Assessing the Uncertainty of Traditional Sample-Based Forest Inventories in Mixed and Single Species Conifer Systems Using a Digital Forest Twin
Abstract
1. Introduction
- 1
- Cross-compare common sampling schemes and assess the variability in key forest inventory metrics (trees per acre, TPA, basal area per acre, BAA).
- 2
- Assess the sources of uncertainty in the different sampling schemes.
2. Materials and Methods
2.1. Digital Forest Twin
2.2. ALS Data and Preprocessing
2.3. ALS Individual Tree Detection and Measurement
2.4. Digital Inventories
2.5. Sampling Simulation
- Drop: This drops an edge plot from all calculations and only uses plots that are not identified as edge plots as determined by a buffer distance from the stand boundary.
- Shift: This moves an “edge plot” to the nearest point within a negatively buffered stand polygon as determined by a buffer distance from the stand boundary.
- Walkthrough: This cruises an edge plot using the walkthrough method as it was described in Ducey et al., 2004 [40] where a tree is double counted if the stand boundary is closer to the tree than the plot center is to the tree along the same azimuth from the plot center.
- Grid Sampling: Plots are assigned on a grid with a uniform random shift less than the grid spacing applied to the grid origin for each simulation and stand sample,
- Random Sampling: Random plot locations are assigned within the stand boundary at the target grid density
- Double grid: Each stand is overlaid with two grids, with the origin point of each grid selected at random, as described by Freese 1962 [9], which results in two independent estimations for a single stand. Since the two estimations are derived randomly and independently, they can be treated as truly random values. The final estimate and its confidence interval are then calculated based on these two values.
2.6. Analysis
3. Results
4. Discussion
- Definition of stands as the sampling target;
- Spatial sampling scheme of plots within a stand including stand edge methodology;
- Plot measurement specification.
4.1. Definition of Stands as the Sampling Target
4.2. Spatial Design of a Stand Sample
4.3. Tree Selection and Measurement
4.4. Unexplored Sources of Error That Require Further Investigation
4.5. Opportunities from Wall-to-Wall Remote Sensing Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Airborne laser scanning |
BAA | Basal area per acre |
BAF | Basal area factor |
CI | Confidence interval |
CFI | Continuous forest inventory |
CHM | Canopy height model |
DEM | Digital elevation model |
FIA | Forest inventory and analysis |
LiDAR | Light detection and ranging |
PLLP | Single-species plantation of Pinus taeda (Loblolly pine) |
RMSE | Root mean square error |
TPA | Trees per acre |
VRP | Variable radius plot |
UIEF | University of Idaho Experimental Forest |
Appendix A
Appendix A.1. Parameters Controlling Measurement Error
- Basal area factor (BAF) multiplier: To mimic a realistic cruise, the optimal BAF to achieve a tally of 10 trees per plot is estimated for each stand. To determine this optimal BAF, a single simulation is performed for each stand using the specification with the default BAF to establish a baseline tally. Then, a grid search is conducted over a range of possible BAF values, running simulations for each candidate value to estimate the average number of tallied trees per plot. After that, a multiplier is applied to the optimal BAF to approximate a cruiser systematically using a larger or smaller BAF.
- DBH noise error: This is a magnitude of the noise added to the DBH measurements in inches where 0.0 means no measurement errors, 2.0 means a random noise centered around 0 and with sigma equal to 2.0 inches is added to each measurement.
- Height noise error: This is a scale of the normally distributed noise that is added to the height measurements. 0.0 means that no errors will be added, while 0.01 means that for every height measurement, the normally distributed error will be added with the sigma equal to 1% of the height.
Appendix A.2. Field VRP Specifications Used for the Simulations
- 1.
- Variable DBH noise:
- Inverse of plot area, : 10;
- DBH Noise (Error), cm: 0.0, 1.25, 2.5, 3.75, 5.0, 6.25.
- 2.
- Variable height noise:
- Inverse of plot area, : 10;
- Height Noise (Error), m: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5.
- 3.
- Variable BAF multipliers:
- Inverse of plot area, : 10;
- BAF DBH: 10;
- BAF multipliers: 0.5, 0.75, 1, 1.5, 2, 3.
- 4.
- Variable Fixed Sub-Plot Radius:
- Inverse of plot area, : 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30.
- 5.
- Variable grid spacing (plot density):
- Grid Spacing, m: 70, 72.5, 75, 77.5, 80, 82.5, 85, 87.5, 90, 92.5, 95, 97.5.
- 6.
- Variable buffer with “shift inside” edge plot method:
- Method: “shift inside”;
- Buffer, m: 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5.
- 7.
- Variable buffer with “walkthrough” edge plot method:
- Method: “walkthrough”;
- Buffer, m: 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5.
- 8.
- Variable buffer with “drop” edge plot method:
- Method: “drop”;
- Buffer, m: 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25.
Spec_ID | Baf_Dbh | Baf Multiplier | Area Inv_Acres | Grid Spacings | Noise Errors | Height_Noise Errors | Buffer | Edge_Plot Method |
---|---|---|---|---|---|---|---|---|
0 | 5 | 1 | 10 | 80 | 0 | 0 | −20 | walkthrough |
1 | 5 | 1 | 10 | 80 | 0.5 | 0.5 | −20 | walkthrough |
2 | 5 | 1 | 10 | 80 | 1 | 1 | −20 | walkthrough |
3 | 5 | 1 | 10 | 80 | 1.5 | 1.5 | −20 | walkthrough |
4 | 5 | 1 | 10 | 80 | 2 | 2 | −20 | walkthrough |
5 | 5 | 1 | 10 | 80 | 2.5 | 2.5 | −20 | walkthrough |
6 | 5 | 1 | 10 | 80 | 0 | 0 | −20 | walkthrough |
7 | 5 | 1 | 10 | 80 | 0 | 0.5 | −20 | walkthrough |
8 | 5 | 1 | 10 | 80 | 0 | 1 | −20 | walkthrough |
9 | 5 | 1 | 10 | 80 | 0 | 1.5 | −20 | walkthrough |
10 | 5 | 1 | 10 | 80 | 0 | 2 | −20 | walkthrough |
11 | 5 | 1 | 10 | 80 | 0 | 2.5 | −20 | walkthrough |
12 | 5 | 1 | 10 | 80 | 0 | 0 | −20 | walkthrough |
13 | 5 | 1 | 10 | 80 | 0.5 | 0 | −20 | walkthrough |
14 | 5 | 1 | 10 | 80 | 1 | 0 | −20 | walkthrough |
15 | 5 | 1 | 10 | 80 | 1.5 | 0 | −20 | walkthrough |
16 | 5 | 1 | 10 | 80 | 2 | 0 | −20 | walkthrough |
17 | 5 | 1 | 10 | 80 | 2.5 | 0 | −20 | walkthrough |
18 | 5 | 0.5 | 10 | 80 | 0 | 0 | −20 | walkthrough |
19 | 5 | 0.75 | 10 | 80 | 0 | 0 | −20 | walkthrough |
20 | 5 | 1 | 10 | 80 | 0 | 0 | −20 | walkthrough |
21 | 5 | 1.2 | 10 | 80 | 0 | 0 | −20 | walkthrough |
22 | 5 | 1.5 | 10 | 80 | 0 | 0 | −20 | walkthrough |
23 | 5 | 2 | 10 | 80 | 0 | 0 | −20 | walkthrough |
24 | 5 | 3 | 10 | 80 | 0 | 0 | −20 | walkthrough |
25 | 5 | 1 | 5 | 80 | 0 | 0 | −20 | walkthrough |
26 | 5 | 1 | 7.5 | 80 | 0 | 0 | −20 | walkthrough |
27 | 5 | 1 | 10 | 80 | 0 | 0 | −20 | walkthrough |
28 | 5 | 1 | 12.5 | 80 | 0 | 0 | −20 | walkthrough |
29 | 5 | 1 | 15 | 80 | 0 | 0 | −20 | walkthrough |
30 | 5 | 1 | 17.5 | 80 | 0 | 0 | −20 | walkthrough |
31 | 5 | 1 | 20 | 80 | 0 | 0 | −20 | walkthrough |
32 | 5 | 1 | 22.5 | 80 | 0 | 0 | −20 | walkthrough |
33 | 5 | 1 | 25 | 80 | 0 | 0 | −20 | walkthrough |
34 | 5 | 1 | 27.5 | 80 | 0 | 0 | −20 | walkthrough |
35 | 5 | 1 | 30 | 80 | 0 | 0 | −20 | walkthrough |
36 | 5 | 1 | 20 | 70 | 0 | 0 | 0 | shiftinside |
37 | 5 | 1 | 20 | 72.5 | 0 | 0 | 0 | shiftinside |
38 | 5 | 1 | 20 | 75 | 0 | 0 | 0 | shiftinside |
39 | 5 | 1 | 20 | 77.5 | 0 | 0 | 0 | shiftinside |
40 | 5 | 1 | 20 | 80 | 0 | 0 | 0 | shiftinside |
41 | 5 | 1 | 20 | 82.5 | 0 | 0 | 0 | shiftinside |
42 | 5 | 1 | 20 | 85 | 0 | 0 | 0 | shiftinside |
43 | 5 | 1 | 20 | 87.5 | 0 | 0 | 0 | shiftinside |
44 | 5 | 1 | 20 | 90 | 0 | 0 | 0 | shiftinside |
45 | 5 | 1 | 20 | 92.5 | 0 | 0 | 0 | shiftinside |
46 | 5 | 1 | 20 | 95 | 0 | 0 | 0 | shiftinside |
47 | 5 | 1 | 20 | 97.5 | 0 | 0 | 0 | shiftinside |
48 | 5 | 1 | 20 | 100 | 0 | 0 | 0 | shiftinside |
49 | 5 | 1 | 20 | 70 | 0 | 0 | −20 | walkthrough |
50 | 5 | 1 | 20 | 72.5 | 0 | 0 | −20 | walkthrough |
51 | 5 | 1 | 20 | 75 | 0 | 0 | −20 | walkthrough |
52 | 5 | 1 | 20 | 77.5 | 0 | 0 | −20 | walkthrough |
53 | 5 | 1 | 20 | 80 | 0 | 0 | −20 | walkthrough |
54 | 5 | 1 | 20 | 82.5 | 0 | 0 | −20 | walkthrough |
55 | 5 | 1 | 20 | 85 | 0 | 0 | −20 | walkthrough |
56 | 5 | 1 | 20 | 87.5 | 0 | 0 | −20 | walkthrough |
57 | 5 | 1 | 20 | 90 | 0 | 0 | −20 | walkthrough |
58 | 5 | 1 | 20 | 92.5 | 0 | 0 | −20 | walkthrough |
59 | 5 | 1 | 20 | 95 | 0 | 0 | −20 | walkthrough |
60 | 5 | 1 | 20 | 97.5 | 0 | 0 | −20 | walkthrough |
61 | 5 | 1 | 20 | 100 | 0 | 0 | −20 | walkthrough |
62 | 5 | 1 | 20 | 80 | 0 | 0 | −0 | shiftinside |
63 | 5 | 1 | 20 | 80 | 0 | 0 | −2.5 | shiftinside |
64 | 5 | 1 | 20 | 80 | 0 | 0 | −5 | shiftinside |
65 | 5 | 1 | 20 | 80 | 0 | 0 | −7.5 | shiftinside |
66 | 5 | 1 | 20 | 80 | 0 | 0 | −10 | shiftinside |
67 | 5 | 1 | 20 | 80 | 0 | 0 | −12.5 | shiftinside |
68 | 5 | 1 | 20 | 80 | 0 | 0 | −15 | shiftinside |
69 | 5 | 1 | 20 | 80 | 0 | 0 | −17.5 | shiftinside |
70 | 5 | 1 | 20 | 80 | 0 | 0 | −20 | shiftinside |
71 | 5 | 1 | 20 | 80 | 0 | 0 | −22.5 | shiftinside |
72 | 5 | 1 | 20 | 80 | 0 | 0 | −0 | walkthrough |
73 | 5 | 1 | 20 | 80 | 0 | 0 | −2.5 | walkthrough |
74 | 5 | 1 | 20 | 80 | 0 | 0 | −5 | walkthrough |
75 | 5 | 1 | 20 | 80 | 0 | 0 | −7.5 | walkthrough |
76 | 5 | 1 | 20 | 80 | 0 | 0 | −10 | walkthrough |
77 | 5 | 1 | 20 | 80 | 0 | 0 | −12.5 | walkthrough |
78 | 5 | 1 | 20 | 80 | 0 | 0 | −15 | walkthrough |
79 | 5 | 1 | 20 | 80 | 0 | 0 | −17.5 | walkthrough |
80 | 5 | 1 | 20 | 80 | 0 | 0 | −20 | walkthrough |
81 | 5 | 1 | 20 | 80 | 0 | 0 | −22.5 | walkthrough |
82 | 5 | 1 | 20 | 80 | 0 | 0 | −25 | walkthrough |
83 | 5 | 1 | 20 | 80 | 0 | 0 | −27.5 | walkthrough |
84 | 5 | 1 | 20 | 80 | 0 | 0 | −30 | walkthrough |
85 | 5 | 1 | 20 | 80 | 0 | 0 | −32.5 | walkthrough |
86 | 5 | 1 | 20 | 80 | 0 | 0 | −0 | walkthrough |
87 | 5 | 1 | 20 | 80 | 0 | 0 | −2.5 | walkthrough |
88 | 5 | 1 | 20 | 80 | 0 | 0 | −5 | walkthrough |
89 | 5 | 1 | 20 | 80 | 0 | 0 | −7.5 | walkthrough |
90 | 5 | 1 | 20 | 80 | 0 | 0 | −10 | walkthrough |
91 | 5 | 1 | 20 | 80 | 0 | 0 | −12.5 | walkthrough |
92 | 5 | 1 | 20 | 80 | 0 | 0 | −15 | walkthrough |
93 | 5 | 1 | 20 | 80 | 0 | 0 | −17.5 | walkthrough |
94 | 5 | 1 | 20 | 80 | 0 | 0 | −20 | walkthrough |
95 | 5 | 1 | 20 | 80 | 0 | 0 | −22.5 | walkthrough |
96 | 5 | 1 | 20 | 80 | 0 | 0 | −25 | walkthrough |
97 | 5 | 1 | 20 | 80 | 0 | 0 | −27.5 | walkthrough |
98 | 5 | 1 | 20 | 80 | 0 | 0 | −30 | walkthrough |
99 | 5 | 1 | 20 | 80 | 0 | 0 | −32.5 | walkthrough |
100 | 5 | 1 | 20 | 80 | 0 | 0 | −0 | drop |
101 | 5 | 1 | 20 | 80 | 0 | 0 | −2.5 | drop |
102 | 5 | 1 | 20 | 80 | 0 | 0 | −5 | drop |
103 | 5 | 1 | 20 | 80 | 0 | 0 | −7.5 | drop |
104 | 5 | 1 | 20 | 80 | 0 | 0 | −10 | drop |
105 | 5 | 1 | 20 | 80 | 0 | 0 | −12.5 | drop |
106 | 5 | 1 | 20 | 80 | 0 | 0 | −15 | drop |
107 | 5 | 1 | 20 | 80 | 0 | 0 | −17.5 | drop |
References
- Brosofske, K.D.; Froese, R.E.; Falkowski, M.J.; Banskota, A. A Review of Methods for Mapping and Prediction of Inventory Attributes for Operational Forest Management. For. Sci. 2014, 60, 733–756. [Google Scholar] [CrossRef]
- Gillis, M.D.; Leckie, D.G. Forest inventory update in Canada. For. Chron. 1996, 72, 138–156. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O.; Finley, A.O.; Heikkinen, J. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sens. Environ. 2007, 111, 466–480. [Google Scholar] [CrossRef]
- Westfall, J.A.; Lister, A.J.; Scott, C.T.; Weber, T.A. Double sampling for post-stratification in forest inventory. Eur. J. For. Res. 2019, 138, 375–382. [Google Scholar] [CrossRef]
- Waggoner, P.E. Forest Inventories Discrepancies and Uncertainties; Resources for the Future: Washington, DC, USA, 2009. [Google Scholar]
- Smith, A.M.S.; Kolden, C.A.; Tinkham, W.T.; Talhelm, A.F.; Marshall, J.D.; Hudak, A.T.; Boschetti, L.; Falkowski, M.J.; Greenberg, J.A.; Anderson, J.W.; et al. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sens. Environ. 2014, 154, 322–337. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Mahoney, P.R.; Hudak, A.T.; Domke, G.M.; Falkowski, M.J.; Woodall, C.W.; Smith, A.M.S. Applications of the United States Forest Inventory and Analysis dataset: A review and future directions. Can. J. For. Res. 2018, 48, 1251–1268. [Google Scholar] [CrossRef]
- Fox, B.E.; Raskob, P.E. Comparing the Efficiency of Three Inventory Sampling Methods To Determine Timber Volumes in Pinyon-Juniper Woodlands. West. J. Appl. For. 1992, 7, 110–113. [Google Scholar] [CrossRef]
- Freese, F. Elementary Forest Sampling; U.S. Department of Agriculture: Washington, DC, USA, 1962.
- Johnson, E.W. Forest Sampling Desk Reference; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- Scott, C.T. Sampling Methods for Estimating Change in Forest Resources. Ecol. Appl. 1998, 8, 228. [Google Scholar] [CrossRef]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J.P. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Bechtold, W.A.; Patterson, P.L.; Scott, C.T.; Reams, G.A. The Enhanced Forest Inventory and Analysis Program of the USDA Forest Service: Historical Perspective and Announcement of Statistical Documentation. J. For. 2005, 103, 304–308. [Google Scholar] [CrossRef]
- Pierce, K.B.; Ohmann, J.L.; Wimberly, M.C.; Gregory, M.J.; Fried, J.S. Mapping wildland fuels and forest structure for land management: A comparison of nearest neighbor imputation and other methods. Can. J. For. Res. 2009, 39, 1901–1916. [Google Scholar] [CrossRef]
- Gillis, M.D.; Omule, A.Y.; Brierley, T. Monitoring Canada’s forests: The National Forest Inventory. For. Chron. 2005, 81, 214–221. [Google Scholar] [CrossRef]
- Appiah Mensah, A.; Jonzén, J.; Nyström, K.; Wallerman, J.; Nilsson, M. Mapping site index in coniferous forests using bi-temporal airborne laser scanning data and field data from the Swedish national forest inventory. For. Ecol. Manag. 2023, 547, 121395. [Google Scholar] [CrossRef]
- Persson, H.J.; Olofsson, K.; Holmgren, J. Two-phase forest inventory using very-high-resolution laser scanning. Remote Sens. Environ. 2022, 271, 112909. [Google Scholar] [CrossRef]
- Mauya, E.W.; Hansen, E.H.; Gobakken, T.; Bollandsås, O.M.; Malimbwi, R.E.; Næsset, E. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance Manag. 2015, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Sparks, A.M.; Corrao, M.V.; Keefe, R.F.; Armstrong, R.; Smith, A.M.S. An Accuracy Assessment of Field and Airborne Laser Scanning–Derived Individual Tree Inventories using Felled Tree Measurements and Log Scaling Data in a Mixed Conifer Forest. For. Sci. 2024, 70, 228–241. [Google Scholar] [CrossRef]
- Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J. Is field-measured tree height as reliable as believed—A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. Remote Sens. 2019, 147, 132–145. [Google Scholar] [CrossRef]
- Persson, H.J.; Ståhl, G. Characterizing Uncertainty in Forest Remote Sensing Studies. Remote Sens. 2020, 12, 505. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Queinnec, M.; Luther, J.E.; Bolton, D.K.; White, J.C.; Wulder, M.A.; Van Lier, O.R.; Hermosilla, T. Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sens. Environ. 2021, 260, 112477. [Google Scholar] [CrossRef]
- Bickford, C.A.; Mayer, C.E.; Ware, K.D. An Efficient Sampling Design for Forest Inventory: The Northeastern Forest Resurvey. J. For. 1963, 61, 826–833. [Google Scholar] [CrossRef]
- Williams, M.S. Nonuniform random sampling: An alternative method of variance reductionfor forest surveys. Can. J. For. Res. 2001, 31, 2080–2088. [Google Scholar] [CrossRef]
- Montzka, T.; Scharosch, S.; Huebschmann, M.; Corrao, M.V.; Hardman, D.D.; Rainsford, S.W.; Smith, A.M.S.; The Confederated Tribes and Bands of the Yakama Nation. Comparison of a Continuous Forest Inventory to an ALS-Derived Digital Inventory in Washington State. Remote Sens. 2025, 17, 1761. [Google Scholar] [CrossRef]
- Schumacher, F.X.; Chapman, R.A. Sampling Methods in Forestry and Range Management. Soil Sci. 1942, 54, 80. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Avery, T.E.; Bullock, B.P. Forest Measurements, 6th ed.; Waveland Press, Inc.: Long Grove, IL, USA, 2019; OCLC: 1046068322. [Google Scholar]
- Magnussen, S.; McRoberts, R.E.; Breidenbach, J.; Nord-Larsen, T.; Ståhl, G.; Fehrmann, L.; Schnell, S. Comparison of estimators of variance for forest inventories with systematic sampling—Results from artificial populations. For. Ecosyst. 2020, 7, 17. [Google Scholar] [CrossRef]
- Gordon, A.D.; Pont, D. Inventory estimates of stem volume using nine sampling methods in thinned Pinus radiata stands, New Zealand. N. Z. J. For. Sci. 2015, 45, 8. [Google Scholar] [CrossRef]
- Sparks, A.M.; Smith, A.M.S. Accuracy of a LiDAR-Based Individual Tree Detection and Attribute Measurement Algorithm Developed to Inform Forest Products Supply Chain and Resource Management. Forests 2021, 13, 3. [Google Scholar] [CrossRef]
- Corrao, M.V.; Sparks, A.M.; Smith, A.M.S. A Conventional Cruise and Felled-Tree Validation of Individual Tree Diameter, Height and Volume Derived from Airborne Laser Scanning Data of a Loblolly Pine (P. taeda) Stand in Eastern Texas. Remote Sens. 2022, 14, 2567. [Google Scholar] [CrossRef]
- Sparks, A.M.; Corrao, M.V.; Keefe, R.F.; Armstrong, R.; Smith, A.M.S. Comparison of Field Sampling- and Airborne Laser Scanning-Derived Stand-Level Inventories in a Mixed Conifer Forest and Volume Validation Using Log Scaling Data. Forests 2025, 16, 784. [Google Scholar] [CrossRef]
- Keefe, R.F.; Zimbelman, E.G.; Picchi, G. Use of Individual Tree and Product Level Data to Improve Operational Forestry. Curr. For. Rep. 2022, 8, 148–165. [Google Scholar] [CrossRef]
- Palecki, M.; Durre, I.; Applequist, S.; Arguez, A.; Lawrimore, J. U.S. Climate Normals 2020: U.S. Hourly Climate Normals (1991–2020); USC00168067 station; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2021.
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J.; et al. Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Vastaranta, M.; Holopainen, M.; Viitala, R. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS J. Photogramm. Remote Sens. 2011, 66, 28–37. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Litkey, P.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Single-Sensor Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning. Remote Sens. 2017, 9, 108. [Google Scholar] [CrossRef]
- Matsakis, N.D.; Klock, F.S. The rust language. In Proceedings of the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology, Portland, OR, USA, 18–21 October 2014; pp. 103–104. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Ducey, M.J.; Gove, J.H.; Valentine, H.T. A Walkthrough Solution to the Boundary Overlap Problem. For. Sci. 2004, 50, 427–435. [Google Scholar] [CrossRef]
- Finley, A.O.; Doser, J.W. Introduction to Forestry Data Analysis with R. 2025 Finley Lab. Available online: https://www.finley-lab.com/ifdar/ (accessed on 17 October 2025).
- Hazra, A. Using the confidence interval confidently. J. Thorac. Dis. 2017, 9, 4124–4129. [Google Scholar] [CrossRef] [PubMed]
- Dettmann, G.T.; Radtke, P.J.; Coulston, J.W.; Green, P.C.; Wilson, B.T.; Moisen, G.G. Review and Synthesis of Estimation Strategies to Meet Small Area Needs in Forest Inventory. Front. For. Glob. Change 2022, 5, 813569. [Google Scholar] [CrossRef]
- VanderSchaaf, C.L. Using Forest Inventory and Analysis Plots to Estimate Sample Sizes for Alternative Inventory Methods. For. Sci. 2015, 61, 535–539. [Google Scholar] [CrossRef]
- Vaske, J.J. Communicating Judgments About Practical Significance: Effect Size, Confidence Intervals and Odds Ratios. Hum. Dimens. Wildl. 2002, 7, 287–300. [Google Scholar] [CrossRef]
- Trust, E.R. The ACR Standard: Requirements and Specifications for the Quantification, Monitoring, Reporting, Verification, and Registration of Project-Based GHG Emissions Reductions and Removals; Version 8.0; Technical report; American Carbon Registry: North Little Rock, AR, USA, 2023. [Google Scholar]
- California Air Resources Board. Compliance Offset Protocol U.S. Forest Projects; Technical report; California Environmental Protection Agency, Air Resources Board: Sacramento, CA, USA, 2015; Adopted: 25 June 2015.
- Jayaraman, K. A Statistical Manual For Forestry Research; FAO: Rome, Italy, 1999. [Google Scholar]
- Coulston, J. Forest Inventory and Stratified Estimation: A Cautionary Note; Technical report; U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 2008. [CrossRef]
- Mäkelä, H.; Pekkarinen, A. Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. For. Ecol. Manag. 2004, 196, 245–255. [Google Scholar] [CrossRef]
- Stellingwerf, D.; Lwin, S. Stratified sampling compared with two-phase stratified cluster sampling for timber volume estimation. Neth. J. Agric. Sci. 1985, 33, 151–160. [Google Scholar] [CrossRef]
- Häbel, H.; Kuronen, M.; Henttonen, H.M.; Kangas, A.; Myllymäki, M. The effect of spatial structure of forests on the precision and costs of plot-level forest resource estimation. For. Ecosyst. 2019, 6, 8. [Google Scholar] [CrossRef]
- Ducey, M.J.; Larson, B.C. Accounting for Bias and Uncertainty in Nonlinear Stand Density Indices. For. Sci. 1999, 45, 452–457. [Google Scholar] [CrossRef]
- Becker, P.; Nichols, T. Effects of Basal Area Factor and Plot Size on Precision and Accuracy of Forest Inventory Estimates. North. J. Appl. For. 2011, 28, 152–156. [Google Scholar] [CrossRef]
- Hill, A.; Mandallaz, D.; Langshausen, J. A Double-Sampling Extension of the German National Forest Inventory for Design-Based Small Area Estimation on Forest District Levels. Remote Sens. 2018, 10, 1052. [Google Scholar] [CrossRef]
- Reber, C.A.; Ek, A.R. Variance estimation from systematic samples in Minnesota timber stands. Can. J. For. Res. 1983, 13, 1255–1257. [Google Scholar] [CrossRef]
- Whysong, G.L.; Miller, W.H. An Evaluation of Random and Systematic Plot Placement for Estimating Frequency. J. Range Manag. 1987, 40, 475. [Google Scholar] [CrossRef]
- Ducey, M.J.; Gove, J.H.; Ståhl, G.; Ringvall, A. Clarification of the Mirage Method for Boundary Correction, with Possible Bias in Plot and Point Sampling. For. Sci. 2001, 47, 242–245. [Google Scholar] [CrossRef]
- Fowler, G.W.; Arvanitis, L.G. Aspects of statistical bias due to the forest edge: Fixed-area circular plots. Can. J. For. Res. 1979, 9, 383–389. [Google Scholar] [CrossRef]
- West, P. Precision of inventory using different edge overlap methods. Can. J. For. Res. 2013, 43, 1081–1083. [Google Scholar] [CrossRef]
- Radtke, P.J.; Burkhart, H.E. A comparison of methods for edge-bias compensation. Can. J. For. Res. 1998, 28, 942–945. [Google Scholar] [CrossRef]
- Barnett, A.G. Regression to the mean: What it is and how to deal with it. Int. J. Epidemiol. 2004, 34, 215–220. [Google Scholar] [CrossRef]
- Yu, Y.; Pan, Y.; Yang, X.; Fan, W. Spatial Scale Effect and Correction of Forest Aboveground Biomass Estimation Using Remote Sensing. Remote Sens. 2022, 14, 2828. [Google Scholar] [CrossRef]
- Babcock, C.; Finley, A.O.; Gregoire, T.G.; Andersen, H.-E. Remote sensing to reduce the effects of spatial autocorrelation on design-based inference for forest inventory using systematic samples. arXiv 2018, arXiv:1810.08588. [Google Scholar] [CrossRef]
- Hou, Z.; Yuan, K.; Ståhl, G.; McRoberts, R.E.; Kangas, A.; Tang, H.; Jiang, J.; Meng, J.; Xu, Q.; Li, Z. Conjugating remotely sensed data assimilation and model-assisted estimation for efficient multivariate forest inventory. Remote Sens. Environ. 2023, 299, 113854. [Google Scholar] [CrossRef]
- Xu, Q.; Li, B.; McRoberts, R.E.; Li, Z.; Hou, Z. Harnessing data assimilation and spatial autocorrelation for forest inventory. Remote Sens. Environ. 2023, 288, 113488. [Google Scholar] [CrossRef]
- Melville, G.; Stone, C.; Turner, R. Application of LiDAR data to maximise the efficiency of inventory plots in softwood plantations. N. Z. J. For. Sci. 2015, 45, 9. [Google Scholar] [CrossRef]
- Kangas, A.; Räty, M.; Korhonen, K.T.; Vauhkonen, J.; Packalen, T. Catering Information Needs from Global to Local Scales—Potential and Challenges with National Forest Inventories. Forests 2019, 10, 800. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Fixed Subplot Radius, m | 20 |
BAF DBH, inches | 5 |
BAF Multiplier | 1 |
DBH Noise (Error), cm | 0 |
Height Noise (Error), m | 0 |
Grid Spacing, m | 80 |
Edge Buffer Width, m | −20 |
Edge Plot Method | “Walkthrough” |
Method | UIEF | PLLP | ||
---|---|---|---|---|
Trees/Acre | Basal Area/Acre | Trees/Acre | Basal Area/Acre | |
Grid | −0.16 | −0.07 | 0.10 | 0.10 |
Random | −0.16 | −0.08 | 0.09 | 0.09 |
Random (walkthrough only) | −0.10 | 0.00 | 0.09 | 0.09 |
Double grid | −0.15 | −0.08 | - | - |
Random with incorrect stratification | 0.15 | 0.23 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratev, M.; Corrao, M.V.; Armstrong, R.; Smith, A.M.S. Assessing the Uncertainty of Traditional Sample-Based Forest Inventories in Mixed and Single Species Conifer Systems Using a Digital Forest Twin. Forests 2025, 16, 1617. https://doi.org/10.3390/f16111617
Kondratev M, Corrao MV, Armstrong R, Smith AMS. Assessing the Uncertainty of Traditional Sample-Based Forest Inventories in Mixed and Single Species Conifer Systems Using a Digital Forest Twin. Forests. 2025; 16(11):1617. https://doi.org/10.3390/f16111617
Chicago/Turabian StyleKondratev, Mikhail, Mark V. Corrao, Ryan Armstrong, and Alistar M. S. Smith. 2025. "Assessing the Uncertainty of Traditional Sample-Based Forest Inventories in Mixed and Single Species Conifer Systems Using a Digital Forest Twin" Forests 16, no. 11: 1617. https://doi.org/10.3390/f16111617
APA StyleKondratev, M., Corrao, M. V., Armstrong, R., & Smith, A. M. S. (2025). Assessing the Uncertainty of Traditional Sample-Based Forest Inventories in Mixed and Single Species Conifer Systems Using a Digital Forest Twin. Forests, 16(11), 1617. https://doi.org/10.3390/f16111617