Improving Forest Above-Ground Biomass Estimation Using UAV LiDAR and RGB with Machine Learning Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. Field Data Collection and AGB Calculation
2.2.2. UAV Data Acquisition and Preprocessing
2.3. Individual Tree Feature Extraction
2.4. Variable Selection and Importance Analysis
2.5. AGB Model Prediction and Parameter Tuning
2.6. Evaluation Metrics
2.6.1. Accuracy Evaluation of Individual Trees
2.6.2. Performance Evaluation of the AGB Models
3. Results
3.1. Individual Tree Segmentation
3.2. Selection of Variables for Modeling
3.3. Accuracy Assessment of the AGB Estimation
3.4. SHAP Analysis
4. Discussion
4.1. Effectiveness of Individual Tree Segmentation
4.2. Advantages of Using UAV-Based Multisource Data for Estimating AGB
4.3. Biomass Prediction Model
4.4. SHAP Interpretation
5. Conclusions
- (1)
- The Mask R-CNN model demonstrated robust performance in segmenting individual trees in open canopies (F1-score: 90.21%), yet its accuracy decreased in areas with dense and overlapping crowns, indicating a limitation in complex structural environments.
- (2)
- Feature-level fusion of RGB and LiDAR data significantly enhanced AGB estimation accuracy. The XGBoost model trained on the fused dataset achieved the best performance (R2 = 0.770), outperforming models using only RGB (R2 = 0.508) or LiDAR (R2 = 0.748) features, which confirms the complementary roles of horizontal crown detail and vertical structural information.
- (3)
- SHAP analysis revealed that structural attributes—including tree height, crown volume, mean crown width, and crown projection area—were the most influential predictors, while spectral vegetation indices contributed minimally at the individual tree level.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuo, T.; Poorter, L.; van der Sande, M.T.; Abdul, S.M.; Koyiba, D.W.; Opoku, J.; de Wit, B.; Kuzee, T.; Amissah, L. Drivers of biomass stocks and productivity of tropical secondary forests. Ecology 2025, 106, e4488. [Google Scholar] [CrossRef]
- Sun, X.; Li, G.; Wang, M.; Fan, Z. Analyzing the Uncertainty of Estimating Forest Aboveground Biomass Using Optical Imagery and Spaceborne LiDAR. Remote Sens. 2019, 11, 722. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B.; Baker, J. A system wide assessment of forest biomass production, markets, and carbon. GCB Bioenergy 2022, 15, 154–165. [Google Scholar] [CrossRef]
- Gong, H.; Song, W.; Wang, J.; Wang, X.; Ji, Y.; Zhang, X.; Gao, J. Climate factors affect forest biomass allocation by altering soil nutrient availability and leaf traits. J. Integr. Plant Biol. 2023, 65, 2292–2303. [Google Scholar] [CrossRef]
- Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsitsi, B. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Hu, T.; Zhang, Y.; Su, Y.; Zheng, Y.; Lin, G.; Guo, Q. Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sens. 2020, 12, 1690. [Google Scholar] [CrossRef]
- Deng, Y.; Pan, J.; Wang, J.; Liu, Q.; Zhang, J. Mapping of Forest Biomass in Shangri-La City Based on LiDAR Technology and Other Remote Sensing Data. Remote Sens. 2022, 14, 5816. [Google Scholar] [CrossRef]
- Babiy, I.A.; Im, S.T.; Kharuk, V. Estimating Aboveground Forest Biomass Using Radar Methods. Contemp. Probl. Ecol. 2022, 15, 433–448. [Google Scholar] [CrossRef]
- Benson, M.L.; Pierce, L.; Bergen, K.; Sarabandi, K. Model-based estimation of forest canopy height and biomass in the Canadian Boreal forest using radar, LiDAR, and optical remote sensing. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4635–4653. [Google Scholar] [CrossRef]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, Y.; Wang, Y. Remote Sensing of Forest Above-Ground Biomass Dynamics: A Review. Forests 2025, 16, 821. [Google Scholar] [CrossRef]
- Fischer, R.; Knapp, N.; Bohn, F.; Shugart, H.H.; Huth, A. The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing. Surv. Geophys. 2019, 40, 709–734. [Google Scholar] [CrossRef]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Integration of GLAS and Landsat TM data for aboveground biomass estimation. Can. J. Remote Sens. 2010, 36, 129–141. [Google Scholar] [CrossRef]
- Hyyppä, J.; Yu, X.; Hyyppä, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Vaaja, M.; Koskinen, J.; et al. Advances in Forest Inventory Using Airborne Laser Scanning. Remote Sens. 2012, 4, 1190–1207. [Google Scholar] [CrossRef]
- Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ. 2011, 115, 2786–2797. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Marcin, C. Review of Segmentation Methods for Coastline Detection in SAR Images. Arch. Comput. Methods Eng. 2023, 31, 839–869. [Google Scholar] [CrossRef]
- Du, Y. Research and Application of Data Classification Algorithm Based on Deep Learning. Acad. J. Comput. Inf. Sci. 2024, 7, 103–109. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Wang, H.; Tan, T.; Cui, M.; Huang, Z.; Wang, P.; Zhang, L. Multi-Species Individual Tree Segmentation and Identification Based on Improved Mask R-CNN and UAV Imagery in Mixed Forests. Remote Sens. 2022, 14, 874. [Google Scholar] [CrossRef]
- Hao, Z.; Lin, L.; Post, C.J.; Mikhailova, E.A.; Li, M.; Chen, Y.; Yu, K.; Liu, J. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN). ISPRS J. Photogramm. Remote Sens. 2021, 178, 112–123. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Li, Z.; Zhao, Y.; Wang, R.; Habib, A. Optimization Method of Airborne LiDAR Individual Tree Segmentation Based on Gaussian Mixture Model. Remote Sens. 2022, 14, 6167. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.; Im, J.; Zhao, Y.; Zhen, Z. A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR. Ecol. Indic. 2020, 159, 111608. [Google Scholar] [CrossRef]
- Dersch, S.; Schöttl, A.; Krzystek, P.; Heurich, M. Towards complete tree crown delineation by instance segmentation with Mask R–CNN and DETR using UAV-based multispectral imagery and lidar data. ISPRS Open J. Photogramm. Remote Sens. 2023, 8, 100037. [Google Scholar] [CrossRef]
- Fararoda, R.; Reddy, R.S.; Rajashekar, G.; Chand, T.K.; Jha, C.; Dadhwal, V. Improving forest above ground biomass estimates over Indian forests using multi source data sets with machine learning algorithm. Ecol. Inform. 2021, 65, 101392. [Google Scholar] [CrossRef]
- Leyre, T.T.; Aitor, B.; Ana, B.; Jose Manuel, L.G.; Manuel, G. Above-ground biomass estimation from LiDAR data using random forest algorithms. J. Comput. Sci. 2022, 58, 101517. [Google Scholar]
- Bui, Q.-T.; Pham, Q.-T.; Pham, V.-M.; Tran, V.-T.; Nguyen, D.-H.; Nguyen, Q.-H.; Nguyen, H.-D.; Do, N.T.; Vu, V.-M. Hybrid machine learning models for aboveground biomass estimations. Ecol. Inform. 2024, 79, 102421. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Z.; Sun, Y.; Song, W.; Meng, J. Enhancing Mangrove Aboveground Biomass Estimation with UAV-LiDAR: A Novel Mutual Information-Based Feature Selection Approach. Sustainability 2025, 17, 3004. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; Zhong, Q.; Xing, L.; Du, H. Prediction of Urban Forest Aboveground Carbon Using Machine Learning Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China. Remote Sens. 2023, 15, 284. [Google Scholar] [CrossRef]
- Wang, D.; Xing, Y.; Fu, A.; Tang, J.; Chang, X.; Yang, H.; Yang, S.; Li, Y. Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm. Forests 2025, 16, 347. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, Y.; Gai, Q.; Ji, W. A Preliminary Study on the Biomass of Larix principis-rupprechtii Forest Community in Pangquangou Nature Reserve. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 1991, 11, 8. (In Chinese) [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Ross, G. Mask R-CNN. IEEE Trans. Pattern Anal. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Xu, Y.; Huang, Z.; Xuan, J.; Zhou, Y.; Hu, M. Estimation aboveground biomass in subtropical bamboo forests based on an interpretable machine learning framework. Environ. Model. Softw. 2024, 178, 106071. [Google Scholar] [CrossRef]
- Marcilio, W.E.; Eler, D.M. From explanations to feature selection: Assessing SHAP values as feature selection mechanism. In Proceedings of the 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil, 7–10 November 2020; pp. 340–347. [Google Scholar]
- Ye, N.; Mason, E.; Xu, C.; Morgenroth, J. Estimating individual tree DBH and biomass of durable Eucalyptus using UAV LiDAR. Ecol. Inform. 2025, 89, 103169. [Google Scholar] [CrossRef]
- Yu, K.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Lin, L.; Zhao, G.; Tian, S.; Liu, J. Comparison of Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using UAV Imagery. Remote Sens. 2022, 14, 295. [Google Scholar] [CrossRef]
- Chang, A.; Eo, Y.; Kim, Y.; Kim, Y. Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering. Remote Sens. Lett. 2013, 4, 29–37. [Google Scholar] [CrossRef]
- Chen, S.; Liang, D.; Ying, B.; Zhu, W.; Zhou, G.; Wang, Y. Assessment of an improved individual tree detection method based on local-maximum algorithm from unmanned aerial vehicle RGB imagery in overlapping canopy mountain forests. Int. J. Remote Sens. 2021, 42, 106–125. [Google Scholar] [CrossRef]
- Fu, H.; Zhao, H.; Jiang, J.; Zhang, Y.; Liu, G.; Xiao, W.; Du, S.; Guo, W.; Liu, X. Automatic detection tree crown and height using Mask R-CNN based on unmanned aerial vehicles images for biomass mapping. For. Ecol. Manag. 2024, 555, 121712. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Jing, L.; Judah, A. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 145–155. [Google Scholar] [CrossRef]
- Chai, G.; Zheng, Y.; Lei, L.; Yao, Z.; Chen, M.; Zhang, X. A novel solution for extracting individual tree crown parameters in high-density plantation considering inter-tree growth competition using terrestrial close-range scanning and photogrammetry technology. Comput. Electron. Agric. 2023, 209, 107849. [Google Scholar] [CrossRef]
- Guo, Q.; Li, K.; Qiao, X.; Jiang, J.; Zhao, Y. An adaptive method for individual tree segmentation synthesizing canopy cover and competitive mechanism using UAV data. Ecol. Inform. 2025, 91, 103360. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data. Remote Sens. 2019, 11, 414. [Google Scholar] [CrossRef]
- Li, J.; Bao, W.; Wang, X.; Song, Y.; Liao, T.; Xu, X.; Guo, M. Estimating Aboveground Biomass of Boreal forests in Northern China using multiple datasets. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4408410. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef]
- Su, Y.; Mura, M.; Zheng, X.; Chen, Q.; Wei, X.; Qiu, Y.; Li, M.; Ren, Y. More Accurately Estimating Aboveground Biomass in Tropical Forests with Complex Forest Structures and Regions of High-Aboveground Biomass. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007864. [Google Scholar] [CrossRef]
- Yu, S.; Ye, Q.; Zhao, Q.; Li, Z.; Zhang, M.; Zhu, H.; Zhao, Z. Effects of Driving Factors on Forest Aboveground Biomass (AGB) in China’s Loess Plateau by Using Spatial Regression Models. Remote Sens. 2022, 14, 2842. [Google Scholar] [CrossRef]
- Liu, X.; Dong, L.; Li, S.; Li, Z.; Wang, Y.; Mao, Z.; Deng, L. Improving AGB estimations by integrating tree height and crown radius from multisource remote sensing. PLoS ONE 2024, 19, e0311642. [Google Scholar] [CrossRef]
- Yan, Y.; Lei, J.; Huang, Y. Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle-Light Detection and Ranging and Machine Learning. Sensors 2024, 24, 7071. [Google Scholar] [CrossRef]
- Poley, L.G.; McDermid, G.J. A Systematic Review of the Factors Influencing the Estimation of Vegetation Aboveground Biomass Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Li, C.; Yu, Z.; Wang, S.; Wu, F.; Wen, K.; Qi, J.; Huang, H. Crown Structure Metrics to Generalize Aboveground Biomass Estimation Model Using Airborne Laser Scanning Data in National Park of Hainan Tropical Rainforest, China. Forests 2022, 13, 1142. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Xia, J.; Ha, N.T.; Le, N.N.; Nguyen, T.T.T.; Dao, T.H.; Vu, T.T.P.; Pham, T.D.; Takeuchi, W. Comparison of Machine Learning Methods for Estimating Mangrove Above-Ground Biomass Using Multiple Source Remote Sensing Data in the Red River Delta Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 1334. [Google Scholar] [CrossRef]
- Lin, J.; Wang, M.; Ma, M.; Lin, Y. Aboveground Tree Biomass Estimation of Sparse Subalpine Coniferous Forest with UAV Oblique Photography. Remote Sens. 2018, 10, 1849. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; González-Ferreiro, E.; Monleón, V.J.; Faias, S.P.; Tomé, M.; Díaz-Varela, R.A. Use of Multi-Temporal UAV-Derived Imagery for Estimating Individual Tree Growth in Pinus pinea Stands. Forests 2017, 8, 300. [Google Scholar] [CrossRef]
- Sainuddin, S.F.; Guljar, M.; Ankur, R.; Nagar, P.S.; Asok, S.V.; Sudhakar, R.C. Estimating Above-Ground Biomass of the Regional Forest Landscape of Northern Western Ghats Using Machine Learning Algorithms and Multi-sensor Remote Sensing Data. J. Indian Soc. Remote Sens. 2024, 52, 885–902. [Google Scholar] [CrossRef]
- Luo, M.; Anees, S.A.; Huang, Q.; Qin, X.; Qin, Z.; Fan, J.; Han, G.; Zhang, L.; Shafri, H.Z.M. Improving Forest Above-Ground Biomass Estimation by Integrating Individual Machine Learning Models. Forests 2024, 15, 975. [Google Scholar] [CrossRef]
- Goodman, G.R.; Lhillips, P.O.; Baker, B.T. The importance of crown dimensions to improve tropical tree biomass estimates. Ecol. Appl. Publ. Ecol. Soc. Am. 2014, 24, 680–698. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lei, P.; You, Q.; Tang, X.; Lai, X.; Chen, J.; You, H. Individual Tree Aboveground Biomass Estimation Based on UAV Stereo Images in a Eucalyptus Plantation. Forests 2023, 14, 1748. [Google Scholar] [CrossRef]
- Khaled, A.; Solomon, W.N.; Shelter, M.; Elhadi, A.; Byrne, M.J. Mapping eucalypts trees using high resolution multispectral images: A study comparing WorldView 2 vs. SPOT 7. Egypt. J. Remote Sens. Space Sci. 2020, 24, 333–342. [Google Scholar]
- Whelan, A.W.; Cannon, J.B.; Bigelow, S.W.; Rutledge, B.T.; Meador, A.J.S. Improving generalized models of forest structure in complex forest types using area- and voxel-based approaches from lidar. Remote Sens. Environ. 2023, 284, 113362. [Google Scholar] [CrossRef]










| Statistics | DBH/cm | H/m | E-W CW/m | S-N CW/m | CD/m | CA/m2 |
|---|---|---|---|---|---|---|
| Max | 56.10 | 44.1 | 18.40 | 15.80 | 0.30 | 559.90 |
| Min | 5.00 | 0.60 | 0.00 | 0.00 | 13.35 | 0.28 |
| Mean | 21.59 | 17.55 | 4.85 | 4.77 | 4.79 | 84.49 |
| Data Source | Features |
|---|---|
| RGB | CD, CA, EWC, SNC, nr, ng, nb, vari, excess_r, excess_g, excess_b, exgr, wai, Kawashima, gli, cive, com, gr_ratio, gb_ratio, rb_ratio, color_intensity, veg, mgrvi |
| LiDAR | Z, H, CV, CC, GF, LAI, Haad, Hcr, Ha (1–99), H3mean, HCV, HIQ, HK, Hmad, Hmax, Hmin, Hmean, Hmedia, Hp (1–99), Hsk, H2mean, Hstd, HV, D (0–9) |
| Matching Category | Count (Tree) | Percentage (%) | Handling Procedure |
|---|---|---|---|
| Successfully Matched | 936 | 87.5% | Used for subsequent AGB modeling and analysis |
| Unmatched | 134 | 12.5% | Excluded from analysis 1 |
| Model | Data Source | R2 | RMSE (kg·Tree−1) | MAE (kg·Tree−1) | Bias (kg·Tree−1) | rRMSE (%) |
|---|---|---|---|---|---|---|
| RF | Combine | 0.751 | 163.43 | 119.12 | −10.70 | 26.18% |
| LiDAR | 0.743 | 165.90 | 120.58 | −9.5156 | 25.98% | |
| RGB | 0.495 | 230.66 | 167.36 | −2.1724 | 37.00% | |
| LightGBM | Combine | 0.759 | 160.86 | 117.40 | −11.01 | 18.83% |
| LiDAR | 0.731 | 169.87 | 125.96 | −11.55 | 26.23% | |
| RGB | 0.457 | 241.41 | 174.70 | −3.4252 | 36.64% | |
| XGBoost | Combine | 0.770 | 156.88 | 113.65 | −12.71 | 25.18% |
| LiDAR | 0.748 | 164.25 | 120.28 | −9.5607 | 26.06% | |
| RGB | 0.508 | 229.76 | 168.54 | −3.8125 | 36.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Zhou, L.; Liu, S.; He, C.; Teng, Y. Improving Forest Above-Ground Biomass Estimation Using UAV LiDAR and RGB with Machine Learning Algorithm. Forests 2025, 16, 1819. https://doi.org/10.3390/f16121819
Cheng X, Zhou L, Liu S, He C, Teng Y. Improving Forest Above-Ground Biomass Estimation Using UAV LiDAR and RGB with Machine Learning Algorithm. Forests. 2025; 16(12):1819. https://doi.org/10.3390/f16121819
Chicago/Turabian StyleCheng, Xiaofang, Lai Zhou, Shaoyu Liu, Chunxin He, and Yueju Teng. 2025. "Improving Forest Above-Ground Biomass Estimation Using UAV LiDAR and RGB with Machine Learning Algorithm" Forests 16, no. 12: 1819. https://doi.org/10.3390/f16121819
APA StyleCheng, X., Zhou, L., Liu, S., He, C., & Teng, Y. (2025). Improving Forest Above-Ground Biomass Estimation Using UAV LiDAR and RGB with Machine Learning Algorithm. Forests, 16(12), 1819. https://doi.org/10.3390/f16121819
