High Ecosystem Stability Under Drought Events in National Nature Reserves in China’s Forest Ecosystem
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Dataset
2.2.1. Land Cover and Land Use
2.2.2. Enhanced Vegetation Index (EVI) Data
2.2.3. Climatic Factors
2.2.4. Other Auxiliary Data
2.3. Methods
- (1)
- national nature reserves and their surrounding areas;
- (2)
- evergreen forests and deciduous forests.
2.3.1. Matching Method
2.3.2. Identification of Drought Events
2.3.3. Calculation of Ecosystem Stability
2.3.4. Analysis of Variance (ANOVA)
2.3.5. Correlation Analysis
2.3.6. Random Forest Regression Analysis
3. Results
3.1. Characters of Drought Events in National Nature Reserves and Their Surrounding Areas
3.2. Ecosystem Stability to Drought Events in National Nature Reserves and Their Surrounding Areas
3.3. Attribution of Ecosystem Stability to Drought Events in Nature Reserves and Surrounding Areas
4. Discussion
4.1. The Effectiveness of Establishing National Nature Reserves
4.2. Deciduous Forests Are More Resistant to Drought Events than Evergreen Forests
4.3. The Dominant Role of Climatic Factors on Forest Ecosystems’ Response to Drought Events
4.4. Uncertainties and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Slater, L. Anthropogenic climate change doubled the frequency of compound drought and heatwaves in low-income regions. Commun. Earth Environ. 2024, 5, 715. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, J.; Du, E.; Deng, X.; Sun, G.; Wang, G. Deciphering the influence of climate change and human activities on the drought propagation. J. Hydrol. Reg. Stud. 2024, 51, 101654. [Google Scholar] [CrossRef]
- Boisier, J.P.; Ciais, P.; Ducharne, A.; Guimberteau, M. Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat. Clim. Change 2015, 5, 656–660. [Google Scholar] [CrossRef]
- Fu, R.; Yin, L.; Li, W.; Arias, P.A.; Dickinson, R.E.; Huang, L.; Chakraborty, S.; Fernandes, K.; Liebmann, B.; Fisher, R.; et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA 2013, 110, 18110–18115. [Google Scholar] [CrossRef] [PubMed]
- Gebrechorkos, S.H.; Sheffield, J.; Vicente-Serrano, S.M.; Funk, C.; Miralles, D.G.; Peng, J.; Dyer, E.; Talib, J.; Beck, H.E.; Singer, M.B.; et al. Warming accelerates global drought severity. Nature 2025, 642, 628–635. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Chaney, N.; Guan, K.; Sadri, S.; Yuan, X.; Olang, L.; Amani, A.; Ali, A.; Demuth, S.; et al. A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull. Am. Meteorol. Soc. 2014, 95, 861–882. [Google Scholar] [CrossRef]
- Mahecha, M.D.; Bastos, A.; Bohn, F.J.; Eisenhauer, N.; Feilhauer, H.; Hartmann, H.; Hickler, T.; Kalesse-Los, H.; Migliavacca, M.; Otto, F.E.L.; et al. Biodiversity loss and climate extremes—Study the feedbacks. Nature 2022, 612, 30–32. [Google Scholar] [CrossRef]
- Rivero, R.M.; Kojima, M.; Gepstein, A.; Sakakibara, H.; Mittler, R.; Gepstein, S.; Blumwald, E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 2007, 104, 19631–19636. [Google Scholar] [CrossRef]
- Zhu, P.; Burney, J.; Chang, J.; Jin, Z.; Mueller, N.D.; Xin, Q.; Xu, J.; Yu, L.; Makowski, D.; Ciais, P. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 2022, 12, 1016–1023. [Google Scholar] [CrossRef]
- Bauman, D.; Fortunel, C.; Delhaye, G.; Malhi, Y.; Cernusak, L.A.; Bentley, L.P.; Rifai, S.W.; Aguirre-Gutiérrez, J.; Menor, I.M.; Phillips, O.L.; et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 2022, 608, 528–533. [Google Scholar] [CrossRef]
- Ivits, E.; Horion, S.; Erhard, M.; Fensholt, R. Assessing European ecosystem stability to drought in the vegetation growing season. Glob. Ecol. Biogeogr. 2016, 25, 1131–1143. [Google Scholar] [CrossRef]
- White, H.J.; Gaul, W.; Sadykova, D.; Leon-Sanchez, L.; Caplat, P.; Emmerson, M.C.; Yearsley, J.M. Quantifying large-scale ecosystem stability with remote sensing data. Remote. Sens. Ecol. Conserv. 2020, 6, 354–365. [Google Scholar] [CrossRef]
- Hartung, M.; Carreño-Rocabado, G.; Peña-Claros, M.; van der Sande, M.T. Tropical dry forest resilience to fire depends on fire frequency and climate. Front. For. Glob. Change 2021, 4, 755104. [Google Scholar] [CrossRef]
- Van Ruijven, J.; Berendse, F. Diversity enhances community recovery, but not resistance, after drought. J. Ecol. 2010, 98, 81–86. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Lhermitte, S.; Tits, L.; Honnay, O.; Somers, B.; Coppin, P. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 2015, 24, 539–548. [Google Scholar] [CrossRef]
- Ingrisch, J.; Bahn, M. Towards a Comparable Quantification of Resilience. Trends Ecol. Evol. 2018, 33, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Masih, I. An evaluation of the alignment of drought policy and planning guidelines with the contemporary disaster risk reduction agenda. Nat. Hazards Earth Syst. Sci. 2025, 25, 2155–2178. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, Z.; Xu, W.; Zhang, H.; Wang, Z. Ecosystem pattern variation from 2000 to 2010 in national nature reserves of China. Acta Ecol. Sin. 2017, 37, 8067–8076. (In Chinese) [Google Scholar] [CrossRef]
- Chen, W.; Gu, T.; Xiang, J.; Luo, T.; Zeng, J. Assessing the conservation effectiveness of national nature reserves in China. Appl. Geogr. 2023, 161, 103125. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Liu, X.; Chang, Y.; Wang, H.; Yang, J.; Yang, X.; Wei, Y. The multi-dimensional perspective of ecological security evaluation and drive mechanism for Baishuijiang National Nature Reserve, China. Ecol. Indic. 2021, 132, 108295. [Google Scholar] [CrossRef]
- Du, N.; Fathollahi-Fard, A.M.; Wong, K.Y. Wildlife resource conservation and utilization for achieving sustainable development in China: Main barriers and problem identification. Environ. Sci. Pollut. Res. 2023, 1–20, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Long, H.; Li, X.; Yu, F. Evaluation of changes in ecological security in China’s Qinghai Lake Basin from 2000 to 2013 and the relationship to land use and climate change. Environ. Earth Sci. 2014, 72, 341–354. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M. Assessing the impact of ecological and economic factors on land degradation vulnerability through multiway analysis. Ecol. Indic. 2009, 9, 357–363. [Google Scholar] [CrossRef]
- Wu, X.; Lin, X.; Zhang, Y.; Gao, J.; Guo, L.; Li, J. Impacts of climate change on ecosystem in Priority Areas of Biodiversity Conservation in China. Chin. Sci. Bull. 2014, 59, 4668–4680. [Google Scholar] [CrossRef]
- Li, X.; Clinton, N.; Si, Y.; Liao, J.; Liang, L.; Gong, P. Projected impacts of climate change on protected birds and nature reserves in China. Sci. Bull. 2015, 60, 1644–1653. [Google Scholar] [CrossRef]
- Ren, G.; Young, S.S.; Wang, L.; Wang, W.; Long, Y.; Wu, R.; Li, J.; Zhu, J.; Yu, D.W. Effectiveness of China’s national forest protection program and nature reserves. Conserv. Biol. 2015, 29, 1368–1377. [Google Scholar] [CrossRef]
- Wang, W.; Pechacek, P.; Zhang, M.; Xiao, N.; Zhu, J.; Li, J. Effectiveness of nature reserve system for conserving tropical forests: A statistical evaluation of Hainan Island, China. PLoS ONE 2013, 8, e57561. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Fu, J.; Wang, W.R.; Li, J. Development of China’s nature reserves over the past 60 years: An overview. Land Use Policy 2019, 80, 224–232. [Google Scholar] [CrossRef]
- Huang, K.; Xia, J. High ecosystem stability of evergreen broadleaf forests under severe droughts. Glob. Change Biol. 2019, 25, 3494–3503. [Google Scholar] [CrossRef]
- Lv, Y.; He, H.; Ren, X.; Zhang, L.; Qin, K.; Wu, X.; Niu, Z.; Feng, L.; Xu, Q.; Zhang, M. High resistance of deciduous forests and high recovery rate of evergreen forests under moderate droughts in China. Ecol. Indic. 2022, 144, 109469. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef]
- Frank, G.S.; Nakatsu, C.H.; Jenkins, M.A. Soil chemistry and microbial community functional responses to invasive shrub removal in mixed hardwood forests. Appl. Soil Ecol. 2018, 131, 75–88. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Camarero, J.J.; Azorin-Molina, C. Diverse responses of forest growth to drought time-scales in the Northern Hemisphere. Glob. Ecol. Biogeogr. 2015, 23, 1019–1030. [Google Scholar] [CrossRef]
- Wu, B.; Yuan, Q.; Yan, C.; Wang, Z.; Yu, X.; Li, A.; Ma, R.; Huang, J.; Chen, J.; Chang, C.; et al. Land cover changes of China from 2000 to 2010. Quat. Sci. 2014, 34, 723–731. (In Chinese) [Google Scholar]
- Ren, X.; He, H.; Zhang, L.; Yu, G. Global radiation, photosynthetically active radiation, and the diffuse component dataset of China, 1981–2010. Earth Syst. Sci. Data 2018, 10, 1217–1226. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, W.; Chen, J.; Li, D.; Wang, X.; Fan, W.; Li, M.; Zan, M. Mapping forest stand age in China using remotely sensed forest height and observation data. J. Geophys. Res. Biogeosci. 2014, 119, 1163–1179. [Google Scholar] [CrossRef]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C.; et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 2014, 509, 86–90. [Google Scholar] [CrossRef]
- Ma, X.; Huete, A.; Moran, S.; Ponce-Campos, G.; Eamus, D. Abrupt shifts in phenology and vegetation productivity under climate extremes. J. Geophys. Res. Biogeosci. 2015, 120, 2036–2052. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Guo, F.; Song, Z.; Sullivan, L.; Wang, H.; Liu, X.; Wang, X.; Li, Z.; Zhao, Y. Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Sci. Bull. 2015, 60, 591–597. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Ye, H.; Liu, Y.; He, H. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000–2012). China Sci. Data 2017, 2, 73–80. [Google Scholar] [CrossRef]
- Chen, R.; Ersi, K.; Yang, J.; Lu, S.; Zhao, W. Validation of five global radiation models with measured daily data in China. Energy Convers. Manag. 2004, 45, 1759–1769. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Yu, H. Analysis on the ecosystem service protection effect of national nature reserve in Qinghai–Tibetan Plateau from weight perspective. Ecol. Indic. 2022, 142, 109225. [Google Scholar] [CrossRef]
- Qiu, C.; Hu, J.; Yang, F. Analysis of conservation effectiveness of nature reserves based on NDVI in Yunnan Province. Acta Ecol. Sin. 2020, 40, 7312–7322. (In Chinese) [Google Scholar]
- Wright, S.J.; Sanchez-Azofeifa, G.A.; Portillo-Quintero, C.; Davies, D. Poverty and corruption compromise tropical forest reserves. Ecol. Appl. 2007, 17, 1259–1266. [Google Scholar] [CrossRef]
- Zhu, B.; Dong, S.; Zhu, L.; Li, B.; Sun, S. Conservation of functional wetland area and compensation for the ecological function of wetland in Honghe national nature reserve in China. Wetl. Sci. Manag. 2006, 2, 25–28. (In Chinese) [Google Scholar]
- Foley, J.A. Global Consequences of Land Use: Connecting Issues, Connecting Scales. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.H.; et al. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Begueria, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorín-Molina, C.; Pashoa, E.; Lorenzo-Lacruza, J.; Revueltoa, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2012, 110, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Zarei, A.R.; Shabani, A.; Moghimi, M.M. Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions. Pure Appl. Geophys. 2021, 178, 1387–1403. [Google Scholar] [CrossRef]
- Ivits, E.; Horion, S.; Fensholt, R.; Cherlet, M. Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Glob. Change Biol. 2014, 20, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M. Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Pimm, S.L. The complexity and stability of ecosystems. Nature 1984, 307, 321–326. [Google Scholar] [CrossRef]
- Gunderson, L.H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 2000, 31, 425–439. [Google Scholar] [CrossRef]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrio-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.C.; Gegout, J.C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef]
- Gill, D.A.; Mascia, M.B.; Ahmadia, G.N.; Glew, L.; Lester, S.E.; Barnes, M.; Craigie, I.; Darling, E.S.; Free, C.M.; Geldmann, J.; et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 2017, 543, 665–669. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Maestre, F.T.; Karunaratne, S.B.; Trivedi, P.; Reich, P.B.; Singh, B.K. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 2017, 3, e1602008. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Qi, W.; Wu, X.; Bai, W.; Li, L.; Ding, M.; Liu, L.; Wang, Z.; Zheng, D. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. J. Geogr. Sci. 2016, 26, 27–44. [Google Scholar] [CrossRef]
- De Almeida-Rocha, J.M.; Peres, C.A. Nominally protected buffer zones around tropical protected areas are as highly degraded as the wider unprotected countryside. Biol. Conserv. 2021, 256, 109068. [Google Scholar] [CrossRef]
- Fan, D.; Wei, W. Impacts of nature reserves on water–carbon relations and drought recovery time of ecosystems in the Yellow River Basin of China. Ecol. Front. 2025, 45, 902–909. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Zhang, Z.; Hua, T.; Ferreira, C.S.S. The role of nature reserves in conservation effectiveness of ecosystem services in China. J. Environ. Manag. 2023, 342, 118228. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, X.; Pimm, S.L.; Hull, V.; Zhang, J.; Zhang, L.; Xiao, Y.; Zheng, H.; Ouyang, Z. The effectiveness of the zoning of China’s protected areas. Biol. Conserv. 2016, 204, 231–236. [Google Scholar] [CrossRef]
- Ewers, R.M.; Rodrigues, A.S.L. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 2008, 23, 113–116. [Google Scholar] [CrossRef]
- Zuo, D.; Luo, P.; Yang, H.; Mu, C.; Li, Y.; Mo, L.; Li, T.; Luo, C.; Li, H.; Wu, S. Assessing the space neighborhood effects and the protection effectiveness of a protected area-a case study from Zoige Wetland National Nature Reserve. Chin. J. Appl. Environ. Biol. 2019, 25, 0854–0861. (In Chinese) [Google Scholar]
- Shao, D.; Chen, S.; Tan, X.; Gu, W. Drought characteristics over China during 1980–2015. Int. J. Clim. 2018, 38, 3532–3545. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Shi, J.; Xiao, Y.; Liao, L.; Zhou, Z.; Xu, J.; Li, Y.; Tian, Y.; Niu, Y. Impact of Extreme Drought on Waterbird Abundance: A Case Study Based on the Core Nature Reserve and Surrounding Wetlands. Ecol. Evol. 2025, 15, e71258. [Google Scholar] [CrossRef]
- Zhang, L.; Pacifici, M.; Li, B.V.; Gibson, L. Drought vulnerability among China’s ungulates and mitigation offered by protected areas. Conserv. Sci. Pract. 2020, 2, e177. [Google Scholar] [CrossRef]
- Fan, D.; Jie, S.; Liu, C.; Zhang, X.; Xu, X.; Zhang, S.; Xie, Z. The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiol. 2011, 31, 865–877. [Google Scholar] [CrossRef]
- Markesteijn, L.; Poorter, L.; Bongers, F.; Paz, H.; Sack, L. Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol. 2011, 191, 480–495. [Google Scholar] [CrossRef]
- De Souza, B.C.; Carvalho, E.C.D.; Oliveira, R.S.; de Araujo, F.S.; de Lima, A.L.A.; Rodal, M.J.N. Drought response strategies of deciduous and evergreen woody species in a seasonally dry neotropical forest. Oecologia 2020, 194, 221–236. [Google Scholar] [CrossRef]
- Wolfe, B.T.; Sperry, J.S.; Kursar, T.A. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. New Phytol. 2016, 212, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Cao, K. Inter-species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south-western China. Ecol. Res. 2019, 24, 65–73. [Google Scholar] [CrossRef]
- Liu, J.; Fu, P.; Wang, Y.; Cao, K. Different Drought-adaptation Strategies as Characterized by Hydraulic and Water-relations Traits of Evergreen and Deciduous Figs in a Tropical Karst Forest. Plant Sci. J. 2012, 30, 484–493. (In Chinese) [Google Scholar] [CrossRef]
- Yin, S.; Du, H.; Mao, F.; Li, X.; Zhou, G.; Xu, C.; Sun, J. Spatiotemporal patterns of net primary productivity of subtropical forests in China and its response to drought. Sci. Total Environ. 2024, 913, 169439. [Google Scholar] [CrossRef]
- Müller, L.M.; Bahn, M. Drought legacies and ecosystem responses to subsequent drought. Glob. Change Biol. 2022, 28, 5086–5103. [Google Scholar] [CrossRef] [PubMed]
- Tschumi, E.; Lienert, S.; van der Wiel, K.; Joos, F.; Zscheischler, J. The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition. Biogeosciences 2022, 19, 1979–1993. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Keenan, T.F.; Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Change Biol. 2018, 24, 3546–3559. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, J. Mixed evergreen and deciduous forests boost local climate resilience, nutrient dynamics, and photosynthetic performance assessed by remote sensing. For. Ecol. Manag. 2025, 586, 122677. [Google Scholar] [CrossRef]
- Pardos, M.; Del Río, M.; Pretzsch, H.; Jactel, H.; Bielak, K.; Bravo, F.; Brazaitis, G.; Defossez, E.; Engel, M.; Godvod, K.; et al. The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. For. Ecol. Manag. 2021, 481, 118687. [Google Scholar] [CrossRef]
- Ren, L.; Huo, J.; Xiang, X.; Pan, Y.; Li, Y.; Wang, Y.; Meng, D.; Yu, C.; Chen, Y.; Xu, Z.; et al. Environmental conditions are the dominant factor influencing stability of terrestrial ecosystems on the Tibetan plateau. Commun. Earth Environ. 2023, 4, 196. [Google Scholar] [CrossRef]
- Mcdowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2010, 178, 719–739. [Google Scholar] [CrossRef]
- Tang, H.; Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 2017, 114, 2640–2644. [Google Scholar] [CrossRef]
- Campos, G.P.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef]
- Bonal, D.; Grossiord, C.; Granier, A.; Gessler, A. Tree diversity does not always improve resistance of forest ecosystems to drought. In Reunion Annuelle du Labex ARBRE; Séminaire IRSTEA: Nogent sur Vernisson, France, 2014; 15p. [Google Scholar]
- Humphrey, V.; Berg, A.; Ciais, P.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.L.; Frankenberg, C. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 2021, 592, 65–69. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Liang, Z. Staged strategy of plants in response to drought stress. Chin. J. Appl. Ecol. 2012, 23, 2907–2915. (In Chinese) [Google Scholar]
- Zeng, Y.; Hao, D.; Park, T.; Zhu, P.; Huete, A.; Myneni, R.; Knyazikhin, Y.; Qi, J.; Nemani, R.R.; Li, F.; et al. Structural complexity biases vegetation greenness measures. Nat. Ecol. Evol. 2023, 7, 1790–1798. [Google Scholar] [CrossRef] [PubMed]






| Data | Period of Time | Temporal Resolution | Spatial Resolution | Data Source |
|---|---|---|---|---|
| Land cover and land use | 2015 | / | 1 km | Wu et al. (2014) [35] |
| Enhanced Vegetation Index (EVI) | 2000–2018 | 16-day | 1 km | NASA Land Processes Distributed Active Archive Center |
| Climatic factors—temperature | 2000–2018 | 8-day | 1 km | National Ecosystem Science Data Center |
| Climatic factors—precipitation | 2000–2018 | 8-day | 1 km | National Ecosystem Science Data Center |
| Climatic factors—global radiation | 2000–2018 | 8-day | 1 km | Ren et al. (2018) [36] |
| Stand age | 2005 | / | 1 km | Zhang et al. (2014) [37] |
| Tree density | / | / | 1 km | Crowther et al. (2015) [38] |
| Forest Type | Evergreen Forests | Deciduous Forests |
|---|---|---|
| Forest-type national nature reserve | Badagongshan, Bamianshan, Baimaxueshan, Baishuihe, Baiyunshan, Chayucibagou, Daiyunshan, Duheyuan, Fanjingshan, Fengyangshan-baishanzu, Fujianwuyishan, Gahai-zecha, Gansulianhuashan, Gansuqilianshan, Ganjiangyuan, Gaoligongshan, Goawangjie, Heizhugou, Hupingshan, Huangsang, Jigongshan, Jiangximatoushan, Jiemuxi, Jinzhaitianma, Jinyunshan, Jinggangshan, Junzifeng, Kuankuishui, Kunyushan, Leigongshan, Liankangshan, Longqishan, Longxi-hongkou, Lushan, Mangdangshan, Maoershan, Minjiangyuan, Mulinzi, Nanyuehengshan, Neimengguhelanshan, Qiyunshan, Shennongjia, Taohe, Wuyanling, Wufenghouhe, Wulipo, Xishuizhongyaredaichanglvkuoyelin, Xiongjianghuangchulin, Xuebaoshan, Yading, Yanlingtaoyuandong, Yaoshan, Yaoluoping, Yingzuijie, Changningzhuhai | Baxianshan, Baihuashan, Baotianman, Beijingsongshan, Dabashan, Dahaituo, Daheishan, Daxinganlinghanma, Funiushan, Gaogesitaihanwula, Gurigesitai, Haitangshan, Heibeiwulingshan, Heichashan, Hengrenlaotudingzi, Huzhong, Huaeshan, Hualongshan, Lishan, Liupanshan, Micangshan, Nvluerhushan, Pingheliang, Qingyazhai, Saihanwula, Shanximicangshan, Shanxiziwuling, Shengshan, Tuoliang, Wangqing, Xiaobeihu, Xiaoqinling, Xiaowutaishan |
| Resistance to Drought Events | National Nature Reserves | The Surrounding Areas |
|---|---|---|
| National nature reserves | / | 0.001 |
| The surrounding areas | 0.003 | / |
| Recovery rate after drought events | National nature reserves | The surrounding areas |
| National nature reserves | / | 0.001 |
| The surrounding areas | 0.002 | / |
| Resistance to Drought Events | National Nature Reserves—Evergreen Forests | The Surrounding Areas—Evergreen Forests | National Nature Reserves—Deciduous Forests | The Surrounding Areas—Deciduous Forests |
|---|---|---|---|---|
| National nature reserves-Evergreen forests | / | 0.001 | 0.001 | 0.001 |
| The surrounding areas-Evergreen forests | 0.001 | / | 0.001 | 0.001 |
| National nature reserves-Deciduous forests | 0.001 | 0.001 | / | 0.001 |
| The surrounding areas-Deciduous forests | 0.001 | 0.001 | 0.001 | / |
| Recovery Rate After Drought Events | National Nature Reserves-Evergreen Forests | The Surrounding Areas-Evergreen Forests | National Nature Reserves-Deciduous Forests | The Surrounding Areas-Deciduous Forests |
| National nature reserves-Evergreen forests | / | 0.853 | 0.002 | 0.001 |
| The surrounding areas-Evergreen forests | 0.853 | / | 0.001 | 0.001 |
| National nature reserves-Deciduous forests | 0.002 | 0.001 | / | 0.001 |
| The surrounding areas-Deciduous forests | 0.001 | 0.001 | 0.001 | / |
| Pearson Correlation Coefficient | Resistance to Drought Events | Recovery Rate After Drought Events | ||
|---|---|---|---|---|
| National Nature Reserves | The Surrounding Areas | National Nature Reserves | The Surrounding Areas | |
| MAR | 0.056 * | 0.077 * | −0.049 * | −0.107 * |
| MAT | 0.154 * | 0.069 * | −0.017 | −0.045 |
| MAP | 0.037 * | 0.054 * | −0.031 * | −0.15 * |
| Stand age | 0.025 * | 0.009 | −0.002 | −0.064 |
| Tree density | 0.007 | 0.006 | −0.003 | −0.107 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Li, X.; Yang, C. High Ecosystem Stability Under Drought Events in National Nature Reserves in China’s Forest Ecosystem. Forests 2025, 16, 1716. https://doi.org/10.3390/f16111716
Lv Y, Li X, Yang C. High Ecosystem Stability Under Drought Events in National Nature Reserves in China’s Forest Ecosystem. Forests. 2025; 16(11):1716. https://doi.org/10.3390/f16111716
Chicago/Turabian StyleLv, Yan, Xiaoyong Li, and Chaobin Yang. 2025. "High Ecosystem Stability Under Drought Events in National Nature Reserves in China’s Forest Ecosystem" Forests 16, no. 11: 1716. https://doi.org/10.3390/f16111716
APA StyleLv, Y., Li, X., & Yang, C. (2025). High Ecosystem Stability Under Drought Events in National Nature Reserves in China’s Forest Ecosystem. Forests, 16(11), 1716. https://doi.org/10.3390/f16111716

