by mechanized and manual extraction of tropical rain-forest in Sabah, Malaysia. For. Ecol. Manage 1990, 38, 1–12. [Google Scholar] [CrossRef]
- Park, S.-G.; Kang, H.-M. Characteristics of Vegetation Structure in Chamaecyparis obtusa stands. Korean J. Environ. Ecol. 2015, 29, 907–916. (In Korean) [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.C.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems. Bioscience 2002, 52, 905–916. [Google Scholar] [CrossRef]
- Kim, I.J.; Han, D.H. A Small Stream Management Plan to Protect the Aquatic Ecosystem; Korea Environment Institute Report (No. RE-09); Korea Environment Institute (KEI): Sejong-Si, Republic of Korea, 2008; pp. 1–149. (In Korean) [Google Scholar]
- Jun, J.H.; Kim, K.H.; Yoo, J.Y.; Choi, H.T.; Jeong, Y.H. Variation of suspended solid concentration, electrical conductivity and pH of stream water in the regrowth and rehabilitation forested catchments. South Korea. J. Korean Soc. For. Sci. 2007, 96, 21–28. (In Korean) [Google Scholar]
- Park, J.C.; Lee, H.H. Variations of stream water quality caused by discharge change-at a watershed in Mt. Palgong. J. Korean Soc. For. Sci. 2000, 89, 342–355. (In Korean) [Google Scholar]
- Dudley, N.; Stolton, S. Running Pure: The Importance of Forest Protected Areas to Drinking Water; Research Report for the World Bank and WWF Alliance for Forest Conservation and Sustainable Use; World Bank: Washington, DC, USA; WWF Alliance for Forest Conservation and Sustainable Use: Gland, Switzerland, 2003; ISBN 2-88085-262-5. [Google Scholar]
- Šach, F.; Švihla, V.; Černohous, V.; Kantor, P. Management of mountain forests in the hydrology of a landscape, the Czech Republic-review. J. For. Sci. 2014, 60, 42–50. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climateclassification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Ryberg, K.R.; Akyuez, F.A.; Wiche, G.J.; Lin, W. Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012. Hydrol. Process. 2016, 30, 1208–1218. [Google Scholar] [CrossRef]
- Nam, S.; Jang, S.J.; Chun, K.W.; Lee, J.U.; Kim, S.W. Seasonal water temperature variations in response to air temperature and precipitation in a forested headwater stream and an urban river: A case study from the Bukhan River basin, South Korea. For. Sci. Technol. 2021, 17, 46–55. (In Korean) [Google Scholar] [CrossRef]
- National Institute of Forest Science (NiFoS). Investigation of Runoff Characteristics in Forested Watersheds of the Jeollanam-Do; National Institute of Forest Science: Seoul, Republic of Korea, 2016; p. 6. (In Korean) [Google Scholar]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Huang, X.; Shi, Z.H.; Zhu, H.D.; Zhang, H.Y.; Ai, L.; Yin, W. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 2016, 136, 189–196. [Google Scholar] [CrossRef]
- Gomi, T.; Asano, Y.; Uchida, T.; Onda, Y.; Sidle, R.C.; Miyata, S.; Ki, K.; Mizugaki, S.; Fukuyama, T.; Fukushima, T. Evaluation of storm runoff pathways in steep nested catchments draining a Japanese cypress forest in central Japan: A geochemical approach. Hydrol. Process. 2010, 24, 550–566. [Google Scholar] [CrossRef]
- Dung, X.B.; Gomi, T.; Miyata, S.; Sidle, R.C.; Kosugi, K.; Onda, Y. Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining Japanese cypress forest. J. Hydrol. 2012, 444–445, 51–62. [Google Scholar] [CrossRef]
- Dung, B.X.; Hiraoka, M.; Gomi, T.; Onda, Y.; Kato, H. Peak flow responses to strip thinning in a nested, forested headwater catchment. J. Hydrol. 2015, 29, 5098–5108. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Hibbert, A.R. Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas. In Forest Hydrology; Sopper, W.E., Lull, H.W., Eds.; Pergamon Press: New York, NY, USA, 1967; Volume 1, pp. 275–290. [Google Scholar]
- Nam, S.; Chun, K.W.; Lee, J.U.; Kang, W.S.; Jang, S.J. Hydrograph Separation and Flow Characteristic Analysis for Observed Rainfall Events during Flood. Korean J. Ecol. Environ. 2021, 54, 49–60. (In Korean) [Google Scholar] [CrossRef]
- Durighetto, N.; Botter, G. On the relation between active network length and catchment discharge. Geophys. Res. Lett. 2022, 49, e2022GL099500. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, A.; Villani, P.; Grayson, R.B.; Western, A.W. On the Relationship between Runoff Coefficient and Catchment Initial Conditions. In Proceedings of the MODSIM 2003 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand Inc., Townsville, Australia, 14–17 July 2003; Volume 2, pp. 867–872. [Google Scholar]
- Cheng, S.; Cheng, L.; Liu, P.; Qin, S.; Zhang, L.; Xu, C.-Y. An analytical baseflow coefficient curve for depicting the spatial variability of mean annual catchment baseflow. Water Resour. Res. 2021, 57, e2020WR029529. [Google Scholar] [CrossRef]
- Ha, D.T.T.; Ghafouri-Azar, M.; Bae, D.-H. Long-Term Variation of Runoff Coefficient during Dry and Wet Seasons Due to Climate Change. Water 2019, 11, 2411. [Google Scholar] [CrossRef]
- Bao, Q.; Ding, J.; Han, L. Quantifying the effects of human activities and climate variability on runoff changes using variable infiltration capacity model. PLoS ONE 2022, 17, e0272576. [Google Scholar] [CrossRef]
- Nanko, K.; Mizugaki, S.; Onda, Y. Estimation of soil splash detachment rates on the forest floor of an unmanaged Japanese cypress plantation based on field measurements of throughfall drop sizes and velocities. Catena 2008, 72, 348–361. [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.C.; Miyata, S.; Kosugi, K.; Onda, Y. Dynamic runoff connectivity of overland flow on steep forested hillslopes: Scale effects and runoff transfer. Water Resour. Res. 2008, 44, W08411. [Google Scholar] [CrossRef]
- Xiao, F.; Halbach, T.R.; Simcik, M.F.; Gulliver, J.S. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination by exploratory data analysis. Water Res. 2012, 46, 3101–3109. [Google Scholar] [CrossRef]
- Tromp-van Meerveld, H.J.; McDonnell, J.J. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resour. Res. 2006, 42, W02410. [Google Scholar] [CrossRef]
- Hrnčíř, M.; Šanda, M.; Kulasová, A.; Císlerová, M. Runoff formation in a small catchment at hillslope and catchment scales. Hydrol. Process. 2010, 24, 2248–2256. [Google Scholar] [CrossRef]
- Stomph, T.J.; de Ridder, N.; Steenhuis, T.S.; van de Giesen, N.C. Scale effects of Hortonian overland flow and rainfall-runoff dynamics: Laboratory validation of a process-based model. Earth Surf. Proc. Land. 2002, 27, 847–855. [Google Scholar] [CrossRef]
- Cammeraat, E.L.H. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in Southeast Spain. Agric. Ecosyst. Environ. 2004, 104, 317–322. [Google Scholar] [CrossRef]
- Sidle, R.C.; Kim, K.; Tsuboyama, Y.; Hosoda, I. Development and application of a simple hydrogeomorphic model for headwater catchments. Water Resour. Res. 2011, 47, W00H13. [Google Scholar] [CrossRef]
- Oda, T.; Egusa, T.; Ohte, N.; Hotta, N.; Tanaka, N.; Green, M.B.; Suzuki, M. Effects of changes in canopy interception on stream runoff response and recovery following clear-cutting of a Japanese coniferous forest in Fukuroyamasawa Experimental Watershed in Japan. Hydrol. Process. 2021, 35, e14177. [Google Scholar] [CrossRef]
- Croke, J.C.; Hairsine, P.B. Sediment delivery in managed forests: A review. Environ. Rev. 2006, 14, 59–87. [Google Scholar] [CrossRef]
- Nam, S.; Hiraoka, M.; Gomi, T.; Dung, B.X.; Onda, Y.; Kato, H. Suspended-Sediment responses after strip thinning in headwater catchments. Landsc. Ecol. Eng. 2016, 12, 197–208. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Sutherland, R.A.; Giambelluca, T.W. Acceleration of Horton overland flow and erosion by footpaths in an upland agricultural watershed in northern Thailand. Geomorphology 2001, 41, 249–262. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Zemke, J.J.; Enderling, M.; Klein, A.; Skubski, M. The influence of soil compaction on runoff formation. A case study focusing on skid trails at forested andosol sites. Geosciences 2019, 9, 204. [Google Scholar] [CrossRef]
- Etehadi Abari, M.; Majnounian, B.; Malekian, A.; Jourgholami, M. Effects of forest harvesting on runoff and sediment characteristics in the Hyrcanian forests, northern Iran. Eur. J. For. Res. 2017, 136, 375–386. [Google Scholar] [CrossRef]
- Dos Reis Castro, N.M.; Auzet, A.V.; Chevallier, P.; Leprun, J.C. Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of Southern Brazil. Hydrol. Process. 1999, 13, 1621–1628. [Google Scholar] [CrossRef]
- Miyata, S.; Kosugi, K.I.; Nishi, Y.; Gomi, T.; Sidle, R.C.; Mizuyama, T. Spatial pattern of infiltration rate and its effect on hydrological processes in a small headwater catchment. Hydrol. Process. 2010, 24, 535–549. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Helvey, J.D. Effects of forest clear-felling on the storm hydrograph. Water Resour. Res. 1970, 6, 768–782. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; LaFevor, M.C. Effects of forest roads on runoff initiation in low-order ephemeral streams. Water Resour. Res. 2018, 54, 8613–8631. [Google Scholar] [CrossRef]
- Gomi, T.; Moore, R.D.; Hassan, M.A. Suspended sediment dynamics in small forest streams of the Pacific Northwest. J. Am. Water Resour. Assoc. 2005, 41, 877–898. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T. On the estimation of antecedent wetness conditions in rainfall–runoff modeling. Hydrol. Process. 2008, 22, 629–642. [Google Scholar] [CrossRef]
- Nagatsuka, Y.; Gomi, T.; Hiraoka, M.; Miyata, S.; Onda, Y. Infiltration capacity and runoff characteristics of a forest road. J. Jpn. For. Soc. 2014, 96, 315–322. (In Japanese) [Google Scholar] [CrossRef]
- Ziegler, A.D.; Giambelluca, T.W. Importance of rural roads as source areas for runoff in mountainous areas of northern Thailand. J. Hydrol. 1997, 196, 204–229. [Google Scholar] [CrossRef]
- Imerson, A.C.; Verstraten, J.M.; van Mulligen, E.J.; Sevink, J. The effects of fire and water repellency in infiltration and runoff under Mediterranean type forest. Catena 1992, 19, 345–361. [Google Scholar] [CrossRef]
- Kobayashi, M.; Shimizu, T. Restricted increases of water storage during storm evens owing to soil water repellency in a Japanese cypress plantation. Hydrol. Process. 2007, 21, 2356–2364. [Google Scholar] [CrossRef]
- Hou, Y.; Wei, X. Forest disturbance thresholds and cumulative hydrological impacts. Water Resour. Res. 2024, 60, e2024WR037339. [Google Scholar] [CrossRef]
- Moore, R.D.; Wondzell, S.M. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: A review. Am. J. Water Resour. 2005, 41, 763–784. [Google Scholar] [CrossRef]
- Guillemette, F.; Plamondon, A.P.; Prévost, M.; Lévesque, D. Rainfall generated stormflow response to clearcutting a boreal forest: Peak flow comparison with 50 world-wide basin studies. J. Hydrol. 2005, 302, 137–153. [Google Scholar] [CrossRef]
- Crampe, E.A.; Segura, C.; Jones, J.A. Fifty years of runoff response to conversion of old-growth forest to planted forest in the HJ Andrews Forest, Oregon, USA. Hydrol. Process. 2021, 35, e14168. [Google Scholar] [CrossRef]
- Swank, W.T.; Vose, J.M.; Elliott, K.J. Long-term hydrologic and ecosystem responses to forest cutting and regrowth in the southern Appalachians. For. Ecol. Manage 2001, 143, 163–178. [Google Scholar] [CrossRef]
- Sidle, R.C.; Hirano, T.; Gomi, T.; Terajima, T. Hortonian overland flow from Japanese forest plantations—An aberration, the real thing, or something in between? Hydrol. Process. 2007, 21, 3237–3247. [Google Scholar] [CrossRef]
- Miyata, S.; Kosugi, K.; Gomi, T.; Onda, Y.; Mizuyama, T. Surface runoff as affected by soil water repellency in a Japanese cypress forest. Hydrol. Process. 2007, 21, 2365–2376. [Google Scholar] [CrossRef]
- Dung, B.X.; Miyata, S.; Gomi, T. Effect of forest thinning on overland flow generation on hillslopes covered by Japanese cypress. Ecohydrology 2011, 4, 367–378. [Google Scholar] [CrossRef]
- Wemple, B.C.; Jones, J.A.; Grant, G.E. Channel network extension by logging roads in two basins, Western Cascades, Oregon. J. Am. Water Resour. Assoc. 1996, 32, 1195–1207. [Google Scholar] [CrossRef]
- Reid, L.M.; Dunne, T. Sediment production from forest road surfaces. Water Resour. Res. 1984, 20, 1753–1761. [Google Scholar] [CrossRef]
- Sidle, R.C.; Sasaki, S.; Otsuki, M.; Noguchi, S.; Nik, R.A. Sediment pathways in a tropical forest: Effects of logging roads and skid trails. Hydrol. Process. 2004, 18, 703–720. [Google Scholar] [CrossRef]
- Vilhar, U.; Kermavnar, J.; Kozamernik, E.; Petrič, M.; Ravbar, N. The effects of large-scale forest disturbances on hydrology—An overview with special emphasis on karst aquifer systems. Earth-Sci. Rev. 2022, 235, 104243. [Google Scholar] [CrossRef]
- Goeking, S.A.; Tarboton, D.G. Variable streamflow response to forest disturbance in the Western US: A large-sample hydrology approach. Water Resour. Res. 2022, 58, e2021WR031575. [Google Scholar] [CrossRef]
- Mason, W.L.; McKay, H.M.; Weatherall, A.; Connolly, T.; Harrison, A.J. The effects of whole-tree harvesting on three sites in upland Britain on the growth of Sitka spruce over ten years. Forestry 2012, 85, 111–123. [Google Scholar] [CrossRef]
- Likoski, J.K.; Vibrans, A.C.; Silva, D.A.D.; Fantini, A.C. Canopy recovery four years after logging: A management study in a southern brazilian secondary forest secondary forest. Cerne 2021, 27, e-102366. [Google Scholar] [CrossRef]
- Fukushima, T.; Tei, R.; Arai, H.; Onda, Y.; Kato, H.; Kawaguchi, S.; Gomi, T.; Dung, B.X.; Nam, S. Influence of strip thinning on nutrient outflow concentrations from plantation forested watersheds. Hydrol. Process. 2015, 29, 5109–5119. [Google Scholar] [CrossRef]





| Period | n | Precipitation (mm) | Runoff (mm) | Ct | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Total | Max10 | Max30 | Max60 | API7 | API30 | Total | Peak | |||
| Pre-cutting | 51 | 6.0–220.5 | 0.5–19.0 | 0.5–44.0 | 1.0–47.5 | 0.0–220.5 | 19.5–369.5 | 0.1–169.6 | 0.0–2.8 | 0.01–0.98 |
| During-operation | 28 | 7.0–280.0 | 0.5–14.0 | 0.5–34.0 | 0.5–45.5 | 0.0–134.0 | 1.5–484.5 | 0.3–254.7 | 0.0–2.8 | 0.02–0.91 |
| Post-cutting | 97 | 5.5–286.5 | 0.5–18.5 | 0.5–28.5 | 1.0–48.0 | 0.0–156.5 | 9.0–485.0 | 0.1–161.8 | 0.0–2.8 | 0.01–0.87 |
| Pre-Cutting | During-Operation | Post-Cutting | ||||
|---|---|---|---|---|---|---|
| Qd | Qd | Qd | ||||
| Total precipitation | 0.908 *** | 0.817 *** | 0.950 *** | 0.844 *** | 0.878 *** | 0.847 *** |
| Max 10-min intensity | 0.610 *** | 0.550 *** | 0.438 * | 0.211 | 0.444 *** | 0.503 *** |
| Max 30-min intensity | 0.456 *** | 0.412 ** | 0.566 ** | 0.372 | 0.500 *** | 0.515 *** |
| Max 60-min intensity | 0.453 *** | 0.419 ** | 0.623 *** | 0.458 * | 0.613 *** | 0.622 *** |
| API7 | −0.048 | 0.087 | 0.069 | 0.161 | −0.044 | 0.018 |
| API30 | 0.130 | 0.204 | 0.109 | 0.185 | 0.021 | 0.063 |
| Period | Slope (a) | 95% CI (a) | Intercept (b) | 95% CI (b) | R2 | n | F | p | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Pt ≤ 60 | Pre-cutting | 0.301 | 0.191–0.410 | −4.360 | −7.292–−1.428 | 0.45 | 40 | 30.95 | <0.001 | |
| During-operation | 0.031 | 0.016–0.047 | −0.386 | −0.875–0.104 | 0.48 | 22 | 18.11 | <0.001 | ||
| Post-cutting | 0.196 | 0.132–0.259 | −2.718 | −4.550–−0.887 | 0.35 | 73 | 37.65 | <0.001 | ||
| Pre-cutting | Qd | 0.258 | 0.164–0.352 | −0.808 | −3.329–1.712 | 0.45 | 40 | 30.76 | <0.001 | |
| During-operation | 0.163 | 0.031–0.295 | 0.709 | −3.488–4.907 | 0.25 | 22 | 6.68 | 0.018 | ||
| Post-cutting | 0.200 | 0.138–0.262 | 0.287 | −1.501–2.076 | 0.37 | 73 | 41.37 | <0.001 | ||
| Pt ≤ 60 | Pre-cutting | 0.619 | 0.289–0.948 | −27.965 | −72.225–16.326 | 0.67 | 11 | 18.04 | 0.002 | |
| During-operation | 0.874 | 0.722–1.026 | −44.020 | −66.602–21.438 | 0.99 | 6 | 255.21 | <0.001 | ||
| Post-cutting | 0.457 | 0.307–0.606 | −12.392 | −32.036–7.251 | 0.65 | 24 | 40.22 | <0.001 | ||
| Pre-cutting | Qd | 0.229 | 0.056–0.403 | −7.105 | −30.416–16.205 | 0.50 | 11 | 8.95 | 0.015 | |
| During-operation | 0.143 | 0.027–0.259 | 2.063 | −15.207–19.333 | 0.75 | 6 | 11.68 | 0.027 | ||
| Post-cutting | 0.153 | 0.094–0.212 | 4.138 | −3.624–11.900 | 0.57 | 24 | 28.77 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Lim, H.; Choi, H.T.; Choi, B.; Li, Q. Changes in Runoff Responses After Replantation Following Clearcutting in a Mixed Forest Headwater Catchment. Forests 2025, 16, 1851. https://doi.org/10.3390/f16121851
Nam S, Lim H, Choi HT, Choi B, Li Q. Changes in Runoff Responses After Replantation Following Clearcutting in a Mixed Forest Headwater Catchment. Forests. 2025; 16(12):1851. https://doi.org/10.3390/f16121851
Chicago/Turabian StyleNam, Sooyoun, Honggeun Lim, Hyung Tae Choi, Byoungki Choi, and Qiwen Li. 2025. "Changes in Runoff Responses After Replantation Following Clearcutting in a Mixed Forest Headwater Catchment" Forests 16, no. 12: 1851. https://doi.org/10.3390/f16121851
APA StyleNam, S., Lim, H., Choi, H. T., Choi, B., & Li, Q. (2025). Changes in Runoff Responses After Replantation Following Clearcutting in a Mixed Forest Headwater Catchment. Forests, 16(12), 1851. https://doi.org/10.3390/f16121851

