Responses of Soil Microbial Community and Nutrient Cycling Functional Genes in Young Cyclobalanopsis gilva Forests to Infertile Mountainous Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Experimental Design
2.3. Sample Plot Survey
2.4. Soil Sample Analysis and Determination
2.5. Data Processing and Analysis
3. Results
3.1. Soil Physicochemical Properties and Microbial Biomass
3.2. Soil Microbial Community Composition and Diversity Analysis
3.3. Soil Microbial Nutrient Cycling Processes
3.4. Soil Microbial Nutrient Cycling Functional Genes
3.4.1. Soil Microbial Carbon Cycling Functional Genes
3.4.2. Soil Microbial Nitrogen Cycling Functional Genes
3.4.3. Soil Microbial Phosphorus Cycling Functional Genes
3.5. Correlation Analysis of Soil Microbial Nutrient Cycling Processes with Soil Nutrient and Microbial Biomass
4. Discussion
4.1. Effects of Site Conditions and Soil Types on Soil Microbial Communities
4.2. Effects of Site Conditions and Soil Types on Functional Genes Involved in Soil Microbial Carbon, Nitrogen, and Phosphorus Cycling
4.3. Correlation Analysis of Growth of Cyclobalanopsis gilva, Soil Nutrient, and Microbial Nutrient Cycling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.; Cai, Q.; Li, G.; Wang, Z. Integrated erosion control measures and environmental effects in rocky mountainous areas in northern China. Int. J. Sediment. Res. 2010, 25, 294–303. [Google Scholar] [CrossRef]
- Huang, L.; Bao, W.; Kuzyakov, Y.; Hu, H.; Zhang, H.; Li, F. Enzyme stoichiometry reveals microbial nitrogen limitation in stony soils. Sci. Total Environ. 2024, 946, 174124. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Jin, G. Plant-soil microbial diversity and structural attributes jointly dominate the multifunctionality of the temperate forest. Forests 2024, 166, 11282. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Adhikari, M.; Jeong, S.S.; Lee, S.P.; Kim, H.S.; Lee, G.S.; Park, D.H.; Kim, H.; Yang, J.E. Microbial diversity of soils under different land use and chemical conditions. Appl. Biol. Chem. 2024, 67, 111. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Z.; Zong, Y.; Li, W.; Chen, F.; Wang, G.G.; Li, J.; Fang, X. Mixing with coniferous tree species alleviates rhizosphere soil phosphorus limitation of broad-leaved trees in subtropical plantations. Soil Biol. Biochem. 2023, 175, 108853. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, K.; Xie, Y.; Li, X.; Zhang, S.; Liu, W.; Huang, Y.; Cui, L.; Wang, S.; Bao, P. Geographical, climatic, and soil factors control the altitudinal pattern of rhizosphere microbial diversity and its driving effect on root zone soil multifunctionality in mountain ecosystems. Sci. Total Environ. 2023, 904, 166932. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Li, H.; Hu, L.; Liu, Q.; Zhou, F.; Yang, A.; Yu, F.; Ouyang, X. The impacts of tree species on soil properties in afforested areas: A case study in central subtropical China. Forests 2024, 15, 895. [Google Scholar] [CrossRef]
- Luo, X.; Hou, E.; Zhang, L.; Kuang, Y.; Wen, D. Altered soil microbial properties and functions after afforestation increase soil carbon and nitrogen but not phosphorus accumulation. Biol. Fert. Soils 2023, 59, 645–658. [Google Scholar] [CrossRef]
- Liu, L.; Ma, L.; Zhu, M.; Liu, B.; Liu, X.; Shi, Y. Rhizosphere microbial community assembly and association networks strongly differ based on vegetation type at a local environment scale. Front Microbiol. 2023, 14, 1129471. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, L.; Zuo, X.; Ye, X.; Wang, R.; Huang, Z.; Liu, G.; Cornelissen, J.H.C. Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern China. Glob. Ecol. Biogeogr. 2022, 31, 886–900. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, Z.; Jiao, S.; Bell, S.M.; Xu, Q.; Ma, L.; Chen, J. Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality. Sci. Total Environ. 2023, 878, 162972. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Wang, C.; Cai, A.; Zhou, Z. Global magnitude of rhizosphere effects on soil microbial communities and carbon cycling in natural terrestrial ecosystems. Sci. Total Environ. 2023, 856, 158961. [Google Scholar] [CrossRef]
- Luo, G.; Xue, C.; Jiang, Q.; Xiao, Y.; Zhang, F.; Guo, S.; Shen, Q.; Ling, N. Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, Y.; Wang, B.; Dippold, M.A.; Li, H.; Li, N.; Jia, P.; Zhang, H.; An, S.; Kuzyakov, Y. Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient. Soil Biol. Biochem. 2022, 172, 108764. [Google Scholar] [CrossRef]
- Kuypers, M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhao, J.; Yi, Q.; Li, J.; Li, Z.; Wu, S.; Zhang, W.; Wang, K. Metagenomic insights into the effects of organic and inorganic agricultural managements on soil phosphorus cycling. Agric. Ecosyst. Environ. 2023, 343, 108281. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, S.; Zhuang, W.; Li, K.; Wang, F.; Li, T.; Chen, D.; Fan, Q.; Zhang, Z.; Tudi, M.; et al. Reforestation significantly enriches soil microbial carbon, nitrogen, and phosphorus cycling genes but simplifies their co-occurrence network. Appl. Soil Ecol. 2025, 207, 105935. [Google Scholar] [CrossRef]
- Du, E.; Terrer, C.; Pellegrini, A.F.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Zhao, J.; Weng, H.; Ye, X.; Liu, S.; Zhao, Z.; Ahmad, S.; Zhan, C. The potential habitat response of Cyclobalanopsis gilva to climate change. Plants 2024, 13, 2336. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 2012, 3, 1245. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014, 32, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Tu, Q.; Lin, L.; Cheng, L.; Deng, Y.; He, Z. NCycDB: A curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 2019, 35, 1040–1048. [Google Scholar] [CrossRef]
- Zeng, J.; Tu, Q.; Yu, X.; Qian, L.; Wang, C.; Shu, L.; Liu, F.; Liu, S.; Huang, Z.; He, J.; et al. PCycDB: A comprehensive and accurate database for fast analysis of phosphorus cycling genes. Microbiome 2022, 10, 101. [Google Scholar] [CrossRef]
- Huang, R.; Li, W.; Qiu, S.; Long, Y.; Zeng, Z.; Tang, J.; Huang, Q. Impact of land use types on soil microbial community structure and functional structure in Baihualing Village, China. Glob. Ecol. Conserv. 2025, 57, e03379. [Google Scholar] [CrossRef]
- Xu, H.; Du, H.; Zeng, F.; Song, T.; Peng, W. Diminished rhizosphere and bulk soil microbial abundance and diversity across succession stages in Karst area, southwest China. Appl. Soil Ecol. 2021, 158, 103799. [Google Scholar] [CrossRef]
- Zhao, S.; Su, X.; Xu, C.; Gao, X.; Lu, S. Microbial adaptation and genetic modifications for enhanced remediation in low-permeability soils. Sci. Total Environ. 2025, 958, 177916. [Google Scholar] [CrossRef]
- Menzel, T.; Neubauer, P.; Junne, S. Role of microbial hydrolysis in anaerobic digestion. Energies 2020, 13, 5555. [Google Scholar] [CrossRef]
- Coonan, E.C.; Kirkby, C.A.; Kirkegaard, J.A.; Amidy, M.R.; Strong, C.L.; Richardson, A.E. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr. Cycl. Agroecosyst. 2020, 117, 273–298. [Google Scholar] [CrossRef]
- Voges, M.J.; Bai, Y.; Schulze-Lefert, P.; Sattely, E.S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl. Acad. Sci. USA 2019, 116, 12558–12565. [Google Scholar] [CrossRef]
- Zhu, G.; Yan, G.; Liu, G.; Xing, Y.; Wang, Q. Nitrogen deposition changes the root nutrient uptake strategies by affecting microbial diversity of the rhizosphere. Appl. Soil Ecol. 2025, 205, 105773. [Google Scholar] [CrossRef]
- Hernandez, D.J.; David, A.S.; Menges, E.S.; Searcy, C.A.; Afkhami, M.E. Environmental stress destabilizes microbial networks. ISME J. 2021, 15, 1722–1734. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Lv, J.; He, X.; Wang, J.; Teng, D.; Jiang, L.; Wang, H.; Lv, G. Rhizosphere effect alters the soil microbiome composition and C, N transformation in an arid ecosystem. Appl. Soil Ecol. 2022, 170, 104296. [Google Scholar] [CrossRef]
- Sui, B.; Wang, L.; Wang, H.; Zhao, X.; Jin, F.; Wang, H.; Guo, J.; Xu, Q. Deep tillage inhibits microbial species interactions and exhibits contrasting roles in bacterial and fungal assembly. Agric. Ecosyst Environ. 2023, 357, 108679. [Google Scholar] [CrossRef]
- Fang, W.; Tian, W.; Yan, D.; Li, Y.; Cao, A.; Wang, Q. Linkages between soil nutrient turnover and above-ground crop nutrient metabolism: The role of soil microbes. iMetaOmics 2025, 2, e55. [Google Scholar] [CrossRef]
- Kang, H.; Xue, Y.; Cui, Y.; Moorhead, D.L.; Lambers, H.; Wang, D. Nutrient limitation mediates soil microbial community structure and stability in forest restoration. Sci. Total Environ. 2024, 935, 173266. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Wen, D.; Bates, C.T.; Wu, L.; Guo, X.; Liu, S.; Su, Y.; Lei, J.; Zhou, J.; Yang, Y. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nat. Commun. 2022, 13, 175. [Google Scholar] [CrossRef]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumariño, L.; Barrios, E. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric. Ecosyst. Environ. 2020, 295, 106899. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, L.; Yang, T.; Qian, Z.; Xu, C.; Tian, D.; Tang, L. Poplar agroforestry systems in eastern China enhance the spatiotemporal stability of soil microbial community structure and metabolism. Land Degrad. Dev. 2022, 33, 916–930. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.-C.; Sun, S.; Rehman, M.M.U.; He, S.; Zhou, W. Dissimilatory nitrate reduction processes and corresponding nitrogen loss in tidal flow constructed wetlands. J. Clean Prod. 2021, 295, 126429. [Google Scholar] [CrossRef]
- Moon, M.; Park, G.W.; Lee, J.-p.; Lee, J.-S.; Min, K. Recent progress in formate dehydrogenase (FDH) as a non-photosynthetic CO2 utilizing enzyme: A short review. J. CO2 Util. 2020, 42, 101353. [Google Scholar] [CrossRef]
- Yue, X.-L.; Xu, L.; Cui, L.; Fu, G.-Y.; Xu, X.-W. Metagenome-based analysis of carbon-fixing microorganisms and their carbon-fixing pathways in deep-sea sediments of the southwestern Indian Ocean. Mar. Genom. 2023, 70, 101045. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lin, H.; Li, J. Are there links between nutrient inputs and the response of microbial carbon use efficiency or soil organic carbon? A meta-analysis. Soil Biol. Biochem. 2025, 201, 109656. [Google Scholar] [CrossRef]
- Luo, L.; Meng, H.; Gu, J.-D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manag. 2017, 197, 539–549. [Google Scholar] [CrossRef]
- Wang, C.; Kuzyakov, Y. Energy use efficiency of soil microorganisms: Driven by carbon recycling and reduction. Glob. Change Biol. 2023, 29, 6170–6187. [Google Scholar] [CrossRef]
- Kraft, B.; Strous, M.; Tegetmeyer, H.E. Microbial nitrate respiration–genes, enzymes and environmental distribution. J. Biotechnol. 2011, 155, 104–117. [Google Scholar] [CrossRef]
- Pan, B.; Xia, L.; Lam, S.K.; Wang, E.; Zhang, Y.; Mosier, A.; Chen, D. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agric. Ecosyst. Environ. 2022, 327, 107850. [Google Scholar] [CrossRef]
- Henneron, L.; Kardol, P.; Wardle, D.A.; Cros, C.; Fontaine, S. Rhizosphere control of soil nitrogen cycling: A key component of plant economic strategies. New Phytol. 2020, 228, 1269–1282. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Meng, X.; Li, Q.; Ho, S.-H. Nitrogen metabolic responses of non-rhizosphere and rhizosphere microbial communities in constructed wetlands under nanoplastics disturbance. J. Hazard. Mater. 2025, 484, 136777. [Google Scholar] [CrossRef] [PubMed]
- Rang, J.; He, H.; Chen, J.; Hu, J.; Tang, J.; Liu, Z.; Xia, Z.; Ding, X.; Zhang, Y.; Xia, L. SenX3-RegX3, an important two-component system, regulates strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. iScience 2020, 23, 101398. [Google Scholar] [CrossRef]
- Santos-Beneit, F. The Pho regulon: A huge regulatory network in bacteria. Front. Microbiol. 2015, 6, 402. [Google Scholar] [CrossRef]
- Oliverio, A.M.; Bissett, A.; McGuire, K.; Saltonstall, K.; Turner, B.L.; Fierer, N. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. MBio. 2020, 11, 1718–1720. [Google Scholar] [CrossRef]
- Gorelova, V.; De Lepeleire, J.; Van Daele, J.; Pluim, D.; Meï, C.; Cuypers, A.; Leroux, O.; Rébeillé, F.; Schellens, J.H.; Blancquaert, D.; et al. Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell 2017, 29, 2831–2853. [Google Scholar] [CrossRef] [PubMed]
- Duhamel, S. The microbial phosphorus cycle in aquatic ecosystems. Nat. Rev. Microbiol. 2025, 23, 239–255. [Google Scholar] [CrossRef]
- Liu, F.; Zeng, J.; Ding, J.; Wang, C.; He, Z.; Liu, Z.; Shu, L. Microbially-driven phosphorus cycling and its coupling mechanisms with nitrogen cycling in mangrove sediments. Sci. Total Environ. 2025, 958, 178118. [Google Scholar] [CrossRef]
- Wu, X.; Rensing, C.; Han, D.; Xiao, K.-Q.; Dai, Y.; Tang, Z.; Liesack, W.; Peng, J.; Cui, Z.; Zhang, F. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems 2022, 7, e01107–e01121. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Yang, W.; Liu, J.; Wang, Z. Community metagenomics reveals the processes of nutrient cycling regulated by microbial functions in soils with P fertilizer input. Plant Soil. 2024, 499, 139–154. [Google Scholar] [CrossRef]
- Hopkins, D.W.; Dungait, J.A. Soil microbiology and nutrient cycling. In Soil Microbiology and Sustainable Crop Production; Springer: Dordrecht, The Netherlands, 2010; pp. 59–80. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Kouno, K.; Chowdhury, M.; Nagaoka, T.; Ando, T. Nutrient requirements (N, P, S) of microbial biomass formation in a regosol of Japan. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems Through Basic and Applied Research; Springer: Dordrecht, The Netherlands, 2001; pp. 622–623. [Google Scholar] [CrossRef]







| Site Conditions | TH (Tree Height)/m | DBH (Diameter at Breast Height)/m | CW (Crown Diameter)/m | 
|---|---|---|---|
| Infertile mountainous areas | 4.83 ± 0.13 a | 7.20 ± 0.24 a | 2.51 ± 0.09 a | 
| Control woodland areas | 6.86 ± 0.19 b | 8.69 ± 0.26 b | 2.94 ± 0.09 b | 
| Soil Physicochemical Properties and Microbial Biomass | Infertile Mountainous Areas | Control Woodland Areas | p | 
|---|---|---|---|
| BD/(g·cm−3) | 1.42 ± 0.03 | 1.54 ± 0.07 | 0.037 ** | 
| SWC/(%) | 17.23 ± 1.18 | 17.87 ± 1.64 | 0.611 | 
| pH | 5.59 ± 0.21 | 5.45 ± 0.06 | 0.341 | 
| SOC/(g·kg−1) | 5.32 ± 1.09 | 13.14 ± 2.81 | 0.011 * | 
| TN/(g·kg−1) | 0.48 ± 0.01 | 0.80 ± 0.12 | 0.010 * | 
| TP/(g·kg−1) | 0.18 ± 0.02 | 0.25 ± 0.01 | 0.006 ** | 
| AP/(mg·kg−1) | 0.97 ± 0.68 | 1.34 ± 0.26 | 0.423 | 
| NH4+-N/(mg·kg−1) | 2.49 ± 0.26 | 1.72 ± 0.35 | 0.038 * | 
| MBC/(mg·kg−1) | 118.64 ± 42.37 | 181.11 ± 50.26 | 0.175 | 
| MBN/(mg·kg−1) | 12.60 ± 3.53 | 26.88 ± 4.57 | 0.013 * | 
| MBP/(mg·kg−1) | 3.37 ± 2.02 | 5.02 ± 0.88 | 0.264 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Huang, S.; Ding, Y.; Lin, Y.; Xu, Y.; Fan, J.; Zhou, Z.; Yan, Z.; Wang, B. Responses of Soil Microbial Community and Nutrient Cycling Functional Genes in Young Cyclobalanopsis gilva Forests to Infertile Mountainous Areas. Forests 2025, 16, 1656. https://doi.org/10.3390/f16111656
Yang W, Huang S, Ding Y, Lin Y, Xu Y, Fan J, Zhou Z, Yan Z, Wang B. Responses of Soil Microbial Community and Nutrient Cycling Functional Genes in Young Cyclobalanopsis gilva Forests to Infertile Mountainous Areas. Forests. 2025; 16(11):1656. https://doi.org/10.3390/f16111656
Chicago/Turabian StyleYang, Wei, Shengyi Huang, Yafei Ding, Yukun Lin, Yonghong Xu, Jianzhong Fan, Zhichun Zhou, Zhaogui Yan, and Bin Wang. 2025. "Responses of Soil Microbial Community and Nutrient Cycling Functional Genes in Young Cyclobalanopsis gilva Forests to Infertile Mountainous Areas" Forests 16, no. 11: 1656. https://doi.org/10.3390/f16111656
APA StyleYang, W., Huang, S., Ding, Y., Lin, Y., Xu, Y., Fan, J., Zhou, Z., Yan, Z., & Wang, B. (2025). Responses of Soil Microbial Community and Nutrient Cycling Functional Genes in Young Cyclobalanopsis gilva Forests to Infertile Mountainous Areas. Forests, 16(11), 1656. https://doi.org/10.3390/f16111656
 
        


 
       