Analysis of Differences in Wood Properties Among Four Poplar Species Under Different Site Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region and Sample Tree Selection
2.2. Experimental Design
2.2.1. Soil and Meteorological Factor Analysis
2.2.2. Basic Wood Density, Ring Width, and Vessel Characteristics
2.3. Statistical Analysis
3. Results
3.1. Soil and Meteorological Factors
3.2. Wood Properties
3.2.1. Basic Wood Density
3.2.2. Anatomical Properties
3.3. Correlation Between Soil and Meteorological Factors and Wood Properties
3.3.1. Correlation Between Soil and Meteorological Factors and Basic Wood Density
3.3.2. Correlation Between Soil and Meteorological Factors and Anatomical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Bogachev, M.I.; Gafurov, A.M.; Iskandirov, P.Y.; Kaplun, D.I.; Kayumov, A.R.; Lyanova, A.I.; Pyko, N.S.; Pyko, S.A.; Safonova, A.N.; Sinitca, A.M.; et al. Reversal in the drought stress response of the Scots pine forest ecosystem: Local soil water regime as a key to improving climate change resilience. Heliyon 2023, 9, 17. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Baker, R.; Gonterman, K.; Granath, A.; Lopez-Binder, J.; Taylor, M.D.; Rojas, L.S.; Rotche, L.; Graves, A.; Goodwin, M.J.; et al. Changing climate and disturbance effects on southwestern us forests. For. Ecol. Manag. 2025, 575, 122388. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Zhang, X.; Druce, D.; Kittel, C.M.; Tøttrup, C.; Bauer-Gottwein, P. Impacts of water resources management on land water storage in the North China Plain: Insights from multi-mission earth observations. J. Hydrol. 2021, 603, 126933. [Google Scholar] [CrossRef]
- Lodeyro, A.F.; Carrillo, N. Salt stress in higher plants: Mechanisms of toxicity and defensive responses. In Stress Response in Plants, Mechanisms of Toxicity and Tolerance; Springer: Cham, Switzerland, 2015; pp. 1–33. [Google Scholar]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Ann. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Guo, Y.W.; Liang, J.; Wu, H.B.; Zhou, C.J.; Sun, L.L.; Wang, Z.B.; Li, X.R.; Chen, X.F.; Li, M.L. Ecosystem carbon storage distribution and influencing factors in different-aged poplar plantations in the yellow river floodplain in Western Shandong, China. Bull. Bot. Res. 2025, 45, 241–253. [Google Scholar]
- Wu, Y.H.; Pang, Z.; Shi, H.L. Study on the seed flora of Qinghai Lake Basin, China. Bull. Bot. Res. 2024, 44, 330–340. [Google Scholar]
- Li, Z.; Yu, P.; Wang, Y.; Webb, A.; He, C.; Wang, Y.; Yang, L. A model coupling the effects of soil moisture and potential evaporation on the tree transpiration of a semi-arid larch plantation. Ecohydrology 2016, 10, e1764. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Bian, L.; Zhou, L.; Wang, S.; Ge, Y. Poplar seedling varieties and drought stress classification based on multi-source, time-series data and deep learning. Ind. Crops Prod. 2024, 218, 118905. [Google Scholar] [CrossRef]
- Xi, B.Y.; Clothier, B.; Coleman, M.; Duan, J.; Hu, W.; Li, D.D.; Di, N.; Liu, Y.; Fu, J.Y.; Li, J.S.; et al. Irrigation management in poplar (Populus spp.) plantations: A review. For. Ecol. Manag. 2021, 494, 119330. [Google Scholar] [CrossRef]
- Fichot, R.; Brignolas, F.; Cochard, H.; Ceulemans, R. Vulnerability to drought-induced cavitation in poplars: Synthesis and future opportunities. Plant Cell Environ. 2015, 38, 1233–1251. [Google Scholar] [CrossRef] [PubMed]
- Monclus, R.; Dreyer, E.; Villar, M.; Delmotte, F.M.; Delay, D.; Petit, J.M.; Barbaroux, C.; Thiec, D.L.; Brechet, C.; Brignolas, F. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytol. 2006, 169, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Christersson, L. Wood production potential in poplar plantations in Sweden. Biomass Bioenergy 2010, 34, 1289–1299. [Google Scholar] [CrossRef]
- Hébert, F.; Delisle, I.; Tremblay, M.; Tremblay, P.; Boucher, J.F.; Boucher, Y.; Lord, D. Natural seeding as an alternative to planting in black spruce-lichen woodlands. For. Ecol. Manag. 2024, 552, 121584. [Google Scholar] [CrossRef]
- Liang, J. Degradation status and stand restoration of poplar plantation. For. Sci. Technol. 2022, 54, 68–70. [Google Scholar] [CrossRef]
- Heilman, P.E.; Hinckley, T.M.; Roberts, D.A.; Ceulemans, R. Production physiology. In Biology of Populus and its Implications for Management and Conservation; Part II; NRC Research Press, National Research Council of Canada: Ottawa, ON, CA, 1996; Chapter 18; pp. 459–489. [Google Scholar]
- Liu, D.K.; Liu, M.R.; Li, Z.X.; Wang, G.Y.; Li, Y.; Zheng, M.; Liu, G.F.; Zhao, X.Y. Variation analysis of growth traits of transgenic Populus simonii × P. nigra clones carrying TaLEA gene. Bull. Bot. Res. 2015, 35, 540–546. [Google Scholar] [CrossRef]
- Yin, S.P.; Xiao, Z.H.; Zhao, G.H.; Zhao, X.; Sun, X.Y.; Zhang, Y.; Wang, F.; Li, S.C.; Zhao, X.Y.; Qu, G.Z. Variation analyses of growth and wood properties of Larix olgensis clones in China. J. For. Res. 2017, 28, 687–697. [Google Scholar] [CrossRef]
- Tarelkin, Y.; Delvaux, C.; de Cannière, C.; Beeckman, H.; de Ridder, M.; El Berkani, T. Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA J. 2016, 37, 275–294. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 2009, 149, 575–584. [Google Scholar] [CrossRef]
- Blackman, C.J.; Brodribb, T.J.; Jordan, G.J. Leaf Hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species. Plant Cell Environ. 2009, 32, 1584–1595. [Google Scholar] [CrossRef]
- Xu, J.; Cui, Y.; Wang, F.; Li, K.L.; Qu, G.Z.; Zhao, X.Z. Growth and wood character variation of Populus pseudo-cathyana × Populus deltoids plantation with different thinning intensity in Northeast China. Bull. Bot. Res. 2024, 44, 248–258. [Google Scholar]
- Fries, A.; Ericsson, T. Estimating genetic parameters for wood density of Scots pine (Pinus sylvestris L.). Silvae Genet. 2006, 55, 84–92. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, S.; Li, Z.; Wu, J.; Liu, Q.; Liu, W.; Yu, W.J.; Zhang, Y.; Shi, W.; Zhou, J. Competing endogenous RNA networks underlying anatomical and physiological characteristics of poplar wood in acclimation to low nitrogen availability. Plant Cell Physiol. 2019, 60, 2478–2495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Li, Z.; Deng, S.; Liu, Q.; Wu, J.; Chen, X.; Wang, Y.; Cheng, Y.; Yang, L.; Zhou, M. Transcriptomic dissection underlying physiological and anatomical characteristics of poplar wood in response to changes in light intensity and nitrogen availability. Environ. Exp. Bot. 2023, 206, 105186. [Google Scholar] [CrossRef]
- Masiokas, M.; Villalba, R. Climatic significance of intra-annual bands in the wood of Nothofagus pumilio in southern Patagonia. Trees 2004, 18, 696–704. [Google Scholar] [CrossRef]
- Walter, O.; Max, S.; Werner, K. Climate-tree-growth relationships of scots pine stands exposed to soil dryness. Trees 1998, 13, 19–27. [Google Scholar]
- Gindl, W.; Grabner, M.; Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 2000, 14, 409–414. [Google Scholar] [CrossRef]
- Bouriaud, O.; Bréda, N.; Moguédec, G.; Nepveu, G. Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 2004, 18, 264–276. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z. The Alkalization Parameters and Their Influential Factors of Saline-Sodic Soil in the Songnen Plain, China. J. Arid. Land Resour. Environ. 2006, 06, 183–191. [Google Scholar]
- Li, Z.J.; Zhang, H.L.; Guo, X.; Fan, R.H.; Ma, K.; Liu, J.Y.; Yang, F.J. Effects of Different Improvement Measures on Soil Structure and Element Composition, Photosynthesis and Growth of Poplar Leaves in Severe Saline-alkali Soils of Songnen Plain, China. Bull. Bot. Res. 2019, 39, 733–739. [Google Scholar]
- Li, B.; Xu, Q.Q.; Qin, Y.; Lu, X.R. Influences of freeze-thaw cycles on the migration of soil salt in typical halophytic landscapes of the Songnen Plain, China. Sci. Soil Water Conserv. 2025, 23, 59–68. [Google Scholar]
- Wang, F.S.; Sun, H.J.; Wen, B.Y.; Li, J.; Wen, Y.X.; Wang, F.J.; Zhang, H.S. A study on drought resistance and physiologic reaction of several new varieties of poplar, China. Prot. For. Sci. Technol. 2001, 1, 18–20+24. [Google Scholar] [CrossRef]
- Wang, F.S.; Zhou, L.J.; Li, J.; Wen, B.Y. Study on Breeding of DN113 Poplar, China. J. For. Eng. 2003, 3, 16–19. [Google Scholar]
- Zhang, C.X.; Meng, S.; Li, Y.M.; Su, L.; Zhao, Z. Nitrogen uptake and allocation in Populus simonii in different seasons supplied with isotopically labeled ammonium or nitrate. Trees 2016, 30, 2011–2018. [Google Scholar] [CrossRef]
- Yu, J.; Jin, X.; Sun, X.; Gao, T.; Chen, X.; She, Y.; Jiang, T.; Chen, S.; Dai, S. Hydrogen peroxide response in leaves of poplar (Populus simonii × Populus nigra) revealed from physiological and proteomic analyses. Int. J. Mol. Sci. 2017, 18, 2085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, W.X.; Ding, C.J.; Yuan, Z.S.; Dai, L.R.; Su, X.H.; Shen, Y.B.; Qu, G.Z. Comparative analysis of growth, photosynthetic physiology and root tip ion flow characteristics of five poplar varieties. Bull. Bot. Res. 2024, 44, 96–106. [Google Scholar]
- Liu, S.Q.; Bao, F.C. Current situation and development trends of research on wood properties, processing & utilization of poplar plantation in China, China. China Wood Ind. 1999, 13, 14–16. [Google Scholar]
- Kan, X.Z.; Zhang, S.D.; Nan, X.W.; Li, J. Key Technical Measures for Intensive Cultivation of Poplar in the Western Region of the Songnen Plain, China. Prot. For. Sci. Technol. 2006, 4, 122–124. [Google Scholar] [CrossRef]
- Wang, W.J.; Xu, H.N.; Wang, Y.; Yu, X.Y.; Zheng, G.Y.; Zu, Y.G. Soil amelioration of saline-alkali lands influences on the pigments and C4-photosynthesis related enzymes in leaf, bark and branch chlorenchyma of Yinzhong Poplar, China. Bull. Bot. Res. 2010, 30, 299–304. [Google Scholar]
- GB/T 1927.2-2021; Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens—Part 2: Sampling Methods and General Requirements. Standards Press of China: Beijing, China, 2021.
- Mira, E.; Cochard, H.; Evette, A.; Dulormne, M. Growth. Xylem Vulnerability to Cavitation and Leaf Cell Response to Dehydration in Tree Seedlings of the Caribbean Dry Forest. Forests 2023, 14, 697. [Google Scholar] [CrossRef]
- Beets, P.; Gilchrist, K.; Jeffreys, M. Wood density of radiata pine: Effect of nitrogen supply. Forest Ecol. Manag. 2001, 145, 173–180. [Google Scholar] [CrossRef]
- Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 1998, 391, 678–682. [Google Scholar] [CrossRef]
- Quesada, C.A.; Phillips, O.L.; Schwarz, M.; Czimczik, C.I.; Baker, T.R.; Patiño, S.; Fyllas, N.M.; Hodnett, M.G.; Herrera, R.; Almeida, S.; et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 2012, 9, 2203–2246. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Ardie, S.W.; Liu, S.; Takano, T. Expression of the AKT1-type K channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis+. Plant Cell Rep. 2010, 29, 865–874. [Google Scholar] [CrossRef]
- Véry, A.A.; Nieves-Cordones, M.; Daly, M.; Khan, I.; Fizames, C.; Sentenac, H. Molecular biology of K transport across the plant cell membrane: What do we learn from comparison between plant species. J. Plant Physiol. 2014, 171, 748–769. [Google Scholar] [CrossRef]
- Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M.T.; Winter, W.D. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. For. Ecol. Manag. 2010, 259, 2213–2222. [Google Scholar] [CrossRef]
- Michelot, A.; Simard, S.; Rathgeber, C.; Dufrêne, E.; Damesin, C. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol. 2012, 32, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Pitre, F.E.; Lafarguette, F.; Boyle, B.; Pavy, N.; Caron, S.; Dallaire, N.; Poulin, P.L.; Ouellet, M.; Morency, M.J.; Wiebe, N.; et al. High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiol. 2010, 30, 1273–1289. [Google Scholar] [CrossRef]
- Luo, L.; Li, L. Molecular understanding of wood formation in trees. For. Res. 2022, 2, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef] [PubMed]







| Poplar Clones | pH | SAK (mg/kg) | SAP (mg/kg) | ASN (mg/kg) | SOC (g/100 g) |
|---|---|---|---|---|---|
| Clone 11 | 6.2 | 274.69 | 3.09 | 157.86 | 1.96 |
| Clone 36 | 7.06 | 211.08 | 4.44 | 105.25 | 1.79 |
| Clone 5 | 6.14 | 125.44 | 3.57 | 146.53 | 1.81 |
| Clone 20 | 6.25 | 205.40 | 3.85 | 151.76 | 1.96 |
| Poplar Clones | pH | SAK (mg/kg) | SAP (mg/kg) | ASN (mg/kg) | SOC (g/100 g) |
|---|---|---|---|---|---|
| Clone 11 | 8.23 | 376.59 | 4.09 | 111.54 | 0.50 |
| Clone 36 | 8.43 | 235.49 | 4.06 | 120.72 | 2.09 |
| Clone 5 | 8.05 | 168.98 | 5.74 | 109.21 | 1.78 |
| Clone 20 | 8.48 | 237.58 | 5.35 | 122.49 | 2.14 |
| Meteorological Factors | Cuohai Forest Farm | Hongqi Forest Farm |
|---|---|---|
| MAP (mm) | 46.35 ± 7.98 | 53.36 ± 9.33 |
| T (°C) | 4.93 ± 0.3 | 4.47 ± 0.54 |
| DH (h) | 232.21 ± 12.75 | 171.07 ± 44.34 |
| WS (m/s) | 2.72 ± 0.92 | 2.82 ± 0.25 |
| RH (%) | 57.1 ± 0.56 | 69.83 ± 4.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, R.; Xu, H.; Hu, Y.; Wang, P.; Zuo, T. Analysis of Differences in Wood Properties Among Four Poplar Species Under Different Site Conditions. Forests 2025, 16, 1745. https://doi.org/10.3390/f16111745
Qin R, Xu H, Hu Y, Wang P, Zuo T. Analysis of Differences in Wood Properties Among Four Poplar Species Under Different Site Conditions. Forests. 2025; 16(11):1745. https://doi.org/10.3390/f16111745
Chicago/Turabian StyleQin, Ruixia, Huadong Xu, Yanbo Hu, Peng Wang, and Tianshu Zuo. 2025. "Analysis of Differences in Wood Properties Among Four Poplar Species Under Different Site Conditions" Forests 16, no. 11: 1745. https://doi.org/10.3390/f16111745
APA StyleQin, R., Xu, H., Hu, Y., Wang, P., & Zuo, T. (2025). Analysis of Differences in Wood Properties Among Four Poplar Species Under Different Site Conditions. Forests, 16(11), 1745. https://doi.org/10.3390/f16111745
