Trade-Offs in Aboveground and Soil Mangrove Carbon Stocks Under Species Introduction: Remote Sensing Reveals Temporal Divergence in Restoration Trajectories
Abstract
1. Introduction
- (1)
- The temporal changes in ACG and SOC are asymmetric and asynchronous.
- (2)
- Species-level differences play a dominant role in determining ACG and root structure, whereas soil environmental factors are the primary drivers of SOC dynamics
2. Methods
2.1. Study Area
2.2. Field Sampling
2.3. Data Preparation
2.3.1. Collecting the UAV-LiDAR and Extracting the Canopy Height
2.3.2. Auxiliary Data
2.4. Calculations of the Aboveground Vegetation and Soil Carbon Stocks
2.4.1. Calculation of the Aboveground Vegetation Carbon Stocks
2.4.2. Laboratory Analysis
2.5. Extracting the Age Stage of Mangroves
| Location | Latitude | Types | Age | Aboveground Vegetation Biomass (Mg C/ha) | Belowground Vegetation Biomass (Mg C/ha) | Soil Carbon Stock (Mg C/ha) | Reference |
|---|---|---|---|---|---|---|---|
| Qiao Island | 22° N | S. apetela (SA) | 1 | 1.04 | 0.13 | 77.09 | |
| 4 | 97.66 | 22.46 | 81.62 | ||||
| 9 | 146.87 | 39.42 | 85.2 | [6] | |||
| 15 | 184.88 | 47.94 | 101.22 | ||||
| 40 | 194.66 | 58.39 | |||||
| Leizhou Bay | 20–21° N | SA | 5 | 12.81 (AGB + BGB) | 68.81 | ||
| 13 | 65.04 (AGB + BGB) | 75.12 | [52] | ||||
| 20 | 65.48 (AGB + BGB) | 89.86 | |||||
| Futian Bay | 22.5° | SA | 6 | 144 | 86 | 44 | |
| 20 | 258 | 58 | 48 | [53] | |||
| Malaysia | 2°06′ N | natural | 3 | 37.8 | 42.05 | ||
| 12 | 66.01 | 32.81 | |||||
| 25 | 75.61 | 32.64 | [54] | ||||
| A. marina (AM) | 6 | 69.74 | 38.25 | ||||
| 12 | 66.01 | 32.81 | |||||
| Qiao Island | 22° N | SA | 4 | 99.42 | 24 | 92.06 | |
| SA | 9 | 147.42 | 37.71 | 92.66 | [55] | ||
| SA | 15 | 212.57 | 53.71 | 101.08 | |||
| SA | 40 | 188.57 | 87.99 | 170.88 | |||
| Yingluo Bay | 21° N | AM | 15 | 29.64 | 21.34 | 150.41 | [56] |
| AM | 45 | 84.17 | 34.3 | 234.45 | |||
| Leizhou, Guangdong | 109°03′ E, 20°30′ N | SA | 4 | 16.3 | 3.6 | 27.7 (0–20 cm) | [57] |
| 10 | 37.2 | 11. 8 | 67.5 (0–20 cm) | ||||
| Gaoqiao, Guangdong | 21°30′ N | AM | 5 | 16.4 (AGB + BGB) | |||
| Bruguiera gymnorhiza (BG) | 10 | 41.4 (AGB + BGB) | [58] | ||||
| BG | 30 | 96.1 (AGB + BGB) | |||||
2.6. Data Analysis
3. Results
3.1. ACG and SOC Based on Field Survey
3.2. Remote-Sensing-Based Extraction of Forest Age Stages and Species Composition
3.3. Temporal Dynamics in the Aboveground and Soil Carbon Stocks of Mangroves
3.4. Driving Factors of Temporal Variations in the Aboveground and Soil Carbon Stocks
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Age Stage | 0–5 cm (Mg C/ha) | 5–10 cm (Mg C/ha) | 10–20 cm (Mg C/ha) | 20–30 cm (Mg C/ha) | 30–45 cm (Mg C/ha) | 45–60 cm (Mg C/ha) | 60–80 cm (Mg C/ha) | 80–100 cm (Mg C/ha) |
|---|---|---|---|---|---|---|---|---|
| 4.88 ± 2.63 | 5.53 ± 3.23 | 10.78 ± 5.29 | 11.19 ± 5.22 | 17.35 ± 11.18 | 16.93 ± 11.88 | 25.38 ± 17.21 | 20.72 ± 14.75 | |
| 6.48 ± 3.14 | 6.78 ± 4.02 | 13.25 ± 4.98 | 12.86 ± 5.33 | 18.86 ± 13.63 | 16.37 ± 8.54 | 17.81 ± 9.44 | 15.18 ± 9.64 | |
| 8.92 ± 4.61 | 8.72 ± 3.41 | 17.6 ± 8.36 | 18.81 ± 8.02 | 25.89 ± 10.99 | 25.1 ± 8.33 | 30.08 ± 15.08 | 24.85 ± 14.52 |
| Species | 0–5 cm (Mg C/ha) | 5–10 cm (Mg C/ha) | 10–20 cm (Mg C/ha) | 20–30 cm (Mg C/ha) | 30–45 cm (Mg C/ha) | 45–60 cm (Mg C/ha) | 60–80 cm (Mg C/ha) | 80–100 cm (Mg C/ha) |
|---|---|---|---|---|---|---|---|---|
| Sonneratia apetala | 4.02 ± 0.56 | 4.2 ± 1.65 | 10.92 ± 1.46 | 7.67 ± 1.32 | 13.76 ± 3.54 | 11.08 ± 3.23 | 11.02 ± 4.67 | 11.06 ± 3.42 |
| Avicennia marina | 4.77 ± 2.82 | 5.41 ± 3.06 | 10.26 ± 4.92 | 10.73 ± 4.11 | 12.7 ± 4.96 | 13.64 ± 5.15 | 16.31 ± 8.83 | 11.76 ± 7.43 |
| Aegiceras corniculatum | 6.95 ± 2.4 | 7.56 ± 2.64 | 14.91 ± 4.24 | 15.22 ± 4.24 | 24.13 ± 7.59 | 23.87 ± 8.07 | 29.72 ± 12.73 | 24.62 ± 11.58 |
| Rhizophora stylosa | 13.35 ± 2.46 | 9.63 ± 2.38 | 24.21 ± 10.53 | 29.42 ± 3.05 | 33.68 ± 8.32 | 30.05 ± 7.06 | 39.55 ± 12.91 | 36.21 ± 16.05 |
| Bruguiera gymnorrhiza | 13.84 ± 3.28 | 13.31 ± 1 | 26.12 ± 4.84 | 25.03 ± 5.51 | 39.84 ± 8.1 | 36.76 ± 5.04 | 47.79 ± 13.51 | 38.83 ± 6.26 |
| Kandelia obovata | 11.57 ± 1.79 | 12.84 ± 0.25 | 20.19 ± 1.79 | 22.56 ± 1.96 | 40.9 ± 10.48 | 33.07 ± 3.01 | 41.09 ± 2.53 | 37.41 ± 2.83 |

References
- Alongi, D.M. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Alongi, D.M. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 2018, 9, 596. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.; Ai, J.; Cai, S.; Dong, J. Predicting Mangrove Distributions in the Beibu Gulf, Guangxi, China, Using the MaxEnt Model: Determining Tree Species Selection. Forests 2023, 14, 149. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Li, H.; Liang, J.; Liu, W.; Piao, S.; Tian, H.; Zhou, G.; Lu, C.; You, W.; et al. Maximizing Carbon Sequestration Potential in Chinese Forests through Optimal Management. Nat. Commun. 2024, 15, 3154. [Google Scholar] [CrossRef] [PubMed]
- Delfan, N.; Shojaei, M.G.; Naderloo, R. Patterns of Structural and Functional Diversity of Macrofaunal Communities in a Subtropical Mangrove Ecosystem. Estuar. Coast. Shelf Sci. 2021, 252, 107288. [Google Scholar] [CrossRef]
- Yu, C.; Feng, J.; Liu, K.; Wang, G.; Zhu, Y.; Chen, H.; Guan, D. Changes of Ecosystem Carbon Stock Following the Plantation of Exotic Mangrove Sonneratia apetala in Qi’ao Island, China. Sci. Total Environ. 2020, 717, 137142. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z. Mangrove Soil Carbon Stocks Varied Significantly across Community Compositions and Environmental Gradients in the Largest Mangrove Wetland Reserve, China. Reg. Environ. Change 2024, 24, 140. [Google Scholar] [CrossRef]
- Pham, T.D.; Yoshino, K.; Bui, D.T. Biomass Estimation of Sonneratia caseolaris (L.) Engler at a Coastal Area of Hai Phong City (Vietnam) Using ALOS-2 PALSAR Imagery and GIS-Based Multi-Layer Perceptron Neural Networks. GIScience Remote Sens. 2017, 54, 329–353. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground Mangrove Biomass Estimation in Beibu Gulf Using Machine Learning and UAV Remote Sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Li, M.S.; Mao, L.J.; Shen, W.J.; Liu, S.Q.; Wei, A.S. Change and Fragmentation Trends of Zhanjiang Mangrove Forests in Southern China Using Multi-Temporal Landsat Imagery (1977–2010). Estuar. Coast. Shelf Sci. 2013, 130, 111–120. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC Temporal Segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Shang, R.; Chen, J.M.; Xu, M.; Lin, X.; Li, P.; Yu, G.; He, N.; Xu, L.; Gong, P.; Liu, L.; et al. China’s Current Forest Age Structure Will Lead to Weakened Carbon Sinks in the near Future. Innovation 2023, 4, 100515. [Google Scholar] [CrossRef]
- Leng, Y.; Li, W.; Ciais, P.; Sun, M.; Zhu, L.; Yue, C.; Chang, J.; Yao, Y.; Zhang, Y.; Zhou, J.; et al. Forest Aging Limits Future Carbon Sink in China. One Earth 2024, 7, 822–834. [Google Scholar] [CrossRef]
- Valencia, E.; De Bello, F.; Galland, T.; Adler, P.B.; Lepš, J.; E-Vojtkó, A.; Van Klink, R.; Carmona, C.P.; Danihelka, J.; Dengler, J.; et al. Synchrony Matters More than Species Richness in Plant Community Stability at a Global Scale. Proc. Natl. Acad. Sci. USA 2020, 117, 24345–24351. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Li, F.; Gao, W.; Guo, F.; Li, Z.; Yang, Z. Regional Mangrove Vegetation Carbon Stocks Predicted Integrating UAV-LiDAR and Satellite Data. J. Environ. Manag. 2024, 368, 122101. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, N.; Moskwa, L.-M.; Schmidt, K.; Oeser, R.A.; Aburto, F.; Bader, M.Y.; Baumann, K.; Von Blanckenburg, F.; Boy, J.; van den Brink, L. Pedogenic and Microbial Interrelations to Regional Climate and Local Topography: New Insights from a Climate Gradient (Arid to Humid) along the Coastal Cordillera of Chile. Catena 2018, 170, 335–355. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, L.; Zhou, G.; SiQing, B.; Du, W.; Meng, S.; Yu, J.; Sun, Z.; Liu, Q. Exploring Carbon Sequestration in Broad-Leaved Korean Pine Forests: Insights into Photosynthetic and Respiratory Processes. Sci. Total Environ. 2024, 906, 167421. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass Resilience of Neotropical Secondary Forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.-Z.; Wang, Z.; Mao, D.; Wang, Y.; Jia, M. Decision Surface Optimization in Mapping Exotic Mangrove Species (Sonneratia apetala) across Latitudinal Coastal Areas of China. ISPRS J. Photogramm. Remote Sens. 2022, 193, 269–283. [Google Scholar] [CrossRef]
- Arnaud, M.; Krause, S.; Norby, R.J.; Dang, T.H.; Acil, N.; Kettridge, N.; Gauci, V.; Ullah, S. Global Mangrove Root Production, Its Controls and Roles in the Blue Carbon Budget of Mangroves. Glob. Change Biol. 2023, 29, 3256–3270. [Google Scholar] [CrossRef] [PubMed]
- Ezcurra, P.; Ezcurra, E.; Garcillán, P.P.; Costa, M.T.; Aburto-Oropeza, O. Coastal Landforms and Accumulation of Mangrove Peat Increase Carbon Sequestration and Storage. Proc. Natl. Acad. Sci. USA 2016, 113, 4404–4409. [Google Scholar] [CrossRef]
- Rovai, A.S.; Twilley, R.R.; Castañeda-Moya, E.; Midway, S.R.; Friess, D.A.; Trettin, C.C.; Bukoski, J.J.; Stovall, A.E.L.; Pagliosa, P.R.; Fonseca, A.L.; et al. Macroecological Patterns of Forest Structure and Allometric Scaling in Mangrove Forests. Global Ecol. Biogeogr. 2021, 30, 1000–1013. [Google Scholar] [CrossRef]
- Sun, S.; Song, Z.; Guo, L.; Duarte, C.M.; Macreadie, P.I.; Zhang, Z.; Fang, Y.; Chen, B.; Wang, Z.; Wang, W.; et al. A Spatial Baseline of China’s Blue Carbon Stocks for Improved Monitoring, Management, and Protection. Earth’s Future 2025, 13, e2024EF005380. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Sillanpää, M.; Hayes, M.A.; Bachri, S.; Saragi-Sasmito, M.F.; Sidik, F.; Hanggara, B.B.; Mofu, W.Y.; Rumbiak, V.I.; Hendri; et al. Mangrove Blue Carbon Stocks and Dynamics Are Controlled by Hydrogeomorphic Settings and Land-use Change. Glob. Change Biol. 2020, 26, 3028–3039. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, M.L.; Megonigal, J.P. Tidal Wetland Stability in the Face of Human Impacts and Sea-Level Rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Atwood, T.B.; Connolly, R.M.; Almahasheer, H.; Carnell, P.E.; Duarte, C.M.; Ewers Lewis, C.J.; Irigoien, X.; Kelleway, J.J.; Lavery, P.S.; Macreadie, P.I. Global Patterns in Mangrove Soil Carbon Stocks and Losses. Nat. Clim. Change 2017, 7, 523–528. [Google Scholar] [CrossRef]
- Song, S.; Ding, Y.; Li, W.; Meng, Y.; Zhou, J.; Gou, R.; Zhang, C.; Ye, S.; Saintilan, N.; Krauss, K.W.; et al. Mangrove Reforestation Provides Greater Blue Carbon Benefit than Afforestation for Mitigating Global Climate Change. Nat. Commun. 2023, 14, 756. [Google Scholar] [CrossRef]
- Morton, R.; White, W. Characteristics of and Corrections for Core Shortening in Unconsolidated Sediments. J. Coast. Res. 1997, 13, 761–769. [Google Scholar]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Lu, L.; Luo, J.; Xin, Y.; Duan, H.; Sun, Z.; Qiu, Y.; Xiao, Q. How Can UAV Contribute in Satellite-Based Phragmites Australis Aboveground Biomass Estimating? Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103024. [Google Scholar] [CrossRef]
- Cao, J.; Liu, K.; Zhuo, L.; Liu, L.; Zhu, Y.; Peng, L. Combining UAV-Based Hyperspectral and LiDAR Data for Mangrove Species Classification Using the Rotation Forest Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102414. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, R.; Zhao, C.; Zhou, Y.; Ren, C.; Mao, D.; Li, H.; Sun, G.; Zhang, H.; Yu, W.; et al. Synergistic Estimation of Mangrove Canopy Height across Coastal China: Integrating SDGSAT-1 Multispectral Data with Sentinel-1/2 Time-Series Imagery. Remote Sens. Environ. 2025, 323, 114719. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved Progressive TIN Densification Filtering Algorithm for Airborne LiDAR Data in Forested Areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [Google Scholar] [CrossRef]
- Meng, Y.; Gou, R.; Bai, J.; Moreno-Mateos, D.; Davis, C.C.; Wan, L.; Song, S.; Zhang, H.; Zhu, X.; Lin, G. Spatial Patterns and Driving Factors of Carbon Stocks in Mangrove Forests on Hainan Island, China. Global Ecol. Biogeogr. 2022, 31, 1692–1706. [Google Scholar] [CrossRef]
- Lu, W.; Xiao, J.; Gao, H.; Jia, Q.; Li, Z.; Liang, J.; Xing, Q.; Mao, D.; Li, H.; Chu, X.; et al. Carbon Fluxes of China’s Coastal Wetlands and Impacts of Reclamation and Restoration. Glob. Change Biol. 2024, 30, e17280. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, S.; He, Y.; You, S.; Yang, X.; Gan, Y.; Liu, A. A Fine-Scale Mangrove Map of China Derived from 2-Meter Resolution Satellite Observations and Field Data. Int. J. Geo-Inf. 2021, 10, 92. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, H.; Lu, W.; Huang, W.; Wu, B.; Hao, Z.; Sun, H. A Spatiotemporal Change Detection Method for Monitoring Pine Wilt Disease in a Complex Landscape Using High-Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 2083. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.; Zhang, R.; Wang, Z.; Mao, D.; Zhong, C.; Guo, X. Distribution of Mangrove Species Kandelia obovata in China Using Time-Series Sentinel-2 Imagery for Sustainable Mangrove Management. J. Remote Sens. 2024, 4, 0143. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.; Zhang, R.; Wang, Z.; Ren, C.; Mao, D.; Wang, Y. Mangrove Species Mapping in Coastal China Using Synthesized Sentinel-2 High-Separability Images. Remote Sens. Environ. 2024, 307, 114151. [Google Scholar] [CrossRef]
- Aslan, A.; Aljahdali, M.O. Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data. Forests 2022, 13, 1545. [Google Scholar] [CrossRef]
- Tang, W.; Zheng, M.; Zhao, X.; Shi, J.; Yang, J.; Trettin, C. Big Geospatial Data Analytics for Global Mangrove Biomass and Carbon Estimation. Sustainability 2018, 10, 472. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, F.; Ouyang, X.; Xiong, L.; Zhu, Z.; Zhang, Y. Differential Carbon Stocks and Burial Rates in Natural versus Planted Mangrove Forests under Varied Hydrogeomorphic Conditions. Catena 2025, 254, 108981. [Google Scholar] [CrossRef]
- Huang, M.; Guo, F.; Ouyang, X.; Gao, X.; Zhu, Z.; Zeng, X.; Zhang, Y. Exploring Soil Carbon Drivers across Natural Mangroves, Restored Mangroves, and Tidal Flats: Implications for Subtropical Coastal Carbon Management. Catena 2025, 252, 108875. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; Cifor Bogor: Jawa Barat, Indonesia, 2012; Volume 86. [Google Scholar]
- Huang, X.; Yang, Q.; Feng, J.; Yang, Z.; Yu, C.; Zhang, J.; Ling, J.; Dong, J. Introduction of Exotic Species Sonneratia apetala Alters Diazotrophic Community and Stimulates Nitrogen Fixation in Mangrove Sediments. Ecol. Indic. 2022, 142, 109179. [Google Scholar] [CrossRef]
- Zan, Q.J.; Wang, B.S.; Wang, Y.J.; Li, M.G. Ecological Assessment on the Introduced Sonneratia caseolaris and S-Apetala at the Mangrove Forest of Shenzhen Bay, China. Acta Bot. Sin. 2003, 45, 544–551. [Google Scholar]
- Hongwiset, S.; Rodtassana, C.; Poungparn, S.; Umnouysin, S.; Suchewaboripont, V. Synergetic Roles of Mangrove Vegetation on Sediment Accretion in Coastal Mangrove Plantations in Central Thailand. Forests 2022, 13, 1739. [Google Scholar] [CrossRef]
- Chen, J.; Du, H.; Mao, F.; Huang, Z.; Chen, C.; Hu, M.; Li, X. Improving Forest Age Prediction Performance Using Ensemble Learning Algorithms Base on Satellite Remote Sensing Data. Ecol. Indic. 2024, 166, 112327. [Google Scholar] [CrossRef]
- Feng, X.; Deng, Y.; Zhong, W.; Xie, Z.; Liu, H.; Li, Z.; Jia, Y.; Li, X.; Chen, R.; Peng, X. Tracking the Expansion of Sonneratia apetala and Its Impact on Local Mangroves Using Time-Series Remote Sensing Data. Sustainability 2025, 17, 1069. [Google Scholar] [CrossRef]
- Pirasteh, S.; Mafi-Gholami, D.; Li, H.; Fang, Z.; Nouri-Kamari, A.; Khorrami, B. Precision in Mapping and Assessing Mangrove Biomass: Insights from the Persian Gulf Coasts. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103769. [Google Scholar] [CrossRef]
- Gao, T.; Guan, W.; Mao, J.; Jiang, Z.; Liao, B. Carbon Storage and Influence Factors of Major Mangrove Communities in Fucheng, Leizhou Peninsula, Guangdong Province. Ecol. Environ. Sci. 2017, 26, 985–990. [Google Scholar]
- Lunstrum, A.; Chen, L. Soil Carbon Stocks and Accumulation in Young Mangrove Forests. Soil Biol. Biochem. 2014, 75, 223–232. [Google Scholar] [CrossRef]
- Azman, M.S.; Sharma, S.; Shaharudin, M.A.M.; Hamzah, M.L.; Adibah, S.N.; Zakaria, R.M.; MacKenzie, R.A. Stand Structure, Biomass and Dynamics of Naturally Regenerated and Restored Mangroves in Malaysia. For. Ecol. Manag. 2021, 482, 118852. [Google Scholar] [CrossRef]
- Wang, G.; Yu, C.; Singh, M.; Guan, D.; Xiong, Y.; Zheng, R.; Xiao, R. Community Structure and Ecosystem Carbon Stock Dynamics along a Chronosequence of Mangrove Plantations in China. Plant Soil 2021, 464, 605–620. [Google Scholar] [CrossRef]
- Yu, C.; Guan, D.; Gang, W.; Lou, D.; Wei, L.; Zhou, Y.; Feng, J. Development of Ecosystem Carbon Stock with the Progression of a Natural Mangrove Forest in Yingluo Bay, China. Plant Soil 2021, 460, 391–401. [Google Scholar] [CrossRef]
- Ren, H.; Chen, H.; Li, Z.; Han, W. Biomass Accumulation and Carbon Storage of Four Different Aged Sonneratia apetala Plantations in Southern China. Plant Soil 2010, 327, 279–291. [Google Scholar] [CrossRef]
- Mu, S.; Chen, G; Chen, Z.; Wu, H. Biomasses and Distributive Patterns of Mangrove Populations in Zhanjiang Nature Reserves, Guangdong, China. Guangxi Zhiwu 1998, 18, 19–23. [Google Scholar]
- Wang, Z.; Liu, M.; Liu, X.; Meng, Y.; Zhu, L.; Rong, Y. Spatio-Temporal Evolution of Surface Urban Heat Islands in the Chang-Zhu-Tan Urban Agglomeration. Phys. Chem. Earth Parts A/B/C 2020, 117, 102865. [Google Scholar] [CrossRef]
- Lefcheck, J.S. piecewiseSEM: Piecewise Structural Equation Modelling in r for Ecology, Evolution, and Systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Zinger, L.; Nilsson, R.H.; Kennedy, P.G.; Yang, T.; Anslan, S.; Mikryukov, V. Best Practices in Metabarcoding of Fungi: From Experimental Design to Results. Mol. Ecol. 2022, 31, 2769–2795. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of Structural Equation Modeling (SEM) in Ecological Studies: An Updated Review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef]
- Zhang, M.; Delgado-Baquerizo, M.; Li, G.; Isbell, F.; Wang, Y.; Hautier, Y.; Wang, Y.; Xiao, Y.; Cai, J.; Pan, X. Experimental Impacts of Grazing on Grassland Biodiversity and Function Are Explained by Aridity. Nat. Commun. 2023, 14, 5040. [Google Scholar] [CrossRef]
- Hongwiset, S.; Rodtassana, C.; Poungparn, S.; Umnouysin, S.; Komiyama, A. Spatiotemporal Heterogeneity of Mangrove Root Sphere under a Tropical Monsoon Climate in Eastern Thailand. Forests 2021, 12, 966. [Google Scholar] [CrossRef]
- Feng, J.; Cui, X.; Zhou, J.; Wang, L.; Zhu, X.; Lin, G. Effects of Exotic and Native Mangrove Forests Plantation on Soil Organic Carbon, Nitrogen, and Phosphorus Contents and Pools in Leizhou, China. Catena 2019, 180, 1–7. [Google Scholar] [CrossRef]
- Zhu, D.; Hui, D.; Wang, M.; Yang, Q.; Yu, S. Light and Competition Alter Leaf Stoichiometry of Introduced Species and Native Mangrove Species. Sci. Total Environ. 2020, 738, 140301. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-L.; Zan, Q.-J.; Hu, Z.-Y.; Shin, P.-K.S.; Cheung, S.-G.; Wong, Y.-S.; Tam, N.F.-Y.; Lei, A.-P. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China? PLoS ONE 2016, 11, e0157169. [Google Scholar] [CrossRef]
- Li, F.; Yang, Q.; Zan, Q.; Tam, N.F.Y.; Shin, P.K.S.; Vrijmoed, L.L.P.; Cheung, S.G. Differences in Leaf Construction Cost between Alien and Native Mangrove Species in Futian, Shenzhen, China: Implications for Invasiveness of Alien Species. Mar. Pollut. Bull. 2011, 62, 1957–1962. [Google Scholar] [CrossRef]
- Zhu, D.; Hui, D.; Wang, M.; Yang, Q.; Li, Z.; Huang, Z.; Yuan, H.; Yu, S. Allometric Growth and Carbon Storage in the Mangrove Sonneratia apetala. Wetl. Ecol. Manag. 2021, 29, 129–141. [Google Scholar] [CrossRef]










| Location | Latitude | Longitude | Primary Species | Vegetation | Soil (0–100 cm) | ||||
|---|---|---|---|---|---|---|---|---|---|
| Plots | Canopy Height (m) | ACG (Mg C/ha) | Plots | Soil Type | SOC (Mg C/ha) | ||||
| Gaoqiao (GQ) | 21°29′–21°35′ | 109°43′–109°48′ | Kandelia obovat, Aegiceras corniculatum, Bruguiera gymnorhiza | 10 | 3.02 ± 1.39 | 31.73 ± 23.46 | 12 | muddy tidal soils | 193.42 ± 61.17 |
| Suixi (SX) | 21°24′–21°25′ | 109°53′–109°56′ | Aegiceras corniculatum, Sonneratia apetala, Avicennia marina | 3 | 4.57 ± 2.81 | 39.6 ± 30.67 | 6 | muddy tidal soils | 142.54 ± 32.81 |
| Xiadoulun (XDL) | 20°45′–20°48′ | 109°43′–109°44′ | Avicennia marina, Rhizophora stylosa | 4 | 1.27 ± 0.5 | 22.85 ± 18.94 | 2 | muddy tidal soils | 129.84 |
| Luishawan (LS) | 20°26′–20°28′ | 109°56′–109°59′ | Avicennia marina, Aegiceras corniculatum, Rhizophora stylosa | 4 | 1.07 ± 0.30 | 21.83 ± 17.93 | 7 | muddy tidal soils | 103.66 ± 16.91 |
| Mazhang (MZ) | 20°57′–21°5′ | 110°8′–110°18′ | Aegiceras corniculatum, Sonneratia apetala, Kandelia obovata, Rhizophora stylosa | 6 | 4.92 ± 4.78 | 41.38 ± 40.66 | 5 | muddy tidal soils | 79.22 ± 27.70 |
| Techengdao (TCD) | 21°8′–21°9′ | 110°25′–110°26′ | Avicennia marina, Kandelia obovata | 3 | 2.69 ± 0.27 | 30.06 ± 17.77 | 6 | silty–sand | 136.61 ± 39.05 |
| Lengzhou (LZ) | 20°49′–20°58′ | 110°8′–110°18′ | Aegiceras corniculatum, Sonneratia apetala | 3 | 4.71 ± 5.26 | 40.31 ± 43.10 | 5 | muddy tidal soils | 45.25 ± 21.57 |
| Wailuowan (WLW) | 20°33′–20°43′ | 110°18′–110°28′ | Avicennia marina, Kandelia obovata, Aegiceras corniculatum, Sonneratia apetala | 27 | 2.36 ± 1.88 | 28.38 ± 25.94 | 12 | muddy tidal soils | 125.12 ± 53.90 |
| Metadata | Type | Description | Reference |
|---|---|---|---|
| HSL_MangroveChina_LASAC_share | ESRI shapefile | The China mangrove distribution of 1978, 1990, 2000, 2010, 2018 (www.sasclouds.com/chinese/platform/newsList/notic/detail/618cc900fd423278867c5dda (accessed on 5 May 2025)) | [37,38] |
| The classifiction of speceies mangrove in China | ESRI shapefile | Using Synthesized Sentinel-2 High-Separability Images and mapping mangrove species | [39,40] |
| UAV-LiDAR | Raster (resampled 10 m) | Using majority for resampling 1 m to 10 m | |
| NDVI Time series from Landsat | raster (30 m) | 1990–2024 for screening and estimation mangrove age stage. | |
| ECMWF/Copernicus Climate Change Service | Raster (2 km) | For extracting climate factors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Guo, F.; Zeng, X.; Huang, Z.; Xie, H.; Ouyang, X.; Zhang, Y. Trade-Offs in Aboveground and Soil Mangrove Carbon Stocks Under Species Introduction: Remote Sensing Reveals Temporal Divergence in Restoration Trajectories. Forests 2025, 16, 1696. https://doi.org/10.3390/f16111696
Wang Z, Guo F, Zeng X, Huang Z, Xie H, Ouyang X, Zhang Y. Trade-Offs in Aboveground and Soil Mangrove Carbon Stocks Under Species Introduction: Remote Sensing Reveals Temporal Divergence in Restoration Trajectories. Forests. 2025; 16(11):1696. https://doi.org/10.3390/f16111696
Chicago/Turabian StyleWang, Zongyang, Fen Guo, Xuelan Zeng, Zixun Huang, Honghao Xie, Xiaoguang Ouyang, and Yuan Zhang. 2025. "Trade-Offs in Aboveground and Soil Mangrove Carbon Stocks Under Species Introduction: Remote Sensing Reveals Temporal Divergence in Restoration Trajectories" Forests 16, no. 11: 1696. https://doi.org/10.3390/f16111696
APA StyleWang, Z., Guo, F., Zeng, X., Huang, Z., Xie, H., Ouyang, X., & Zhang, Y. (2025). Trade-Offs in Aboveground and Soil Mangrove Carbon Stocks Under Species Introduction: Remote Sensing Reveals Temporal Divergence in Restoration Trajectories. Forests, 16(11), 1696. https://doi.org/10.3390/f16111696

