Evaluating the Reliability of Remote Sensing Techniques for Detecting the Strip Road Network in Boom-Corridor Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and UAV Surveys
2.3. Detection of the Strip Roads
2.4. Data Analysis
- Overall Accuracy = (TP + TN)/(TP + TN + FP + FN). Represents the overall proportion of correctly classified pixels (both strip roads and non-strip roads). It gives a general sense of model performance but can be misleading when classes are imbalanced.
- Precision = TP/(TP + FP). Indicates how many of the pixels predicted as strip roads were actually strip roads. High precision means fewer false positives (non-strip roads areas wrongly classified as strip roads).
- Recall (Sensitivity, TPR) = TP/(TP + FN). Measures the proportion of actual strip roads pixels that were correctly identified. High recall means fewer false negatives (missed strip roads pixels).
- Cohen’s Kappa = (Observed Accuracy − Expected Accuracy)/(1 − Expected Accuracy). A statistic that adjusts accuracy for agreement that occurs by chance. Values range from −1 (complete disagreement) to 1 (perfect agreement). A value of 0 implies random classification.
- Intersection over Union (IoU) = TP/(TP + FP + FN). Indicates the overlap between predicted and actual strip roads areas. A higher IoU means a greater spatial match between method output and control.
- Dice Similarity Coefficient (DSC) = (2 × TP)/(2 × TP + FP + FN). Another measure of spatial overlap. Dice is more sensitive to small overlaps and often used in image segmentation tasks.
- False Positive Rate (FPR) = FP/(FP + TN). Represents the proportion of non-strip roads areas incorrectly predicted as strip roads. Lower FPR values indicate better performance.
- Specificity = TN/(TN + FP). Reflects the ability of a method to correctly identify non-strip roads areas. High specificity complements recall by ensuring that the background (non-strip roads) areas are not falsely marked.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grünberg, J.; Ghaffariyan, M.R.; Jourgholami, M.; Labelle, E.R.; Kaakkurivaara, N.; Robert, R.C.G.; Kühmaier, M. Criteria for Assessing the Sustainability of Logging Operations—A Systematic Review. Curr. For. Rep. 2023, 9, 350–369. [Google Scholar] [CrossRef]
- Grünberg, J.; Holzleitner, F.; Behringer, M.; Gollob, C.; Kanzian, C.; Katzensteiner, K.; Kühmaier, M. Impacts of a Fully Mechanized Timber Harvesting System on Soil Physical Properties after a Pronounced Dry Period. Soil. Tillage Res. 2025, 251, 106551. [Google Scholar] [CrossRef]
- Behringer, M.; Grünberg, J.; Katzensteiner, K.; Kitzler, B.; Kohl, B.; Lechner, V.; Malli, A.; Markart, G.; Meißl, G.; Scheidl, C. Comparison of the Effect of Winch-Assisted Timber Harvesting Systems and Cable Yarding on Soil Water Retention and Surface Runoff in a Temperate Deciduous Forest. J. Hydrol. 2025, 658, 133183. [Google Scholar] [CrossRef]
- Ring, E.; Andersson, M.; Hansson, L.; Jansson, G.; Högbom, L. Logging Mats and Logging Residue as Ground Protection during Forwarder Traffic along till Hillslopes. Croat. J. For. Eng. 2021, 42, 445–462. [Google Scholar] [CrossRef]
- Hemmat, A.; Adamchuk, V.I. Sensor Systems for Measuring Soil Compaction: Review and Analysis. Comput. Electron. Agric. 2008, 63, 89–103. [Google Scholar] [CrossRef]
- Frey, B.; Kremer, J.; Rüdt, A.; Sciacca, S.; Matthies, D.; Lüscher, P. Compaction of Forest Soils with Heavy Logging Machinery Affects Soil Bacterial Community Structure. Eur. J. Soil. Biol. 2009, 45, 312–320. [Google Scholar] [CrossRef]
- Mohtashami, S.; Hansson, L.; Eliasson, L. Estimating Soil Strength Using GIS-Based Maps—A Case Study in Sweden. Eur. J. For. Eng. 2023, 9, 70–79. [Google Scholar] [CrossRef]
- Mohtashami, S.; Eliasson, L.; Jansson, G.; Sonesson, J. Influence of Soil Type, Cartographic Depth-to-Water, Road Reinforcement and Traffic Intensity on Rut Formation in Logging Operations: A Survey Study in Sweden. Silva Fenn. 2017, 51, 1–14. [Google Scholar] [CrossRef]
- Nazari, M.; Arthur, E.; Lamandé, M.; Keller, T.; Bilyera, N.; Bickel, S. A Meta-Analysis of Soil Susceptibility to Machinery-Induced Compaction in Forest Ecosystems Across Global Climatic Zones. Curr. For. Rep. 2023, 9, 370–381. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Murphy, P.N.C.; Castonguay, M.; Ogilvie, J.; Arp, P.A. A Modular Terrain Model for Daily Variations in Machine-Specific Forest Soil Trafficability. Can. J. Soil. Sci. 2009, 89, 93–109. [Google Scholar] [CrossRef]
- Pastén, H.R.; Contreras, S.M.; Thiers, E.Ó. Impacts Caused by the Traffic of Ground-Based Forest Harvesting Machinery: State of the Art and Future Guidelines for Chile. Geoderma Reg. 2025, 40, e00939. [Google Scholar] [CrossRef]
- Hansson, L.; Šimůnek, J.; Ring, E.; Bishop, K.; Gärdenäs, A.I. Soil Compaction Effects on Root-zone Hydrology and Vegetation in Boreal Forest Clearcuts. Soil. Sci. Soc. Am. J. 2019, 83, S105–S115. [Google Scholar] [CrossRef]
- Latterini, F.; Horodecki, P.; Dyderski, M.K.; Scarfone, A.; Venanzi, R.; Picchio, R.; Proto, A.R.; Jagodziński, A.M. Mediterranean Beech Forests: Thinning and Ground-Based Skidding Are Found to Alter Microarthropod Biodiversity with No Effect on Litter Decomposition Rate. For. Ecol. Manag. 2024, 569, 122160. [Google Scholar] [CrossRef]
- Klein-Raufhake, T.; Hölzel, N.; Schaper, J.J.; Hortmann, A.; Elmer, M.; Fornfeist, M.; Linnemann, B.; Meyer, M.; Rentemeister, K.; Santora, L.; et al. Severity of Topsoil Compaction Controls the Impact of Skid Trails on Soil Ecological Processes. J. Appl. Ecol. 2024, 61, 1817–1828. [Google Scholar] [CrossRef]
- Schäffer, J.; von Wilpert, K.; Kublin, E. Analysis of Fine Rooting below Skid Trails Using Linear and Generalized Additive Models. Can. J. For. Res. 2009, 39, 2047–2058. [Google Scholar] [CrossRef]
- Labelle, E.R.; Kammermeier, M. Above- and Belowground Growth Response of Picea Abies Seedlings Exposed to Varying Levels of Soil Relative Bulk Density. Eur. J. For. Res. 2019, 138, 705–722. [Google Scholar] [CrossRef]
- Enez, K.; Aricak, B.; Sariyildiz, T. Effects of Forest Harvesting Activities on Litter Decomposition Rates of Scots Pine, Trojan Fir and Sweet Chestnut. Sumar. List. 2015, 139, 361–367. [Google Scholar]
- Werder, M.; Bont, L.G.; Schweier, J.; Thees, O. A Comprehensive Analysis of Time Investment in Skid Trail Planning for Forest Access. PLoS ONE 2025, 20, e0317963. [Google Scholar] [CrossRef]
- Latterini, F.; Camarretta, N.; Janiszewska-Latterini, D.; Pasquini, D.; Moss, J.; Watt, M.S. Soil Trafficability Maps: A Geospatial Tool for Reducing Soil Damage and Supporting Sustainable Forest Management in New Zealand. Land Degrad. Dev. 2025, 36, 5602–5612. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.B.S.; Lima, A.J.N.; Higuchi, N. Surface Soil Recovery Occurs within 25 Years for Skid Trails in the Brazilian Amazon. Catena 2024, 234, 107568. [Google Scholar] [CrossRef]
- Contreras, M.A.; Parrott, D.L.; Chung, W. Designing Skid-Trail Networks to Reduce Skidding Cost and Soil Disturbance for Ground-Based Timber Harvesting Operations. For. Sci. 2016, 62, 48–58. [Google Scholar] [CrossRef]
- Stempski, W.; Jabłoński, K.; Jakubowski, J. Effects of Strip Roads on Volume Increment of Edge Trees. Drewno 2021, 64, 5–15. [Google Scholar] [CrossRef]
- Contreras, M.; Parra, C.; Cárdenas, C.; Hermosilla, C.; Pastén, R.; Aedo, D. Skid Trail Network Visualizer: A Computational Tool to Generate Skid Trails Created by Ground-Based Timber Harvesting Machines and Facilitate Soil Disturbance Monitoring. Comput. Electron. Agric. 2024, 225, 109282. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Bourdon, J.-F.; Morley, I.D.; Coops, N.C.; Achim, A. Correction, Update, and Enhancement of Vectorial Forestry Road Maps Using ALS Data, a Pathfinder, and Seven Metrics. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103020. [Google Scholar] [CrossRef]
- Waga, K.; Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Malinen, J.; Tokola, T. Forest Road Status Assessment Using Airborne Laser Scanning. For. Sci. 2020, 66, 501–508. [Google Scholar] [CrossRef]
- Sterenczak, K.; Moskalik, T. Use of LIDAR-Based Digital Terrain Model and Single Tree Segmentation Data for Optimal Forest Skid Trail Network. IForest 2014, 8, 661–667. [Google Scholar] [CrossRef]
- Latterini, F.; Camarretta, N.; Watt, M.S. Remote Sensing for Planning Harvesting Operations and Monitoring Their Effects on the Forest Ecosystem: State of the Art and Future Perspectives. For. Ecol. Manag. 2025, 597, 123175. [Google Scholar] [CrossRef]
- Becker, R.M.; Keefe, R.F.; Anderson, N.M. Use of Real-Time GNSS-RF Data to Characterize the Swing Movements of Forestry Equipment. Forests 2017, 8, 44. [Google Scholar] [CrossRef]
- Salmivaara, A.; Holmström, E.; Kulju, S.; Ala-Ilomäki, J.; Virjonen, P.; Nevalainen, P.; Heikkonen, J.; Launiainen, S. High-Resolution Harvester Data for Estimating Rolling Resistance and Forest Trafficability. Eur. J. For. Res. 2024, 143, 1641–1656. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Performance, Capability and Costs of Small-Scale Cable Yarding Technology. Small-Scale For. 2010, 9, 123–135. [Google Scholar] [CrossRef]
- Manzone, M.; Spinelli, R. Efficiency of Small-Scale Firewood Processing Operations in Southern Europe. Fuel Process. Technol. 2014, 122, 58–63. [Google Scholar] [CrossRef]
- Del Giudice, A.; Scarfone, A.; Santangelo, E.; Latterini, F.; Stefanoni, W. Modelling the Productivity and Economic Feasibility for Bioenergy Production in a Mediterranean Oak Coppice. Drewno Pr. Nauk. Doniesienia Komun. Wood Res. Pap. Rep. Announc. 2024, 67, 00026. [Google Scholar] [CrossRef]
- Macrì, G.; De Rossi, A.; Papandrea, S.; Micalizzi, F.; Russo, D.; Settineri, G. Evaluation of Soil Compaction Caused by Passages of Farm Tractor in a Forest in Southern Italy. Agron. Res. 2017, 15, 478–489. [Google Scholar]
- Wedeux, B.; Dalponte, M.; Schlund, M.; Hagen, S.; Cochrane, M.; Graham, L.; Usup, A.; Thomas, A.; Coomes, D. Dynamics of a Human-Modified Tropical Peat Swamp Forest Revealed by Repeat Lidar Surveys. Glob. Change Biol. 2020, 26, 3947–3964. [Google Scholar] [CrossRef]
- Craven, M.; Wing, M.G. Applying Airborne LiDAR for Forested Road Geomatics. Scand. J. For. Res. 2014, 29, 174–182. [Google Scholar] [CrossRef]
- Latterini, F.; Dyderski, M.K.; Picchio, R.; Venanzi, R.; Spinelli, R.; Magagnotti, N.; Schweier, J.; Kushwaha, S.K.P.; Camarretta, N.; Watt, M.S. Mapping Skid Trails and Evaluating Soil Disturbance From UAV-Based LiDAR Surveys in Mediterranean Forests. Land Degrad. Dev. 2025; early view. [Google Scholar] [CrossRef]
- Siafali, E.; Tsioras, P.A. An Innovative Approach to Surface Deformation Estimation in Forest Road and Trail Networks Using Unmanned Aerial Vehicle Real-Time Kinematic-Derived Data for Monitoring and Maintenance. Forests 2024, 15, 212. [Google Scholar] [CrossRef]
- Mohieddinne, H.; Brasseur, B.; Gallet-Moron, E.; Lenoir, J.; Spicher, F.; Kobaissi, A.; Horen, H. Assessment of Soil Compaction and Rutting in Managed Forests through an Airborne LiDAR Technique. Land Degrad. Dev. 2022, 34, 1558–1569. [Google Scholar] [CrossRef]
- Görgens, E.B.; Mund, J.P.; Cremer, T.; de Conto, T.; Krause, S.; Valbuena, R.; Rodriguez, L.C.E. Automated Operational Logging Plan Considering Multi-Criteria Optimization. Comput. Electron. Agric. 2020, 170, 105253. [Google Scholar] [CrossRef]
- Morley, I.D.; Coops, N.C.; Roussel, J.-R.; Achim, A.; Dech, J.; Meecham, D.; McCartney, G.; Reid, D.E.B.; McPherson, S.; Quist, L.; et al. Updating Forest Road Networks Using Single Photon LiDAR in Northern Forest Environments. For. Int. J. For. Res. 2024, 97, 38–47. [Google Scholar] [CrossRef]
- Pecho, P.; Škvareková, I.; Ažaltovič, V.; Bugaj, M. UAV Usage in the Process of Creating 3D Maps by RGB Spectrum. Transp. Res. Procedia 2019, 43, 328–333. [Google Scholar] [CrossRef]
- Di Marzio, N. An Overview of Forest Cover and Management in Italy. Nova Meh. Sumar. 2020, 41, 63–71. [Google Scholar] [CrossRef]
- Cantiani, P.; Marchi, M. A Spatial Dataset of Forest Mensuration Collected in Black Pine Plantations in Central Italy. Ann. For. Sci. 2017, 74, 50. [Google Scholar] [CrossRef]
- Magagnotti, N.; Pari, L.; Spinelli, R. Re-Engineering Firewood Extraction in Traditional Mediterranean Coppice Stands. Ecol. Eng. 2012, 38, 45–50. [Google Scholar] [CrossRef]
- Bergström, D.; Fernandez-Lacruz, R.; de la Fuente, T.; Höök, C.; Krajnc, N.; Malinen, J.; Nuutinen, Y.; Triplat, M.; Nordfjell, T. Effects of Boom-Corridor Thinning on Harvester Productivity and Residual Stand Structure. Int. J. For. Eng. 2022, 33, 226–242. [Google Scholar] [CrossRef]
- de la Fuente, T.; Bergström, D.; Fernandez-Lacruz, R.; Hujala, T.; Krajnc, N.; Laina, R.; Nordfjell, T.; Triplat, M.; Tolosana, E. Environmental Impacts of Boom-Corridor and Selectively Thinned Small-Diameter-Tree Forests. Sustainability 2022, 14, 6075. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. Soil. 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Affek, A.N.; Zachwatowicz, M.; Sosnowska, A.; Gerlée, A.; Kiszka, K. Impacts of Modern Mechanised Skidding on the Natural and Cultural Heritage of the Polish Carpathian Mountains. For. Ecol. Manag. 2017, 405, 391–403. [Google Scholar] [CrossRef]
- Hesse, R. LiDAR-derived Local Relief Models—A New Tool for Archaeological Prospection. Archaeol. Prospect. 2010, 17, 67–72. [Google Scholar] [CrossRef]
- D’oliveira, M.V.N.; Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.-E. Estimating Forest Biomass and Identifying Low-Intensity Logging Areas Using Airborne Scanning Lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens. Environ. 2012, 124, 479–491. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System, version 3.40; Open Source Geospatial Foundation: Beaverton, OR, USA, 2024. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.4.3; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Hijmans, R.J.; Bivand, R.; Forner, K.; Ooms, J.; Pebesma, E.; Sumner, M.D. Package ‘Terra.’; R Foundation for Statistical Computing: Vienna, Austria, 2022; p. 384. [Google Scholar]
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘Ggplot2.’: Create Elegant Data Visualisations Using the Grammar of Graphics, version 2; R Foundation for Statistical Computing: Vienna, Austria, 2016; pp. 1–189. [Google Scholar]
- Wickham, H.; Wickham, M.H. Package ‘Reshape’. 2022. Available online: https://cran.rproject.org/web/packages/reshape2/reshape2.pdf (accessed on 19 September 2020).
- Labelle, E.R.; Hansson, L.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: A Comprehensive Review. Curr. For. Rep. 2022, 8, 20–37. [Google Scholar] [CrossRef]
- Haas, J.; Ellhöft, K.H.; Schack-Kirchner, H.; Lang, F. Using Photogrammetry to Assess Rutting Caused by a Forwarder—A Comparison of Different Tires and Bogie Tracks. Soil. Tillage Res. 2016, 163, 14–20. [Google Scholar] [CrossRef]
- Latterini, F.; Horodecki, P.; Dyderski, M.K.; Kamczyc, J.; Witkowski, R.; Venanzi, R.; Jagodziński, A.M. Insufficient Logging Intervals Impede Upper Soil Recovery in Temperate Beech Forests: Insights from Two Case-Studies in Poland. Ecol. Evol. 2025, 15, e72302. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.; Griscom, B.; Walker, W.; Gonçalves, F.; Cormier, T. Mapping Selective Logging Impacts in Borneo with GPS and Airborne Lidar. For. Ecol. Manag. 2016, 365, 184–196. [Google Scholar] [CrossRef]
- Melendy, L.; Hagen, S.C.; Sullivan, F.B.; Pearson, T.R.H.; Walker, S.M.; Ellis, P.; Kustiyo; Sambodo, A.K.; Roswintiarti, O.; Hanson, M.A.; et al. Automated Method for Measuring the Extent of Selective Logging Damage with Airborne LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 228–240. [Google Scholar] [CrossRef]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical Recovery of Forest Soil after Compaction by Heavy Machines, Revealed by Penetration Resistance over Multiple Decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Abdi, O.; Uusitalo, J.; Kivinen, V.P. Logging Trail Segmentation via a Novel U-Net Convolutional Neural Network and High-Density Laser Scanning Data. Remote Sens. 2022, 14, 349. [Google Scholar] [CrossRef]
- Hamedianfar, A.; Mohamedou, C.; Kangas, A.; Vauhkonen, J. Deep Learning for Forest Inventory and Planning: A Critical Review on the Remote Sensing Approaches so Far and Prospects for Further Applications. For. Int. J. For. Res. 2022, 95, 451–465. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Gao, R.; Jin, Z.; Wang, X. Recent Advances in the Application of Deep Learning Methods to Forestry. Wood Sci. Technol. 2021, 55, 1171–1202. [Google Scholar] [CrossRef]
- Holzinger, A.; Schweier, J.; Gollob, C.; Nothdurft, A.; Hasenauer, H.; Kirisits, T.; Häggström, C.; Visser, R.; Cavalli, R.; Spinelli, R.; et al. From Industry 5.0 to Forestry 5.0: Bridging the Gap with Human-Centered Artificial Intelligence. Curr. For. Rep. 2024, 10, 442–455. [Google Scholar] [CrossRef] [PubMed]



| Method | Strip Road Network Length (m) | Impacted Surface (%) |
|---|---|---|
| Control | 2981 | 14.43 |
| RGB | 1552 | 7.51 |
| RDM | 2621 | 12.68 |
| LRM | 1636 | 7.91 |
| Hill | 1056 | 5.11 |
| Metric | Method | Mean | CI_Low | CI_High | Tukey Group |
|---|---|---|---|---|---|
| Accuracy | RDM | 0.746 | 0.744 | 0.747 | a |
| RGB | 0.636 | 0.634 | 0.636 | b | |
| LRM | 0.635 | 0.633 | 0.636 | c | |
| Hill | 0.609 | 0.608 | 0.609 | d | |
| Kappa | RDM | 0.491 | 0.488 | 0.493 | a |
| RGB | 0.271 | 0.267 | 0.273 | b | |
| LRM | 0.270 | 0.266 | 0.271 | c | |
| Hill | 0.217 | 0.215 | 0.218 | d | |
| Precision | RDM | 0.996 | 0.989 | 1.000 | b |
| RGB | 0.994 | 0.981 | 1.000 | c | |
| LRM | 0.994 | 0.981 | 1.000 | c | |
| Hill | 0.997 | 0.988 | 1.000 | a | |
| Recall | RDM | 0.493 | 0.493 | 0.493 | a |
| RGB | 0.273 | 0.273 | 0.273 | b | |
| LRM | 0.271 | 0.271 | 0.271 | c | |
| Hill | 0.218 | 0.218 | 0.218 | d | |
| IoU | RDM | 0.492 | 0.491 | 0.493 | a |
| RGB | 0.272 | 0.271 | 0.273 | b | |
| LRM | 0.271 | 0.270 | 0.271 | c | |
| Hill | 0.218 | 0.218 | 0.218 | d | |
| DSC | RDM | 0.660 | 0.658 | 0.661 | b |
| RGB | 0.428 | 0.427 | 0.428 | c | |
| LRM | 0.426 | 0.425 | 0.427 | a | |
| Hill | 0.358 | 0.357 | 0.358 | d | |
| TPR | RDM | 0.493 | 0.493 | 0.493 | a |
| RGB | 0.273 | 0.273 | 0.273 | b | |
| LRM | 0.271 | 0.271 | 0.271 | c | |
| Hill | 0.218 | 0.218 | 0.218 | d | |
| FPR | RDM | 0.002 | 0.000 | 0.005 | a |
| RGB | 0.002 | 0.000 | 0.005 | a | |
| LRM | 0.002 | 0.000 | 0.005 | a | |
| Hill | 0.001 | 0.000 | 0.003 | b | |
| Specificity | RDM | 0.998 | 0.995 | 1.000 | c |
| RGB | 0.998 | 0.995 | 1.000 | a | |
| LRM | 0.998 | 0.995 | 1.000 | a | |
| Hill | 0.999 | 0.997 | 1.000 | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venanzi, R.; Picchio, R.; Bonaudo, A.; Assettati, L.; Cozzolino, L.; Pauselli, E.; Cecchini, M.; Lo Monaco, A.; Latterini, F. Evaluating the Reliability of Remote Sensing Techniques for Detecting the Strip Road Network in Boom-Corridor Systems. Forests 2025, 16, 1768. https://doi.org/10.3390/f16121768
Venanzi R, Picchio R, Bonaudo A, Assettati L, Cozzolino L, Pauselli E, Cecchini M, Lo Monaco A, Latterini F. Evaluating the Reliability of Remote Sensing Techniques for Detecting the Strip Road Network in Boom-Corridor Systems. Forests. 2025; 16(12):1768. https://doi.org/10.3390/f16121768
Chicago/Turabian StyleVenanzi, Rachele, Rodolfo Picchio, Aurora Bonaudo, Leonardo Assettati, Luca Cozzolino, Eugenia Pauselli, Massimo Cecchini, Angela Lo Monaco, and Francesco Latterini. 2025. "Evaluating the Reliability of Remote Sensing Techniques for Detecting the Strip Road Network in Boom-Corridor Systems" Forests 16, no. 12: 1768. https://doi.org/10.3390/f16121768
APA StyleVenanzi, R., Picchio, R., Bonaudo, A., Assettati, L., Cozzolino, L., Pauselli, E., Cecchini, M., Lo Monaco, A., & Latterini, F. (2025). Evaluating the Reliability of Remote Sensing Techniques for Detecting the Strip Road Network in Boom-Corridor Systems. Forests, 16(12), 1768. https://doi.org/10.3390/f16121768

