High Diversity and Species Turnover of Moss-Dwelling Mites in a Peri-Urban Mediterranean Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Mite Collection and Identification
2.3. Data Analysis
3. Results
3.1. Taxonomic Composition and Abundance of Moss-Dwelling Mite Communities
3.2. α-Diversity, Rarefaction and Sample Coverage
3.3. β-Diversity, Shared and Unique Species
3.4. Indicator Species Analysis
3.5. Functional Composition of Moss-Dwelling Mite Assemblages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| March | May | July | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Family | Species | n | D | C | n | D | C | n | D | C |
| Order Mesostigmata | ||||||||||
| Ascidae | Arctoseius minutus (Halbert, 1915) | 18 | 0.20 | 10 | - | - | - | - | - | - |
| Epicriidae | Epicrius fungulatus Athias-Henriot, 1961 | 19 | 0.21 | 24 | 2 | 0.04 | 2 | - | - | - |
| Laelapidae | Androlaelaps shealsi Costa, 1968 | 11 | 0.12 | 12 | 14 | 0.30 | 24 | - | - | - |
| Geolaelaps aculeifer (Canestrini, 1884) | 8 | 0.09 | 10 | 9 | 0.20 | 4 | - | - | - | |
| Geolaelaps sp. | 9 | 0.10 | 12 | 22 | 0.48 | 4 | - | - | - | |
| Parasitidae | Holoparasitus kerkirensis Witalinski & Skorupski, 2002 | 31 | 0.35 | 42 | 28 | 0.61 | 20 | - | - | - |
| Paragamasus sp. | 236 | 2.63 | 84 | 26 | 0.56 | 18 | - | - | - | |
| Phytoseiidae | Amblyseius nemorivagus Athias-Henriot, 1961 | 1 | 0.01 | 2 | 46 | 1.00 | 28 | - | - | - |
| Graminaseius sp. | - | - | - | 3 | 0.07 | 4 | - | - | - | |
| Neoseiulus barkeri (Hughes, 1948) | 1 | 0.01 | 2 | - | - | - | - | - | - | |
| Neoseiulus neomarginatus Stathakis, Kapaxidi & Papadoulis, 2013 | 4 | 0.04 | 8 | 7 | 0.15 | 8 | - | - | - | |
| Proprioseiopsis messor (Wainstein, 1960) | 1 | 0.01 | 2 | - | - | - | - | - | - | |
| Rhodacaridae | Dendroseius reticulatus (Sheals, 1956) | 30 | 0.33 | 14 | - | - | - | - | - | - |
| Rodacarellus francescae Athias-Henriot, 1961 | 2 | 0.02 | 2 | 6 | 0.13 | 8 | - | - | - | |
| Rodacarus reconditus Athias-Henriot, 1961 | 2 | 0.02 | 4 | - | - | - | - | - | - | |
| Veigaiidae | Veigaia nemorensis (Koch, 1839) | 64 | 0.71 | 40 | 22 | 0.48 | 10 | - | - | - |
| Veigaia exigua (Berlese, 1916) | 102 | 1.14 | 40 | 23 | 0.50 | 10 | - | - | - | |
| Zerconidae | Prozercon bulbiferus Ujvari, 2011 | 416 | 4.64 | 70 | 1 | 0.02 | 2 | - | - | - |
| Zercon cretensis Ujvari, 2008 | 52 | 0.58 | 46 | 7 | 0.15 | 12 | - | - | - | |
| Zercon salebrosus Blaszak, 1979 | 99 | 1.10 | 64 | 3 | 0.07 | 6 | - | - | - | |
| Order Trombidiformes, Suborder Sphaerolichida | ||||||||||
| Sphaerolichidae | Sphaerolichus barbarus Grandjean, 1939 | - | - | - | 2 | 0.04 | 4 | - | - | - |
| Order Trombidiformes, Suborder Prostigmata | ||||||||||
| Adamystidae | Adamystis fonsi Coineau, 1974 | - | - | - | - | - | - | 5 | 0.71 | 6 |
| Anystidae | Anystis baccarum (Linnaeus, 1758) | 3 | 0.03 | 6 | 3 | 0.07 | 6 | - | - | - |
| Erythracarus pyrrholeucus (Hermann, 1804) | 2 | 0.02 | 4 | 9 | 0.20 | 14 | 12 | 1.70 | 16 | |
| Bdellidae | Bdella muscorum Ewing, 1909 | 10 | 0.11 | 18 | - | - | - | - | - | - |
| Cyta coerulipes (Dugès, 1834) | 16 | 0.18 | 16 | 32 | 0.69 | 34 | 7 | 0.99 | 14 | |
| Hexabdella unusoculata Van der Schyff, Theron & Ueckermann, 2004 | 18 | 0.20 | 10 | 14 | 0.30 | 12 | 1 | 0.14 | 2 | |
| Odontoscirus communis (Atyeo, 1960) | 15 | 0.17 | 26 | 54 | 1.17 | 46 | 3 | 0.42 | 2 | |
| Spinibdella cronini (Baker & Balock, 1944) | 227 | 2.53 | 64 | 117 | 2.54 | 74 | 24 | 3.40 | 14 | |
| Caeculidae | Caeculidae sp. | 2 | 0.02 | 2 | 2 | 0.04 | 4 | - | - | - |
| Caligonellidae | Caligonella humilis (Koch, 1838) | 2 | 0.02 | 4 | 3 | 0.07 | 6 | 4 | 0.57 | 6 |
| Neognathus terrestris (Summers & Schlinger, 1955) | 1 | 0.01 | 2 | 16 | 0.35 | 18 | 7 | 0.99 | 10 | |
| Cocceupodidae | Cocceupodes mollicellus (Koch, 1838) | 4 | 0.04 | 6 | 3 | 0.07 | 4 | - | - | - |
| Filieupodes filiformis Jesionowska, 2010 | 143 | 1.60 | 62 | 17 | 0.37 | 8 | - | - | - | |
| Filieupodes filistellatus Jesionowska, 2010 | 29 | 0.32 | 26 | 2 | 0.04 | 2 | - | - | - | |
| Filieupodes strandtmanni (Abou-Awad & El-Bagoury, 1984) | 15 | 0.17 | 20 | 5 | 0.11 | 4 | - | - | - | |
| Linopodes motatorius (Linnaeus, 1758) | 68 | 0.76 | 50 | 10 | 0.22 | 10 | - | - | - | |
| Cryptognathidae | Favognathus sp. | 1 | 0.01 | 2 | - | - | - | - | - | - |
| Cunaxidae | Cunaxa capreolus (Berlese, 1890) | 1 | 0.01 | 2 | 3 | 0.07 | 6 | 10 | 1.42 | 10 |
| Cunaxa polita Kazmierski & Ripka, 2015 | 37 | 0.41 | 26 | 33 | 0.72 | 30 | 22 | 3.12 | 30 | |
| Cunaxoides desertus Kuznetzov & Livshitz, 1979 | - | - | - | 2 | 0.04 | 2 | - | - | - | |
| Cunaxoides paracroceus Sionti & Papadoulis, 2003 | 6 | 0.07 | 8 | 6 | 0.13 | 8 | - | - | - | |
| Puleus semistriatus Sergeyenko, 2011 | - | - | - | 1 | 0.02 | 2 | - | - | - | |
| Ereynetidae | Ereynetes sp. | 21 | 0.23 | 22 | - | - | - | - | - | - |
| Erythraeidae | Curteria sp. | 1 | 0.01 | 2 | - | - | - | - | - | - |
| Balaustium akramii Noei, 2017 | 5 | 0.06 | 10 | 8 | 0.17 | 14 | - | - | - | |
| Erythraeus budapestensis Fain & Ripka, 1998 | 54 | 0.60 | 14 | 7 | 0.15 | 12 | 1 | 0.14 | 2 | |
| Hauptmannia sp. | 1 | 0.01 | 2 | - | - | - | - | - | - | |
| Leptus sp. | - | - | - | - | - | - | 3 | 0.42 | 6 | |
| Eupodidae | Eupodes voxencollinus Thor, 1934 | 285 | 3.18 | 90 | 199 | 4.32 | 66 | - | - | - |
| Pseudoeupodes porosus Khaustov, 2014 | 82 | 0.91 | 44 | - | - | - | - | - | - | |
| Xerophiles ereynetoidalis Jesionowska, 2003 | 269 | 3.00 | 80 | 51 | 1.11 | 26 | - | - | - | |
| Iolinidae | Microtydeus beltrani Baker, 1944 | 358 | 3.99 | 42 | 64 | 1.39 | 28 | - | - | - |
| Paratydaeolus loadmani (Wood, 1965) | 21 | 0.23 | 12 | 5 | 0.11 | 8 | - | - | - | |
| Tydaeolus tenuiclaviger (Thor, 1931) | 1 | 0.01 | 2 | 16 | 0.35 | 14 | - | - | - | |
| Microspididae | Microdispus obovatus (Paoli, 1911) | 118 | 1.32 | 24 | - | - | - | - | - | - |
| Neopygmephoridae | Bakerdania sp. | 40 | 0.45 | 8 | - | - | - | - | - | - |
| Paratydeidae | Tanytydeus aegyptiacus (Soliman, 1974) | - | - | - | - | - | - | 1 | 0.14 | 2 |
| Penthaleidae | Penthaleus major (Dugès, 1834) | 13 | 0.15 | 14 | - | - | - | - | - | - |
| Pyemotidae | Pyemotes sp. | 1 | 0.01 | 2 | 1 | 0.02 | 2 | - | - | - |
| Raphignathidae | Raphignathus ensipilosus Smith-Meyer & Ueckermann, 1989 | - | - | - | 5 | 0.11 | 6 | - | - | - |
| Raphignathus hecmatanaensis Khanjani & Ueckermann, 2003 | 2 | 0.02 | 4 | 16 | 0.35 | 22 | 16 | 2.27 | 18 | |
| Rhagidiidae | Coccorhagidia clavifrons (Canestrini, 1886) | 19 | 0.21 | 20 | 1 | 0.02 | 2 | - | - | - |
| Parallelorhagidia evansi (Strandtmann & Prasse, 1977) | 2 | 0.02 | 4 | - | - | - | - | - | - | |
| Poecilophysis pratensis (Koch, 1835) | 19 | 0.21 | 28 | 1 | 0.02 | 2 | - | - | - | |
| Poecilophysis pseudoreflexa Zacharda, 1980 | 8 | 0.09 | 14 | 1 | 0.02 | 2 | - | - | - | |
| Rhagidia gigas (Canestrini, 1886) | 9 | 0.10 | 14 | - | - | - | - | - | - | |
| Sigthoria brevisensilla (Zacharda, 1980) | 1 | 0.01 | 2 | - | - | - | - | - | - | |
| Scutacaridae | Scutacarus laetificus Rack, 1966 | 42 | 0.47 | 20 | - | - | - | - | - | - |
| Siteroptidae | Neositeroptes sp. | 5 | 0.06 | 10 | 3 | 0.07 | 6 | 29 | 4.11 | 4 |
| Stigmaeidae | Eustigmaeus plumifer (Halbert, 1923) | 24 | 0.27 | 8 | 2 | 0.04 | 2 | - | - | - |
| Ledermuelleriopsis sp. | 26 | 0.29 | 30 | 55 | 1.19 | 36 | 2 | 0.28 | 2 | |
| Stigmaeus kochi Stathakis, Kapaxidi & Papadoulis, 2019 | 2 | 0.02 | 4 | 3 | 0.07 | 4 | - | - | - | |
| Storchia robusta (Berlese, 1885) | - | - | - | 3 | 0.07 | 6 | - | - | - | |
| Tarsonemidae | Tarsonemus sp. | 14 | 0.16 | 10 | 4 | 0.09 | 8 | - | - | - |
| Triophtydeidae | Pseudotriophtydeus vegei André, 1980 | 105 | 1.17 | 38 | 119 | 2.58 | 42 | 35 | 4.96 | 28 |
| Triophtydeus triophthalmus (Oudemans, 1929) | 4 | 0.04 | 6 | 20 | 0.43 | 12 | 4 | 0.57 | 6 | |
| Trombidiidae | Allothrobium fuliginosum (Hermann, 1804) | 33 | 0.37 | 42 | 32 | 0.69 | 34 | - | - | - |
| Tydeidae | Brachytydeus maga (Kuznetzov, 1973) | 5 | 0.06 | 10 | 42 | 0.91 | 34 | 19 | 2.69 | 18 |
| Brachytydeus oleae (Panou & Emmanouel, 1996) | - | - | - | 29 | 0.63 | 22 | 7 | 0.99 | 10 | |
| Brachytydeus sigthori (Baker, 1944) | 18 | 0.20 | 12 | 1 | 0.02 | 2 | - | - | - | |
| Brachytydeus volgini (Kuznetzov, 1973) | 1103 | 12.30 | 90 | 615 | 13.35 | 60 | 1 | 0.14 | 2 | |
| Brachytydeus woolleyi (Baker, 1968) | - | - | - | 4 | 0.09 | 6 | - | - | - | |
| Paralorryia sp. | - | - | - | 24 | 0.52 | 14 | - | - | - | |
| Order Sarcoptiformes, Suborder Endeostigmata | ||||||||||
| Alicorhagiidae | Alicorhagia usitata Théron, Meyer & Ryke, 1970 | 30 | 0.33 | 20 | - | - | - | - | - | - |
| Alycidae | Amphialycus oblongus (Halbert, 1920) | 11 | 0.12 | 14 | 41 | 0.89 | 32 | - | - | - |
| Laminamichaelia arbusculosa (Grandjean, 1942) | 17 | 0.19 | 12 | - | - | - | - | - | - | |
| Bimichaelia sarekensis Tragardh, 1910 | 118 | 1.32 | 52 | 4 | 0.09 | 6 | - | - | - | |
| Pachygnathus villosus Dugês, 1836 | 54 | 0.60 | 42 | 9 | 0.20 | 8 | - | - | - | |
| Nanorchestidae | Nanorchestes arboriger (Berlese, 1904) | 558 | 6.22 | 80 | 94 | 2.04 | 38 | - | - | - |
| Caenonychus sp. | 39 | 0.44 | 26 | 347 | 7.53 | 64 | 302 | 42.78 | 84 | |
| Order Sarcoptiformes, Suborder Oribatida | ||||||||||
| Acaridae | Acotyledon sp. | 37 | 0.41 | 26 | 4 | 0.09 | 8 | 1 | 0.14 | 2 |
| Adelphacaridae | Aphelacarus acarinus (Berlese, 1910) | 7 | 0.08 | 12 | 9 | 0.20 | 12 | 21 | 2.97 | 22 |
| Aleurodamaeidae | Aleurodamaeus setosus (Berlese, 1883) | 1 | 0.01 | 2 | - | - | - | - | - | - |
| Brachychthoniidae | Liochthonius brevis (Michael, 1888) | 487 | 5.43 | 70 | 6 | 0.13 | 6 | - | - | - |
| Liochthonius strenzkei Forsslund, 1963 | 83 | 0.93 | 32 | 5 | 0.11 | 8 | - | - | - | |
| Sellnickochthonius rostratus (Jacot, 1936) | 17 | 0.19 | 14 | - | - | - | - | - | - | |
| Sellnickochthonius meridionalis (Bernini, 1973) | 24 | 0.27 | 10 | - | - | - | - | - | - | |
| Sellnickochthonius aokii (Chinone, 1974) | 18 | 0.20 | 12 | - | - | - | - | - | - | |
| Ceratozetidae | Trichoribates sp. | 1 | 0.01 | 2 | 1 | 0.02 | 2 | - | - | - |
| Latilamellobates naltschicki Shaldybina, 1971 | 9 | 0.10 | 8 | 8 | 0.17 | 8 | - | - | - | |
| Chamobatidae | Chamobates voigtsi (Oudemans, 1902) | 248 | 2.77 | 82 | 214 | 4.64 | 74 | 2 | 0.28 | 4 |
| Cosmochthoniidae | Cosmochthonius lanatus (Michael, 1885) | 10 | 0.11 | 14 | 118 | 2.56 | 46 | 6 | 0.85 | 12 |
| Ctenacaridae | Ctenacarus araneola (Grandjean, 1932) | 2 | 0.02 | 2 | - | - | - | - | - | - |
| Damaeidae | Belba dubinini Bulanova-Zachvatkina, 1962 | 56 | 0.62 | 40 | 35 | 0.76 | 30 | 1 | 0.14 | 2 |
| Damaeolidae | Damaeolus ornatissimus Csiszár, 1962 | 18 | 0.20 | 4 | - | - | - | - | - | - |
| Damaeolus asperatus (Berlese, 1904) | 6 | 0.07 | 6 | - | - | - | - | - | - | |
| Galumnidae | Acrogalumna longipluma (Berlese, 1904) | 5 | 0.06 | 8 | - | - | - | - | - | - |
| Pergalumna nervosa (Berlese, 1914) | 12 | 0.13 | 14 | 4 | 0.09 | 4 | 1 | 0.14 | 2 | |
| Galumna tarsipennata Oudemans, 1914 | 15 | 0.17 | 16 | 5 | 0.11 | 6 | - | - | - | |
| Gymnodamaeidae | Adrodamaeus femoratus (Koch, 1839) | 69 | 0.77 | 28 | 10 | 0.22 | 14 | - | - | - |
| Jacotella frondeus (Kulijev, 1979) | 35 | 0.39 | 32 | 271 | 5.88 | 66 | 26 | 3.68 | 22 | |
| Haplochthoniidae | Haplochthonius simplex (Willmann, 1930) | 13 | 0.15 | 4 | 6 | 0.13 | 10 | 11 | 1.56 | 8 |
| Histiostomatidae | Histiostoma sp. | 13 | 0.15 | 18 | 1 | 0.02 | 2 | - | - | - |
| Liacaridae | Liacarus coracinus (Koch, 1841) | 4 | 0.04 | 8 | 2 | 0.04 | 4 | - | - | - |
| Licnodamaeidae | Licnodamaeus pulcherrimus (Paoli, 1908) | - | - | - | 75 | 1.63 | 20 | - | - | - |
| Neoliodidae | Neoliodes theleproctus (Hermann, 1804) | 19 | 0.21 | 18 | 10 | 0.22 | 18 | 3 | 0.42 | 6 |
| Oppiidae | Berniniella sp. | 35 | 0.39 | 18 | 2 | 0.04 | 2 | - | - | - |
| Dissorhina ornata (Oudemans, 1900) | 61 | 0.68 | 18 | 1 | 0.02 | 2 | - | - | - | |
| Oppiella nova (Oudemans, 1902) | 12 | 0.13 | 10 | - | - | - | - | - | - | |
| Rhinoppia obsoleta (Paoli, 1908) | 597 | 6.66 | 84 | 17 | 0.37 | 14 | - | - | - | |
| Oribatulidae | Oribatula tibialis (Nicolet, 1855) | 240 | 2.68 | 90 | 1250 | 27.13 | 100 | 116 | 16.43 | 50 |
| Zygoribatula glabra (Michael, 1890) | 34 | 0.38 | 24 | 7 | 0.15 | 10 | - | - | - | |
| Phenopelopidae | Eupelops acromios (Hermann, 1804) | 16 | 0.18 | 18 | 4 | 0.09 | 8 | - | - | - |
| Peloptulus gibbus Mihelčič, 1857 | 3 | 0.03 | 4 | 10 | 0.22 | 2 | - | - | - | |
| Phthiracaridae | Steganacarus lasithiensis Mahunka, 1979 | 9 | 0.10 | 14 | 2 | 0.04 | 4 | - | - | - |
| Punctoribatidae | Punctoribates mundus Shaldybina, 1973 | 111 | 1.24 | 12 | - | - | - | - | - | - |
| Quadroppiidae | Quadroppia monstruosa Hammer, 1961 | 88 | 0.98 | 38 | 2 | 0.04 | 4 | - | - | - |
| Scheloribatidae | Scheloribates pallidulus (Koch, 1841) | 30 | 0.33 | 28 | 26 | 0.56 | 22 | - | - | - |
| Scutoverticidae | Scutovertex sculptus Michael, 1879 | 20 | 0.22 | 10 | 7 | 0.15 | 8 | 2 | 0.28 | 4 |
| Sphaerochthoniidae | Sphaerochthonius splendidus (Berlese, 1904) | 1 | 0.01 | 2 | 78 | 1.69 | 44 | - | - | - |
| Suctobelbidae | Suctobelbella subtrigona (Oudemans, 1916) | 436 | 4.86 | 88 | 5 | 0.11 | 6 | - | - | - |
| Tectocepheidae | Tectocepheus velatus (Michael, 1880) | 699 | 7.80 | 74 | 30 | 0.65 | 20 | 1 | 0.14 | 2 |
| Tectocepheus alatus Berlese, 1913 | 120 | 1.34 | 52 | 4 | 0.09 | 6 | - | - | - | |

References
- Schwartzenberg, K. Moss biology and phytohormones-cytokinins in Physcomitrella. Plant Biol. 2006, 8, 382–388. [Google Scholar] [CrossRef]
- Glime, J.M. Physiological Ecology. In Bryophyte Ecology; Michigan Technological University: Houghton, MI, USA, 2017; Volume 1. [Google Scholar]
- Gerson, U. Bryophytes and Invertebrates. In Bryophyte Ecology; Smith, A.J.E., Ed.; Springer: Dordrecht, The Netherlands, 1982; pp. 291–332. [Google Scholar]
- Glime, J.M. Arthropods: Habitat Relations. In Bryophyte Ecology; Glime, J.M., Ed.; Bryological Interaction; Michigan Technological University: Houghton, MI, USA, 2017; Chapter 7-1; Volume 2, pp. 1–20. [Google Scholar]
- Gerson, U. Moss-Arthropod Associations. Bryologist 1969, 72, 495–500. [Google Scholar] [CrossRef]
- Glime, J.M. Arthropods: Mite Habitats, Minor Arachnids, and Myriapods. In Bryophyte Ecology; Glime, J.M., Ed.; Bryological Interaction; Michigan Technological University: Houghton, MI, USA, 2017; Chapter 9-2; Volume 2, pp. 1–56. [Google Scholar]
- Gulvik, M.E. Mites (Acari) as indicators of soil biodiversity and land use monitoring: A review. Pol. J. Ecol. 2007, 55, 415–440. [Google Scholar]
- Gergócs, V.; Hufnagel, L. Application of oribatid mites as indicators. Appl. Ecol. Environ. Res. 2009, 7, 79–98. [Google Scholar] [CrossRef]
- Sabbatini Peverieri, G.; Romano, M.; Pennacchio, F.; Nannelli, R.; Roversi, P.F. Gamasid soil mites (Arachnida Acari) as indicators of the conservation status of forests. Redia 2011, 94, 53–58. [Google Scholar]
- Manu, M.; Băncilă, R.I.; Bîrsan, C.C.; Mountford, O.; Onete, M. Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania. Sci. Rep. 2021, 11, 3794. [Google Scholar] [CrossRef] [PubMed]
- Salmane, I.; Brumelis, G. The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil. Pedobiologia 2008, 52, 69–76. [Google Scholar] [CrossRef]
- Arroyo, J.; Kenny, J.; Bolger, T. Variation between mite communities in Irish forest types–importance of bark and moss cover in canopy. Pedobiologia 2013, 56, 241–250. [Google Scholar] [CrossRef]
- Bokhorst, S.; Wardle, D.A.; Nilsson, M.-C.; Gundale, M.J. Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence. Plant Soil 2014, 379, 121–133. [Google Scholar] [CrossRef]
- Seniczak, A.; Seniczak, S.; Iturrondobeitia, J.C.; Solhøy, T.; Flatberg, K.I. Diverse Sphagnum mosses support rich moss mite communities (Acari, Oribatida) in Mires of Western Norway. Wetlands 2020, 40, 1339–1351. [Google Scholar] [CrossRef]
- Seniczak, A.; Seniczak, S.; Starý, J.; Kaczmarek, S.; Jordal, B.H.; Kowalski, J.; Roth, S.; Djursvoll, P.; Bolger, T. High Diversity of mites (Acari: Oribatida, Mesostigmata) supports the high conservation value of a broadleaf forest in Eastern Norway. Forests 2021, 12, 1098. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 97–109. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of global change on Mediterranean forests and their services. Forests 2017, 8, 463. [Google Scholar] [CrossRef]
- Wehner, K.; Heethoff, M.; Brückner, A. Seasonal fluctuation of oribatid mite communities in forest microhabitats. PeerJ 2018, 6, e4863. [Google Scholar] [CrossRef]
- Panou, H.N.; Emmanouel, N.G. New records of tydeid mites from Greece with description of Lorryia mantiniensis sp. nov. (Acari: Tydeidae). Int. J. Acarol. 1995, 21, 17–21. [Google Scholar] [CrossRef]
- Panou, H.N.; Emmanouel, N.G. Lorryia arkadiensis, a new species of tydeid mite from Greece (Acari: Prostigmata). Int. J. Acarol. 1995, 21, 217–221. [Google Scholar] [CrossRef]
- Papadoulis, G.T.; Emmanouel, N.G.; Kapaxidi, E.V. Phytoseiidae of Greece and Cyprus (Acari: Mesostigmata); Indira Publishing House: West Bloomfield, MI, USA, 2009; pp. 1–200. [Google Scholar]
- Mahunka, S.; Horváth, E.; Kontschán, J. Oribatid mites of the Balkan Peninsula (Acari: Oribatida). Opusc. Zool. Budapest 2013, 44, 11–96. [Google Scholar]
- Kontschán, J. Uropodina mites of the Balkan Peninsula (Acari: Mesostigmata). Opusc. Zool. Budapest 2013, 44, 97–131. [Google Scholar]
- Stathakis, T.I.; Kapaxidi, E.V.; Papadoulis, G.T. Two new species of the genus Neoseiulus Hughes (Acari: Phytoseiidae) from Greece with re-description of Neoseiulus leucophaeus (Athias-Henriot). Zootaxa 2013, 3681, 563–572. [Google Scholar] [CrossRef]
- Stathakis, T.I.; Kapaxidi, E.V.; Papadoulis, G.T. The genus Eustigmaeus Berlese (Acari: Stigmaeidae) from Greece. Zootaxa 2016, 4191, 1–102. [Google Scholar] [CrossRef] [PubMed]
- Stathakis, T.I.; Kapaxidi, E.V.; Papadoulis, G.T. The genus Stigmaeus Koch (Acari: Stigmaeidae) from Greece. Syst. Appl. Acarol. 2019, 24, 2010–2093. [Google Scholar] [CrossRef]
- Kritikou, M.; Mazi, A.-M.; Dimaki, M. Evaluation and Assessment of Biodiversity in the Wider Area of Kaisariani Aesthetic Forest Within the Natura 2000 Sites GR3000006 (Hymettus–Kaisariani Aesthetic Forest–Vouliagmeni Lake) and GR3000015 (Mount Hymettus); Natural Environment & Climate Change Agency (NECCA)–Management Unit of Parnitha National Park, Schinias and Saronic Gulf Protected Areas: Athens, Greece, 2022. [Google Scholar]
- NATURA 2000 Viewer. Available online: https://natura2000.eea.europa.eu/ (accessed on 14 September 2025).
- Athias-Henriot, C. Mediterranean Edaphic Mesostigmata (Urop. Excl.) (Acaromorpha, Anactinotrichida) (Collect. Prof. H. Franz et C. Athias-Henriot) First Serie. Acarologia 1961, 3, 381–509. [Google Scholar]
- Strandtmann, R.W. The eupodoid mites of Alaska (Acarina: Prostigmata). Pac. Insects 1971, 13, 75–118. [Google Scholar]
- Mahunka, S. Neue und interessante Milben aus dem Genfer Museum VIII. Tarsonemina-Arten (Acari) aus Griechenland. Biol. Gallo-Hell. 1974, 5, 209–225. [Google Scholar]
- Ghiljarov, M.S.; Krivolutskij, D.A. Opredelitel Obitajuščich v Počve Kleščej. Sarcoptiformes; Nauka: Moscow, Russia, 1975; pp. 1–492. [Google Scholar]
- Zacharda, M. Soil mites of the family Rhagidiidae (Actinedida: Eupodoidea). Morphology, systematics, ecology. Acta Univ. Carol. Biol. 1980, 5-6, 489–785. [Google Scholar]
- Balogh, J.; Mahunka, S. The Soil Mites of the World. Vol. 1. Primitive Oribatids of the Palearctic Region; Akadémiai Kiadó: Budapest, Hungary, 1983; pp. 1–372. [Google Scholar]
- Seniczak, S.; Solhøy, T. The morphology of juvenile stages of moss mites of the family Chamobatide Thor (Acarida: Oribatida), I. Ann. Zool. 1988, 41, 491–502. [Google Scholar]
- Karg, W. Raubmilben: Acari (Acarina), Milben Parasitiformes (Allactinochaeta) Cohors Gamasina Leach; Gustav Fischer Verlag: Jena, Germany, 1993; pp. 1–523. [Google Scholar]
- Pérez-Íñigo, C. Acari: Oribatei, Poronota. In Fauna Ibérica; Ramos, M.A., Ed.; Museo Nacional de Ciencias Naturales CSIC: Madrid, Spain, 1993; Volume 3, pp. 1–320. [Google Scholar]
- Pérez-Íñigo, C. Acari: Oribatei, Gymnonota I. In Fauna Ibérica; Ramos, M.A., Ed.; Museo Nacional de Ciencias Naturales CSIC: Madrid, Spain, 1997; Volume 9, pp. 1–373. [Google Scholar]
- Panou, E. Contribution to the Taxonomy and Study of the Feeding Habits of Tydeidae (Acari: Prostigmata) of Greece. Ph.D. Thesis, Agricultural University of Athens, Athens, Greece, 1998. [Google Scholar]
- Subías, L.S.; Arillo, A. Acari, Oribatei, Gymnonota II. Oppioidea. In Fauna Iberica; Ramos, M.A., Ed.; Museo Nacional de Ciencias Naturales CSIC: Madrid, Spain, 2001; Volume 15, pp. 1–289. [Google Scholar]
- Weigmann, G. Hornmilben (Oribatida). Die Tierwelt Deutschlands; Goecke and Evers: Keltern, Germany, 2006; Volume 76, pp. 1–520. [Google Scholar]
- Khaustov, A.A. Mites of the Family Scutacaridae of Eastern Palaearctic; Akademperiodyka: Kiev, Ukraine, 2008; pp. 1–291. [Google Scholar]
- Mašán, P.; Fenďa, P.; Mihál, I. New Edaphic mites of the genus Veigaia from Slovakia and Bulgaria, with a key to the European species (Acari, Mesostigmata, Veigaiidae). Zootaxa 2008, 1897, 1–19. [Google Scholar] [CrossRef]
- Krantz, G.W.; Walter, D.E. A Manual of Acarology, 3rd ed.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 1–807. [Google Scholar]
- Jesionowska, K. Cocceupodidae, a new family of eupodoid mites, with description of a new genus and two new species from Poland. Part I. (Acari: Prostigmata: Eupodoidea). Genus 2010, 21, 637–658. [Google Scholar]
- Uusitalo, M. Terrestrial species of the genus Nanorchestes (Endeostigmata: Nanorchestidae) in Europe. In Trends in Acarology; Sabelis, M.W., Bruin, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 161–166. [Google Scholar]
- Uusitalo, M. Revision of the Family Alycidae (Acariformes, Acari), with Special Reference to European Species. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2010. [Google Scholar]
- Ujvári, Z. Six new species of Prozercon Sellnick, 1943 (Acari, Mesostigmata, Zerconidae) from Greece, with remarks on the genus. Zootaxa 2011, 2785, 1–31. [Google Scholar] [CrossRef]
- Seniczak, S.; Seniczak, A. Differentiation of external morphology of Damaeidae (Acari: Oribatida) in light of the ontogeny of three species. Zootaxa 2011, 2775, 1–36. [Google Scholar] [CrossRef]
- Pfingstl, T.; Krisper, G. No difference in the juveniles of two Tectocepheus species (Acari: Oribatida, Tectocepheidae). Acarologia 2011, 51, 199–218. [Google Scholar] [CrossRef]
- Seniczak, S.; Seniczak, A. Differentiation of external morphology of Oribatulidae (Acari: Oribatida) in light of the ontogeny of three species. Zootaxa 2012, 3184, 1–34. [Google Scholar] [CrossRef]
- Abo-Shnaf, R.I.A.; Castilho, R.C.; Moraes, G.J. de Two new species of Rhodacaridae (Acari: Mesostigmata) from Egypt and a key to the species of the family from the Mediterranean region. Zootaxa 2013, 3718, 28–38. [Google Scholar] [CrossRef]
- Khaustov, A. A New genus and species in the mite family Eupodidae (Acari, Eupodoidea) from Crimea. ZooKeys 2014, 422, 11–22. [Google Scholar] [CrossRef]
- Skvarla, M.J.; Fisher, J.R.; Dowling, A. A Review of Cunaxidae (Acariformes, Trombidiformes): Histories and diagnoses of subfamilies and genera, keys to world species, and some new locality records. ZooKeys 2014, 418, 1. [Google Scholar] [CrossRef]
- Hernandes, F.A.; Skvarla, M.J.; Fisher, J.R.; Dowling, A.P.G.; Ochoa, R.; Ueckermann, E.A.; Bauchan, G.R. Catalogue of snout mites (Acariformes: Bdellidae) of the world. Zootaxa 2016, 4152, 1–83. [Google Scholar] [CrossRef] [PubMed]
- Karaca, M.; Urhan, R. Five new species of Zercon C. L. Koch, 1836 (Acari: Zerconidae) from Northwestern Turkey. Zootaxa 2016, 4127, 31–59. [Google Scholar] [CrossRef]
- Silva, G.L.D.; Metzelthin, M.H.; Silva, O.S.D.; Ferla, N.J. Catalogue of the mite family Tydeidae (Acari: Prostigmata) with the world key to the species. Zootaxa 2016, 4135, 1–68. [Google Scholar] [CrossRef]
- Makarova, O.L.; Huhta, V. A new species of Arctoseius Thor, 1930 (Acari: Ascidae) from taiga regions of the Palaearctic, with a key to Arctoseius species of Fennoscandia, NW Europe. Zootaxa 2017, 4268, 554–562. [Google Scholar] [CrossRef]
- Witaliński, W. Key to the world species of Holoparasitus Oudemans, 1936 (Acari: Parasitiformes: Parasitidae). Zootaxa 2017, 4277, 301–351. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Yi, T.-C.; Guo, J.-J.; Jin, D.-C. The genus Erythraeus (Acari: Erythraeidae) from China with descriptions of two new species and a key to larval species of the genus worldwide</Strong. Zootaxa 2019, 4647, 54–82. [Google Scholar] [CrossRef]
- Mašán, P. A New wood-inhabiting mite species of the genus Dendroseius Karg, 1965 (Acari, Mesostigmata, Rhodacaridae) from Central Europe (Slovakia). ZooKeys 2020, 984, 49–57. [Google Scholar] [CrossRef]
- Šundić, M.; Noei, J. Description of Balaustium ryszardi sp. n. (Prostigmata) from Greece with a key to the world larval species. Biologia 2021, 76, 2609–2617. [Google Scholar] [CrossRef]
- Bolton, S.J.; Bauchan, G.R. Caenonychus, a senior synonym of Speleorchestes (Acariformes: Nanorchestidae). Syst. Appl. Acarol. 2022, 26, 241–249. [Google Scholar] [CrossRef]
- Khan, E.M.; Kamran, M.; Mirza, J.H.; Alatawi, F.J. New subgenera and a new species of the genus Raphignathus Dugès (Prostigmata, Raphignathidae), with taxonomic notes on the genus Neoraphignathus Smiley & Moser. ZooKeys 2023, 1176, 165–180. [Google Scholar] [CrossRef]
- Mirza, J.H.; Kamran, M.; Alatawi, F.J. The family Caligonellidae Grandjean (Acari: Raphignathoidea): A new species and key to world species. Eur. Zool. J. 2025, 92, 1–16. [Google Scholar] [CrossRef]
- Walter, D.E.; Proctor, H.C. Mites in soil and litter systems. In Mites: Ecology, Evolution & Behaviour: Life at a Microscale; Walter, D.E., Proctor, H.C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 161–228. [Google Scholar]
- Magilton, M.; Maraun, M.; Emmerson, M.; Caruso, T. Oribatid mites reveal that competition for resources and trophic structure combine to regulate the assembly of diverse soil animal communities. Ecol. Evol. 2019, 9, 8320–8330. [Google Scholar] [CrossRef]
- Potapov, A.M.; Beaulieu, F.; Birkhofer, K.; Bluhm, S.L.; Degtyarev, M.I.; Devetter, M.; Goncharov, A.A.; Gongalsky, K.B.; Klarner, B.; Korobushkin, D.I.; et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 2022, 97, 1057–1117. [Google Scholar] [CrossRef]
- Lu, J.-Z.; Cordes, P.H.; Maraun, M.; Scheu, S. High consistency of trophic niches in generalist arthropod species (Oribatida, Acari) across soil depth and forest type. Ecol. Evol. 2022, 12, e9572. [Google Scholar] [CrossRef]
- Ogle, D.H.; Doll, J.C.; Wheeler, A.P. FSA: Simple Fisheries Stock Assessment Methods. R Package Version 0.10.0. 2025. Available online: https://CRAN.R-project.org/package=FSA (accessed on 10 August 2025).
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef]
- Tischler, W. Grundzüge der Terrestrischen Tierökologie; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1949; pp. 1–220. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill Numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Hsieh, T.; Ma, K.; Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R Package Version 3.0.2. 2025. Available online: https://CRAN.R-project.org/package=iNEXT (accessed on 10 August 2025).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Henry, M.; Stevens, H.; et al. Vegan: Community Ecology Package. R Package Version 2.7-1. 2025. Available online: http://CRAN.R-project.org/package=vegan (accessed on 10 August 2025).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, D.; Villeger, S.; Bortoli, J.D.; Leprieur, F.; Logez, M.; Martinez-Santalla, S.; Martin-Devasa, R.; Gomez-Rodriguez, C.; Crujeiras, R.M.; et al. Betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R Package Version 1.6.1. 2025. Available online: https://CRAN.R-project.org/package=betapart (accessed on 10 August 2025).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; pp. 1–260. [Google Scholar]
- Lex, A.; Gehlenborg, N.; Strobelt, H.; Vuillemot, R.; Pfister, H. UpSet: Visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Cáceres, M.D.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- McGeoch, M.A.; Van Rensburg, B.J.; Botes, A. The verification and application of bioindicators: A case study of dung beetles in a savanna ecosystem. J. Appl. Ecol. 2002, 39, 661–672. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, Developments in Environmental Modelling, 3rd ed.; Elsevier: Amsterdam, The Netherlands; pp. 1–419.
- Murvanidze, M.; Mumladze, L. Annotated checklist of Georgian Oribatid Mites. Zootaxa 2016, 4089, 1–81. [Google Scholar] [CrossRef]
- Schatz, H.; Fortini, L.; Fusco, T.; Casale, F.; Jacomini, C.; Giulio, A.D. Oribatid mites (Acari, Oribatida) from “Parco Naturale Delle Alpi Marittime” (Piedmont, Italy). Zootaxa 2021, 5082, 501–540. [Google Scholar] [CrossRef]
- Subías, L.S. Listado sistemático, sinonímico y biogeográfico de los Ácaros Oribátidos (Acariformes, Oribatida) del mundo (1758−2002). Graellsia 2004, 60, 3–305. [Google Scholar] [CrossRef]
- Migliorini, M. Oribatid mite (Arachnida: Oribatida) coenoses from SW Sardinia. Zootaxa 2009, 2318, 8–37. [Google Scholar] [CrossRef]
- Siepel, H. Checklist of the endeostigmatic mites of the Netherlands (Acari: Sarcoptiformes: Endeostigmata). Neth. Faun. Meded. 2022, 59, 57–64. [Google Scholar]
- Beron, P. ACARORUM CATALOGUS X. Trombidiformes, Prostigmata, Superfamilia Labidostommatoidea (Labidostommatidae), Superfamilia Eupodoidea, (Eupodidae, Dendrochaetidae, Rhagidiidae, Eriorhynchidae, Pentapalpidae, Penthalodidae, Penthaleidae, Proterorhagiidae, Strandtmanniidae), Superfamilia Tydeoidea, Ereynetidae, Superfamily Paratydeoidea, Paratydeidae, Superfamilia Anystoidea, (Anystidae, Erythracaridae, Teneriffiidae, Pseudocheylidae, Stigmocheylidae), Superfamilia Caeculoidea (Caeculidae), Superfamilia Adamystoidea (Adamystidae), Superfamilia Pomerantzioidea (Pomerantziidae); Pensoft & National Museum of Natural History: Sofia, Bulgaria, 2022. [Google Scholar] [CrossRef]
- Laska, A.; Puchalska, E.; Mikołajczyk, M.; Gwiazdowicz, D.J.; Kaźmierski, A.; Niedbała, W.; Błoszyk, J.; Olszanowski, Z.; Szymkowiak, J.; Hałas, N.; et al. Mites inhabiting nests of wood warbler, Phylloscopus sibilatrix (Aves: Passeriformes), in the Wielkopolska National Park in Western Poland. Exp. Appl. Acarol. 2023, 89, 393–416. [Google Scholar] [CrossRef]
- Manu, M.; Bancila, R.; Onete, M. Importance of moss habitats for mesostigmatid mites (Acari: Mesostigmata) in Romania. Turk. J. Zool. 2018, 42, 673–683. [Google Scholar] [CrossRef]
- Gergócs, V. SeasonaL change of oribatid mite communities (Acari, Oribatida) in three different types of microhabitats in an oak forest. Appl. Ecol. Env. Res. 2011, 9, 181–195. [Google Scholar] [CrossRef]
- Seniczak, A.; Iturrondobeitia, J.C.; Seniczak, S. Vertical distribution of mites (Acari) in a “Miniature Forest” of Sphagnum mosses in a forest bog in Western Norway. Forests 2024, 15, 957. [Google Scholar] [CrossRef]
- Wu, T.; Su, F.; Han, H.; Du, Y.; Yu, C.; Wan, S. Responses of soil microarthropods to warming and increased precipitation in a semiarid temperate steppe. Appl. Soil Ecol. 2014, 84, 200–207. [Google Scholar] [CrossRef]
- Aupic-Samain, A.; Santonja, M.; Chomel, M.; Pereira, S.; Quer, E.; Lecareux, C.; Limousin, J.-M.; Ourcival, J.-M.; Simioni, G.; Gauquelin, T.; et al. Soil biota response to experimental rainfall reduction depends on the dominant tree species in mature Northern Mediterranean forests. Soil Biol. Biochem. 2021, 154, 108122. [Google Scholar] [CrossRef]
- Moraza, M.L. Effects of reforestation with conifers on the communities of Mesostigmatic mites in Northern Spain (Acari: Mesostigmata). In Trends in Acarology, Proceedings of the 12th International Congress; Sabelis, M.W., Bruin, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 129–133. [Google Scholar]
- Peguero, G.; Folch, E.; Liu, L.; Ogaya, R.; Peñuelas, J. Divergent effects of drought and nitrogen deposition on microbial and arthropod soil communities in a Mediterranean forest. Eur. J. Soil Biol. 2021, 103, 103275. [Google Scholar] [CrossRef]
- Walter, D.E.; Ikonen, E.K. Species, guilds, and functional groups: Taxonomy and behavior in nematophagous arthropods. J. Nematol. 1989, 21, 315–327. [Google Scholar]
- Martikainen, E.; Huhta, V. Interactions between nematodes and predatory mites in raw humus soil: A microcosm experiment. Rev. Ecol. Biol. Sol 1990, 27, 13–20. [Google Scholar]
- Zacharda, M.; Kučera, T. The Rhagidiidae (Acari: Prostigmata) in NW Lapland: Could their assemblages be climate warming monitors related to environmental and habitat patterns? Pedobiologia 2010, 54, 1–8. [Google Scholar] [CrossRef]
- Wallwork, J.A. Distribution patterns and population dynamics of the micro-arthropods of a desert soil in Southern California. J. Anim. Ecol. 1972, 41, 291–310. [Google Scholar] [CrossRef]
- Mackay, W.P.; Silva, S.; Whitford, W.G. Diurnal activity patterns and vertical migration in desert soil microarthropods. Pedobiologia 1987, 30, 65–72. [Google Scholar] [CrossRef]
- Rounsevell, D.E.; Greenslade, P. Cuticle structure and habitat in the Nanorchestidae (Acari: Prostigmata). Hydrobiologia 1988, 165, 209–212. [Google Scholar] [CrossRef]
- Walter, D.E. Trophic behavior of “mycophagous” microarthropods. Ecology 1987, 68, 226–229. [Google Scholar] [CrossRef]
- Vermaak, M.; Jensen, K.; Janion-Scheepers, C.; Terblanche, J.S. Assessing the potential for predator-prey interactions in mesofaunal arthropod communities through temperature dependence of locomotion. J. Therm. Biol. 2025, 128, 104084. [Google Scholar] [CrossRef]
- Schneider, K.; Migge, S.; Norton, R.A.; Scheu, S.; Langel, R.; Reineking, A.; Maraun, M. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biol. Biochem. 2004, 36, 1769–1774. [Google Scholar] [CrossRef]
- Maraun, M.; Erdmann, G.; Fischer, B.M.; Pollierer, M.M.; Norton, R.A.; Schneider, K.; Scheu, S. Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biol. Biochem. 2011, 43, 877–882. [Google Scholar] [CrossRef]
- Belnap, J.; Lange, O.L. Biological Soil Crusts: Structure, Function, and Management; Springer: Berlin/Heidelberg, Germany, 2003; Volume 150, pp. 1–506. [Google Scholar]
- Neher, D.A.; Lewins, S.A.; Weicht, T.R.; Darby, B.J. Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan Deserts. J. Arid Environ. 2009, 73, 672–677. [Google Scholar] [CrossRef]










| Classes | March | May | July |
|---|---|---|---|
| Eudominant (D > 10%) | Brachytydeus volgini (12.30%) | B. volgini (13.35%) O. tibialis (27.13%) | Caenonychus sp. (42.78%) O. tibialis (16.43%) |
| Dominant (D 5–10%) | Nanorchestes arboriger(6.22%) Liochthonius brevis (5.43%) Rhinoppia obsoleta (6.66%) Tectocepheus velatus (7.80%) | Caenonychus sp. (7.53%) Jacotella frondeus (5.88%) | - |
| Euconstant (C 75–100%) | Paragamasus sp. (84%) Eupodes voxencollinus (90%) Xerophiles ereynetoidalis (80%) B. volgini (90%) N. arboriger (80%) Chamobates voigtsi (82%) R. obsoleta (84%) Oribatula tibialis (90%) Suctobelbella subtrigona (88%) | O. tibialis (100%) | Caenonychus sp. (84%) |
| Constant (C 50–75%) | Prozercon bulbiferus (70%) Zercon salebrosus (64%) Spinibdella cronini (64%) Filieupodes filiformis (62%) Linopodes motatorius (50%) Bimichaelia sarekensis (52%) L. brevis (70%) T. velatus (74%) Tectocepheus alatus (52%) | S. cronini (74%) E. voxencollinus (66%) B. volgini (60%) Caenonychus sp. (64%) C. voigtsi (74%) J. frondeus (66%) | O. tibialis (50%) |
| Hill Numbers | Month | Observed | Asymptotic | s.e. | 95% CI |
|---|---|---|---|---|---|
| Species richness (q = 0) | March | 121.00 | 131.89 | 11.27 | 121.00–153.98 |
| May | 101.00 | 105.10 | 5.16 | 101.00–116.11 | |
| July | 34.00 | 44.65 | 10.83 | 34.00–65.89 | |
| Shannon diversity (q = 1) | March | 37.43 | 37.71 | 0.49 | 36.76–38.67 |
| May | 21.20 | 21.46 | 0.46 | 20.56–22.36 | |
| July | 4.52 | 4.55 | 0.31 | 3.93–5.16 | |
| Simpson diversity (q = 2) | March | 21.93 | 21.98 | 0.40 | 21.20–22.76 |
| May | 9.17 | 9.19 | 0.25 | 8.70–9.68 | |
| July | 4.52 | 4.55 | 0.31 | 3.93–5.16 |
| Month | Species | Specificity (A) | Fidelity (B) | IndVal | p-Value |
|---|---|---|---|---|---|
| March | S. subtrigona | 0.9887 | 0.8800 | 0.933 | 0.001 |
| R. obsoleta | 0.9723 | 0.8400 | 0.904 | 0.001 | |
| Paragamasus sp. | 0.9008 | 0.8400 | 0.870 | 0.001 | |
| T. velatus | 0.9573 | 0.7400 | 0.842 | 0.001 | |
| P. bulbiferus | 0.9976 | 0.7000 | 0.836 | 0.001 | |
| L. brevis | 0.9878 | 0.7000 | 0.832 | 0.001 | |
| N. arboriger | 0.8558 | 0.8000 | 0.827 | 0.001 | |
| X. ereynetoidalis | 0.8406 | 0.8000 | 0.820 | 0.001 | |
| Z. salebrosus | 0.9706 | 0.6400 | 0.788 | 0.001 | |
| F. filiformis | 0.8938 | 0.6200 | 0.744 | 0.001 | |
| T. alatus | 0.9677 | 0.5200 | 0.709 | 0.001 | |
| B. sarekensis | 0.9672 | 0.5200 | 0.709 | 0.001 | |
| May | J. frondeus | 0.8060 | 0.6600 | 0.729 | 0.001 |
| March–May | O. tibialis | 0.9170 | 0.9500 | 0.933 | 0.001 |
| E. voxencollinus | 1.0000 | 0.7800 | 0.883 | 0.001 | |
| C. voigtsi | 0.9950 | 0.7800 | 0.881 | 0.001 | |
| B. volgini | 0.9993 | 0.7500 | 0.866 | 0.001 | |
| May–July | Caenonychus sp. | 0.9471 | 0.7957 | 0.868 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stathakis, T.; Karoutsou, X.; Kontopoulos, N.; Panou, E. High Diversity and Species Turnover of Moss-Dwelling Mites in a Peri-Urban Mediterranean Forest. Forests 2025, 16, 1636. https://doi.org/10.3390/f16111636
Stathakis T, Karoutsou X, Kontopoulos N, Panou E. High Diversity and Species Turnover of Moss-Dwelling Mites in a Peri-Urban Mediterranean Forest. Forests. 2025; 16(11):1636. https://doi.org/10.3390/f16111636
Chicago/Turabian StyleStathakis, Theodoros, Xeni Karoutsou, Nikolaos Kontopoulos, and Eleni Panou. 2025. "High Diversity and Species Turnover of Moss-Dwelling Mites in a Peri-Urban Mediterranean Forest" Forests 16, no. 11: 1636. https://doi.org/10.3390/f16111636
APA StyleStathakis, T., Karoutsou, X., Kontopoulos, N., & Panou, E. (2025). High Diversity and Species Turnover of Moss-Dwelling Mites in a Peri-Urban Mediterranean Forest. Forests, 16(11), 1636. https://doi.org/10.3390/f16111636

