A Metabarcoding Amplicon Sequencing Approach for Reliable Early Detection and Surveillance of Oak Wilt (Bretziella fagacearum) from Trap-Collected Nitidulid Beetles
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Protocol for Nitidulid Collection
2.2. DNA Extraction
2.3. Nested PCR, Gel Electrophoresis, and Amplicon Sequencing
2.4. Bioinformatic Analysis of Amplicon Sequencing Data
3. Results and Discussion
3.1. Gel Electrophoresis of ITS1–ITS4 and Nested CF01–CF02-TS PCR Products
3.2. Sequencing of B. fagacearum Amplification Products
3.3. Co-Occuring Fungi Identified in Samples
3.4. Economic Feasibility of Oak Wilt Metabarcoding for Forest Health Practitioners
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASV | Amplicon Sequence Variant |
| ITS | Internal Transcribed Spacer |
| bp | base pair(s) |
References
- de Beer, Z.W.; Marincowitz, S.; Duong, T.A.; Wingfield, M.J. Bretziella, a New Genus to Accommodate the Oak Wilt Fungus, Ceratocystis fagacearum (Microascales, Ascomycota). MycoKeys 2017, 27, 1–19. [Google Scholar] [CrossRef]
- Koch, K.A.; Quiram, G.L.; Venette, R.C. A Review of Oak Wilt Management: A Summary of Treatment Options and Their Efficacy. Urban For. Urban Green. 2010, 9, 1–8. [Google Scholar] [CrossRef]
- McLaughlin, K.; Snover-Clift, K.; Somers, L.; Cancelliere, J.; Cole, R. Early Detection of the Oak Wilt Fungus (Bretziella fagacearum) Using Trapped Nitidulid Beetle Vectors. For. Pathol. 2022, 52, e12767. [Google Scholar] [CrossRef]
- Cooperative Extension. New Hampshire Statewide Oak Wilt Response Plan; New Hampshire Department of Natural and Cultural Resources, Division of Forests and Lands: Concord, NH, USA, 2022; Available online: https://scholars.unh.edu/extension/1109/ (accessed on 21 August 2025).
- Creer, S.; Deiner, K.; Frey, S.; Porazinska, D.; Taberlet, P.; Thomas, W.K.; Potter, C.; Bik, H.M. The Ecologist’s Field Guide to Sequence-based Identification of Biodiversity. Methods Ecol. Evol. 2016, 7, 1008–1018. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Hajibabaei, M.; Rieseberg, L.H. Environmental DNA. Mol. Ecol. 2012, 21, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.P.; Chen, G.Y.; Li, B.; Su, H.; An, Y.L.; Zhen, S.Z.; Ye, J.R. Rapid and Accurate Detection of Ceratocystis fagacearum from Stained Wood and Soil by Nested and Real-time PCR. For. Pathol. 2011, 41, 15–21. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Sarre, S.D. A Framework for Developing and Validating Taxon-specific Primers for Specimen Identification from Environmental DNA. Mol. Ecol. Resour. 2017, 17, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Munck, I.A.; Bonello, P. Modern Approaches for Early Detection of Forest Pathogens Are Sorely Needed in the United States. For. Pathol. 2018, 48, e12445. [Google Scholar] [CrossRef]
- PM 7/1 (2) Bretziella fagacearum (Formerly Ceratocystis fagacearum). EPPO Bull. 2023, 53, 505–517. [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Sevigny, J.L. Assign-Taxonomy-with-BLAST 2025. Available online: https://github.com/Joseph7e/Assign-Taxonomy-with-BLAST (accessed on 21 August 2025).
- Fujita, S.-I.; Senda, Y.; Nakaguchi, S.; Hashimoto, T. Multiplex PCR Using Internal Transcribed Spacer 1 and 2 Regions for Rapid Detection and Identification of Yeast Strains. J. Clin. Microbiol. 2001, 39, 3617–3622. [Google Scholar] [CrossRef] [PubMed]
- DiGirolomo, M.F.; Munck, I.A.; Dodds, K.J.; Cancelliere, J. Sap Beetles (Coleoptera: Nitidulidae) in Oak Forests of Two Northeastern States: A Comparison of Trapping Methods and Monitoring for Phoretic Fungi. J. Econ. Entomol. 2020, 113, 2758–2771. [Google Scholar] [CrossRef] [PubMed]
- Haight, R.G.; Homans, F.R.; Horie, T.; Mehta, S.V.; Smith, D.J.; Venette, R.C. Assessing the Cost of an Invasive Forest Pathogen: A Case Study with Oak Wilt. Environ. Manag. 2011, 47, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Cook, B. Oak Wilt Treatment. Available online: https://www.canr.msu.edu/news/oak_wilt_treatment (accessed on 21 August 2025).
- Services and Pricing. Available online: https://hcgs.unh.edu/services-pricing (accessed on 21 August 2025).

| Taxonomic Bin | Mode Amplicon Size (bp) | Sample Presence (n = 34) | Mean Reads Per Sample |
|---|---|---|---|
| Dothideomycetes sp. | 316 | 18 | 22,293 |
| Phaeosphaeria pontiformis | 298 | 11 | 809 |
| Kurtzmaniella quercitrusa | 307 | 23 | 682 |
| Rhinocladiella atrovirens | 364 | 2 | 189 |
| Cladosporium sp. | 270 | 26 | 132 |
| Sydowia polyspora | 349 | 8 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordon, L.M.; Crandall, R.S.; Kelly, M.; Hall, J.A.; Sevigny, J.L.; Nigatu, A.S.; Simpson, S.D.; Morris, K.; Thomas, W.K. A Metabarcoding Amplicon Sequencing Approach for Reliable Early Detection and Surveillance of Oak Wilt (Bretziella fagacearum) from Trap-Collected Nitidulid Beetles. Forests 2025, 16, 1628. https://doi.org/10.3390/f16111628
Gordon LM, Crandall RS, Kelly M, Hall JA, Sevigny JL, Nigatu AS, Simpson SD, Morris K, Thomas WK. A Metabarcoding Amplicon Sequencing Approach for Reliable Early Detection and Surveillance of Oak Wilt (Bretziella fagacearum) from Trap-Collected Nitidulid Beetles. Forests. 2025; 16(11):1628. https://doi.org/10.3390/f16111628
Chicago/Turabian StyleGordon, Lawrence M., Ryan S. Crandall, Muriel Kelly, Jeffrey A. Hall, Joseph L. Sevigny, Adane S. Nigatu, Stephen D. Simpson, Krystalynne Morris, and W. Kelley Thomas. 2025. "A Metabarcoding Amplicon Sequencing Approach for Reliable Early Detection and Surveillance of Oak Wilt (Bretziella fagacearum) from Trap-Collected Nitidulid Beetles" Forests 16, no. 11: 1628. https://doi.org/10.3390/f16111628
APA StyleGordon, L. M., Crandall, R. S., Kelly, M., Hall, J. A., Sevigny, J. L., Nigatu, A. S., Simpson, S. D., Morris, K., & Thomas, W. K. (2025). A Metabarcoding Amplicon Sequencing Approach for Reliable Early Detection and Surveillance of Oak Wilt (Bretziella fagacearum) from Trap-Collected Nitidulid Beetles. Forests, 16(11), 1628. https://doi.org/10.3390/f16111628

