Color Variations of Turkey Oak (Quercus cerris L.) Wood from Different Types of Growing Sites
Abstract
1. Introduction
2. Materials and Methods
- Poor growing conditions, mixed-species forest;
- Poor growing conditions, pure-species forest;
- Good growing conditions, mixed-species forest;
- Good growing conditions, pure-species forest.
3. Results and Discussion
3.1. Comparison of Sapwood and Heartwood
3.2. Differences Between Growing Sites Countrywide
3.3. Differences Between Growing Sites Regionally
3.4. Comparison of Several Trees at One Growing Site
3.5. Color Variegation Within a Single Piece of Sawnwood
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govina, J.K.; Németh, R.; Bak, M.; Báder, M. Effect of Variable Growth Conditions on Selected Anatomical Properties of Hungarian Turkey Oak Wood. Bull. Transilv. Univ. Brasov Ser. II For. Wood Ind. Agric. Food Eng. 2023, 16, 83–98. [Google Scholar] [CrossRef]
- Csépányi, P.; Csór, A. Economic Assessment of European Beech and Turkey Oak Stands with Close-to-Nature Forest Management. Acta Silv. Lignaria Hung. 2017, 13, 9–24. [Google Scholar] [CrossRef]
- Illés, G.; Móricz, N. Hazai Fafajok Klímaanalóg Területeinek Vizsgálata a Klímaváltozás Tükrében. Erd. Közlemények 2022, 12, 91–112. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Summary Data on Hungary’s Forests 2023 (Magyarország Erdeinek Összefoglaló Adatai 2023); Agrárminisztérium, Hungary: Budapest, Hungary, 2024; 2p.
- Musat, E.-C.; Salca, E.-A.; Dinulica, F.; Ciobanu, V.D.; Dumitrascu, A.-E. Evaluation of Color Variability of Oak Veneers for Sorting. BioResources 2016, 11, 573–584. [Google Scholar] [CrossRef]
- Chang, S.-T.; Wang, S.-Y.; Cheng, S.-S. Red Color Enhancement of Sugi (Cryptomeria japonica D. Don) Heartwood by Light Irradiation. J. Wood Sci. 1999, 45, 271–273. [Google Scholar] [CrossRef]
- Mitsui, K.; Takada, H.; Sugiyama, M.; Hasegawa, R. Changes in the Properties of Light-Irradiated Wood with Heat Treatment. Part 1. Effect of Treatment Conditions on the Change in Color. Holzforschung 2001, 55, 601–605. [Google Scholar] [CrossRef]
- Yazaki, Y. Wood Colors and Their Coloring Matters: A Review. Nat. Prod. Commun. 2015, 10, 1934578X1501000332. [Google Scholar] [CrossRef]
- Dzurenda, L. Natural Variability of the Color of Beech Wood in the Color Space CIE L*a*b*. Forests 2023, 14, 1103. [Google Scholar] [CrossRef]
- Belov, N.P.; Sherstobitova, A.S.; Yaskov, A.D. Diffuse Reflection of Light by Cellulose Pulp and Optical Absorption of Aqueous Residual Lignin Solutions. J. Appl. Spectrosc. 2011, 78, 138–140. [Google Scholar] [CrossRef]
- Afrin, T.; Tsuzuki, T.; Wang, X. UV Absorption Property of Bamboo. J. Text. Inst. 2012, 103, 394–399. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, L.; Gao, J.; Guo, H.; Chen, Y.; Cheng, Q.; Via, B.K. Surface Photo-Discoloration and Degradation of Dyed Wood Veneer Exposed to Different Wavelengths of Artificial Light. Appl. Surf. Sci. 2015, 331, 353–361. [Google Scholar] [CrossRef]
- Lee, S.C.; Tran, T.M.T.; Choi, J.W.; Won, K. Lignin for White Natural Sunscreens. Int. J. Biol. Macromol. 2019, 122, 549–554. [Google Scholar] [CrossRef]
- Koch, G.; Kleist, G. Application of Scanning UV Microspectrophotometry to Localise Lignins and Phenolic Extractives in Plant Cell Walls. Holzforschung 2001, 55, 563–567. [Google Scholar] [CrossRef]
- Kleist, G.; Bauch, J. Cellular UV Microspectrophotometric Investigation of Sapelli Heartwood (Entandrophragma cylindricum Sprague) from Natural Provenances in Africa. Holzforschung 2001, 55, 117–122. [Google Scholar] [CrossRef]
- Koch, G.; Richter, H.-G.; Schmitt, U. Topochemical Investigation on Phenolic Deposits in the Vessels of Afzelia (Afzelia spp.) and Merbau (Intsia spp.) Heartwood. Holzforschung 2006, 60, 583–588. [Google Scholar] [CrossRef]
- Tolvaj, L. Measurement and Data Evaluation of Wood Colour and Gloss. In Optical Properties of Wood; Smart Sensors, Measurement and Instrumentation; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 45, pp. 51–90. ISBN 978-3-031-46905-3. [Google Scholar]
- Hofmann, T.; Seidu, H.; Kipkoror, K. Polyphenol Content of Underutilized Wood Species from Hungary. In Proceedings of the 11th Hardwood Conference Proceedings, Sopron, Hungary, 30–31 May 2024; Németh, R., Hansmann, C., Militz, H., Bak, M., Báder, M., Eds.; University of Sopron Press: Sopron, Hungary, 2024; pp. 136–140, ISBN 978-963-334-518-4. [Google Scholar] [CrossRef]
- Hofmann, T.; Albert, L.; Rétfalvi, T.; Fehér, S. HPTLC Investigation of a Ring-like Discoloration of Pedunculate Oak (Quercus robur L.) Heartwood. J. Planar Chromatogr.—Mod. TLC 2010, 23, 315–319. [Google Scholar] [CrossRef]
- Nishino, Y.; Janin, G.; Chanson, B.; Détienne, P.; Gril, J.; Thibaut, B. Colorimetry of Wood Specimens from French Guiana. J. Wood Sci. 1998, 44, 3–8. [Google Scholar] [CrossRef]
- Liu, S.; Loup, C.; Gril, J.; Dumonceaud, O.; Thibaut, A.; Thibaut, B. Studies on European Beech (Fagus sylvatica L.). Part 1: Variations of Wood Colour Parameters. Ann. For. Sci. 2005, 62, 625–632. [Google Scholar] [CrossRef]
- Klumpers, J.; Janin, G.; Becker, M.; Lévy, G. The Influences of Age, Extractive Content and Soil Water on Wood Color in Oak: The Possible Genetic Determination of Wood Color. Ann. Sci. For. 1993, 50, 403s–409s. [Google Scholar] [CrossRef]
- Mosedale, J.; Charrier, B.; Janin, G. Genetic Control of Wood Colour, Density and Heartwood Ellagitannin Concentration in European Oak (Quercus petraea and Q. robur). Forestry 1996, 69, 111–124. [Google Scholar] [CrossRef]
- Phelps, E.; Garrett, H.; Cox, G. Growth-Quality Evaluation of Black Walnut Wood. Part II—Color Analyses of Veneer Produced on Different Sites. Wood Fiber Sci. 1983, 15, 177–185. [Google Scholar]
- Hălălișan, A.-F.; Dinulică, F.; Gurean, D.M.; Codrean, C.; Neykov, N.; Antov, P.; Bardarov, N. Wood Colour Variations of Quercus Species in Romania. Forests 2023, 14, 230. [Google Scholar] [CrossRef]
- Moya, R.; Calvo-Alvarado, J. Variation of Wood Color Parameters of Tectona Grandis and Its Relationship with Physical Environmental Factors. Ann. For. Sci. 2012, 69, 947–959. [Google Scholar] [CrossRef]
- Makoto, K.; Susloparova, E.; Tsuyama, I.; Shimase, T.; Nakaba, S.; Takahashi, N.; Yoshida, T. Influence of Soil Properties on the Heartwood Colour of Juglans mandshurica var. sachalinensis in a Cool Temperate Forest. J. Wood Sci. 2021, 67, 49. [Google Scholar] [CrossRef]
- Illés, G.; Fonyó, T.; Borovics, A. SiteViewer a Decision Support Tool for Forest Management. Hung. Agric. Res. Environ. Manag. Land Use Biodivers. 2024, 34, 11–14. [Google Scholar]
- Deaconu, I.; Campean, M. Survey Concerning the Challenges of Industrial Drying of Quercus Lumber. Ligno 2022, 18, 36–44. [Google Scholar]
- Butterfield, B.G.; Meylan, B.A.; Peszlen, I.M. A Fatest Háromdimenziós Szerkezete: Three-Dimensional Structure of Wood: Hungarian Edition; Faipari Tudományos Alapítvány: Budapest, Hungary, 1997; ISBN 978-963-04-8812-9. [Google Scholar]
- Brainard, D.H. Color Appearance and Color Difference Specification. In The Science of Color; Elsevier Ltd.: Amsterdam, The Netherlands, 2003; pp. 192–213. ISBN 0-444-5/2-519. [Google Scholar]
- Mokrzycki, W.; Tatol, M. Color Difference ΔE: A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Istrefi, E.; Toromani, E.; Çollaku, N. Allometric Relationships for Estimation of Above-Ground Biomass in Young Turkey Oak (Quercus cerris L.) Stands in Albania. Acta Silv. Lignaria Hung. 2018, 14, 65–81. [Google Scholar] [CrossRef]
- Tolvaj, L.; Molnár, S. Colour Homogenisation of Hardwood Species by Steaming. Acta Silv. Lignaria Hung. 2006, 2, 105–112. [Google Scholar] [CrossRef]
- Ferrari, S.; Allegretti, O.; Cuccui, I.; Moretti, N.; Marra, M.; Todaro, L. A Revaluation of Turkey Oak Wood (Quercus cerris L.) through Combined Steaming and Thermo-Vacuum Treatments. BioResources 2013, 8, 5051–5066. [Google Scholar] [CrossRef]
- Tolvaj, L. Applications of Colour Measurement in Wood Research. In Optical Properties of Wood; Smart Sensors, Measurement and Instrumentation; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 45, pp. 91–156. ISBN 978-3-031-46905-3. [Google Scholar]
- Todaro, L.; Zanuttini, R.; Scopa, A.; Moretti, N. Influence of Combined Hydro-Thermal Treatments on Selected Properties of Turkey Oak (Quercus cerris L.) Wood. Wood Sci. Technol. 2012, 46, 563–578. [Google Scholar] [CrossRef]
- Todaro, L.; Zuccaro, L.; Marra, M.; Basso, B.; Scopa, A. Steaming Effects on Selected Wood Properties of Turkey Oak by Spectral Analysis. Wood Sci. Technol. 2012, 46, 89–100. [Google Scholar] [CrossRef]
- Timar, M.; Varodi, A.; Hacibektasoglu, M.; Campean, M. Color and FTIR Analysis of Chemical Changes in Beech Wood (Fagus sylvatica L.) after Light Steaming and Heat Treatment in Two Different Environments. BioResources 2016, 11, 8325–8343. [Google Scholar] [CrossRef]
- Fodor, F.; Bak, M. Studying the Wettability and Bonding Properties of Acetylated Hornbeam Wood Using PVAc and PUR Adhesives. Materials 2023, 16, 2046. [Google Scholar] [CrossRef]
- Fodor, F.; Hofmann, T. Chemical Composition and FTIR Analysis of Acetylated Turkey Oak and Pannonia Poplar Wood. Forests 2024, 15, 207. [Google Scholar] [CrossRef]
- Deaconu, I.; Porojan, M.; Timar, M.C.; Bedelean, B.; Campean, M. Comparative Research on the Structure, Chemistry, and Physical Properties of Turkey Oak and Sessile Oak Wood. BioResources 2023, 18, 5724–5749. [Google Scholar] [CrossRef]
- Sousa, V.; Cardoso, S.; Pereira, H. Characterization of the Chemical Composition of Quercus faginea Wood. In Proceedings of the 6th National Forestry Congress—The Forest in a Globalized World, Ponta Delgada, Portugal, 6–9 October 2009; Portuguese Society of Forest Sciences: Ponta Delgada, Portugal, 2009; pp. 563–571. [Google Scholar]
- Miranda, I.; Sousa, V.; Ferreira, J.; Pereira, H. Chemical Characterization and Extractives Composition of Heartwood and Sapwood from Quercus faginea. PLoS ONE 2017, 12, e0179268. [Google Scholar] [CrossRef] [PubMed]
- Bajraktari, A.; Nunes, L.; Knapic, S.; Pimenta, R.; Pinto, T.; Duarte, S.; Miranda, I.; Pereira, H. Chemical Characterization, Hardness and Termite Resistance of Quercus cerris Heartwood from Kosovo. Maderas Cienc. Tecnol. 2018, 20, 305–314. [Google Scholar] [CrossRef]
- Hofmann, T.; Visi-Rajczi, E.; Albert, L. Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores. Forests 2025, 16, 1557. [Google Scholar] [CrossRef]






| Site № | Site Type | Region of Hungary | Sampling Site EOV Coordinates | Average Diameter | Number of Specimens | Number of Measurements | |
|---|---|---|---|---|---|---|---|
| Sapwood | Heartwood | ||||||
| 1 | Poor growing conditions, mixed stand | Kiskunság | 690,792, 104,076 | 20 | 6 | 675 | 470 |
| Zselic Hills | 567,717, 91,314 | 32 | 2 | ||||
| Pilis-Buda Hills | 634,762, 260,957 | 36 | 3 | ||||
| Kemeneshát Hills | 465,940, 200,738 | 42 | 6 | ||||
| Kőszeg Foothills | 471,701, 251,059 | 28 | 5 | ||||
| 2 | Poor growing conditions, pure stand | Kiskunság | 680,503, 100,633 | 27 | 3 | 252 | 398 |
| Zselic Hills | 567,821, 91,753 | 30 | 1 | ||||
| Kemeneshát Hills | 477,777, 187,050 | 24 | 13 | ||||
| 3 | Good growing conditions, mixed stand | Kiskunság | 717,817, 168,716 | 17 | 4 | 225 | 285 |
| Zselic Hills | 567,792, 92,526 | 32 | 1 | ||||
| Pilis-Buda Hills | 631,997, 265,116 | 42 | 2 | ||||
| Kemeneshát Hills | 497,777, 191,168 | 43 | 2 | ||||
| 4 | Good growing conditions, pure stand | Kiskunság | 675,331, 107,081 | 18 | 3 | 175 | 181 |
| Zselic Hills | 568,132, 93,406 | 34 | 1 | ||||
| Kemeneshát Hills | 496,641, 190,792 | 54 | 2 | ||||
| ∆E* | Visual Perception of Color Difference |
|---|---|
| ∆E* < 1 | Imperceptible |
| 1 ≤ ∆E* < 2 | Barely noticeable |
| 2 ≤ ∆E* < 3.5 | Noticeable |
| 3.5 ≤ ∆E* < 5 | Distinct |
| 5 ≤ ∆E* | Large |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Németh, R.; Tolvaj, L.; Báder, M. Color Variations of Turkey Oak (Quercus cerris L.) Wood from Different Types of Growing Sites. Forests 2025, 16, 1681. https://doi.org/10.3390/f16111681
Németh R, Tolvaj L, Báder M. Color Variations of Turkey Oak (Quercus cerris L.) Wood from Different Types of Growing Sites. Forests. 2025; 16(11):1681. https://doi.org/10.3390/f16111681
Chicago/Turabian StyleNémeth, Róbert, László Tolvaj, and Mátyás Báder. 2025. "Color Variations of Turkey Oak (Quercus cerris L.) Wood from Different Types of Growing Sites" Forests 16, no. 11: 1681. https://doi.org/10.3390/f16111681
APA StyleNémeth, R., Tolvaj, L., & Báder, M. (2025). Color Variations of Turkey Oak (Quercus cerris L.) Wood from Different Types of Growing Sites. Forests, 16(11), 1681. https://doi.org/10.3390/f16111681

