Integrating Remote Sensing and Field Data to Quantify Mangrove Biomass Carbon Hotspots and Protection Gaps in Guangdong, China
Abstract
1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
2.2.1. Satellite Data and Preprocessing
2.2.2. Field Data
2.2.3. Nature Reserve Data
3. Methods
3.1. Mangrove Carbon Stock Estimation with Satellite and Field Data
3.1.1. Modeling the Relationship Between AGB and Sentinel-2-Based Features
3.1.2. Determination of AGBC and BGBC Correlation and BC Estimation
3.2. Hotspot Analysis and Relationship with the Nature Reserve Distribution Data
4. Results
4.1. Field Survey
4.2. Biomass Carbon Stock Estimation
4.3. Biomass Carbon Stocks Inside and Outside Nature Reserves
4.4. Mangrove Biomass Carbon Hotspots and the Protection Gaps
5. Discussion
5.1. Mangrove Biomass Carbon in Guangdong
5.2. The Linkage Between Mangrove Biomass Carbon Stocks and Nature Reserves
5.3. Uncertainty and Future Improvement
6. Conclusions
- (1)
- The spatial pattern of mangrove biomass carbon shows notable variations along the Guangdong coastlines.
- (2)
- The proposed mangrove AGB estimation model here demonstrates satisfactory results, confirming that the method integrating field survey data and Sentinel-2 satellite imagery can effectively and accurately estimate mangrove biomass carbon stocks.
- (3)
- Guangdong Province had a total mangrove biomass carbon storage of 1,209,305.68 Mg C, with Zhanjiang having the highest biomass carbon storage and accounting for more than half of the total mangrove biomass carbon storage in Guangdong. Zhuhai has the highest mean AGBC and BGBC values in mangroves, followed by Shanwei.
- (4)
- Mangroves in nature reserves demonstrated higher mean total carbon stock (83.03 Mg C/ha) compared with those outside nature reserves (77.99 Mg C/ha), demonstrating the significant role of nature reserves in enhancing mangrove carbon storage.
- (5)
- The overlapping area between the mangrove biomass carbon stock hotspot areas and the nature reserves is 71.62 km2, accounting for 51.13% of the total hotspot area. In terms of mangrove biomass carbon stocks, the main protection gaps in Guangdong are distributed in Anpu Gang, the region south of Zhanjiang, Shuidong Harbor, the Pearl River Estuary, Kaozhou Yang, and Yifengxi Port.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AGB | Aboveground biomass |
| BGB | Belowground biomass |
| BC | Biomass carbon stock |
| AGBC | Aboveground biomass carbon |
| BGBC | Belowground biomass carbon |
References
- Zamboni, N.S.; da Cunha Prudêncio, M.; Amaro, V.E.; de Matos, M.d.F.A.; Verutes, G.M.; Carvalho, A.R. The protective role of mangroves in safeguarding coastal populations through hazard risk reduction: A case study in northeast Brazil. Ocean Coast. Manag. 2022, 229, 106353. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Alongi, D.M. Global significance of mangrove blue carbon in climate change mitigation. Sci 2020, 2, 67. [Google Scholar] [CrossRef]
- Fu, C.; Steckbauer, A.; Mann, H.; Duarte, C.M. Achieving the Kunming–Montreal global biodiversity targets for blue carbon ecosystems. Nat. Rev. Earth Environ. 2024, 5, 538–552. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zimmer, M.; Ahmed, I.; Donato, D.; Kanzaki, M.; Xu, M. Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nat. Commun. 2021, 12, 3875. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Tu, Z.; Gao, X.; Wang, W. Maintenance of estuarine water quality by mangroves occurs during flood periods: A case study of a subtropical mangrove wetland. Mar. Pollut. Bull. 2010, 60, 2154–2160. [Google Scholar] [CrossRef]
- Luo, J.; Huang, Q.; Zhang, H.; Xu, Y.; Zu, X.; Song, B. Impact of Conservation in the Futian Mangrove National Nature Reserve on Water Quality in the Last Twenty Years. Forests 2024, 15, 1246. [Google Scholar] [CrossRef]
- Spalding, M.; Mcivor, A.; Tonneijck, F.; Tol, S.; Eijk, P.V. Mangroves for Coastal Defence; Wetlands International: Wageningen, The Netherlands; The Nature Conservancy: Arlington, VA, USA, 2014. [Google Scholar]
- Sharma, S.; MacKenzie, R.A.; Tieng, T.; Soben, K.; Tulyasuwan, N.; Resanond, A.; Blate, G.; Litton, C.M. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 2020, 706, 135416. [Google Scholar] [CrossRef]
- Leal, M.; Spalding, M.D. The State of the World’s Mangroves 2024. Global Mangrove Alliance. Available online: https://hdl.handle.net/10088/119867 (accessed on 15 October 2025).
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.-M. Global mangrove extent change 1996–2020: Global mangrove watch version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, M.; Ai, B.; Lai, Z.; Zhao, J.; Jian, Z.; Qi, X. Annual change in the distribution and landscape health of mangrove ecosystems in China from 2016 to 2023 with Sentinel imagery. Glob. Ecol. Conserv. 2025, 57, e03355. [Google Scholar] [CrossRef]
- Dong, D.; Huang, H.; Gao, Q.; Li, K.; Zhang, S.; Yan, R. Temporal and Spatial Patterns of Blue Carbon Storage in Mangrove and Salt Marsh Ecosystems in Guangdong, China. Land 2025, 14, 1130. [Google Scholar] [CrossRef]
- Lu, C.; Li, L.; Wang, Z.; Su, Y.; Su, Y.; Huang, Y.; Jia, M.; Mao, D. The national nature reserves in China: Are they effective in conserving mangroves? Ecol. Indic. 2022, 142, 109265. [Google Scholar] [CrossRef]
- Liang, J.; Peng, Y.; Chen, H.; Wang, Y.; Xing, Y.; Liao, Y. Evaluating the effectiveness of the ecological redline policy in conserving mangroves via assessment on coverage and carbon storage. Environ. Sustain. Indic. 2025, 26, 100650. [Google Scholar] [CrossRef]
- Jia, M.; Liu, M.; Wang, Z.; Mao, D.; Ren, C.; Cui, H. Evaluating the effectiveness of conservation on mangroves: A remote sensing-based comparison for two adjacent protected areas in Shenzhen and Hong Kong, China. Remote Sens. 2016, 8, 627. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Zhang, T.; Wang, Z.; Zhang, J.; Liu, Y.; Liu, B. Remote Sensing Based Conservation Effectiveness Evaluation of Mangrove Reserves in China. Remote Sens. 2022, 14, 1386. [Google Scholar] [CrossRef]
- Wang, G.; Guan, D.; Peart, M.; Chen, Y.; Peng, Y. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. For. Ecol. Manag. 2013, 310, 539–546. [Google Scholar] [CrossRef]
- Liu, H.; Ren, H.; Hui, D.; Wang, W.; Liao, B.; Cao, Q. Carbon stocks and potential carbon storage in the mangrove forests of China. J. Environ. Manag. 2014, 133, 86–93. [Google Scholar] [CrossRef]
- Li, K.; Huang, H.; Yan, R.; Zhang, S.; Dong, D.; Peng, B. Carbon storage potential and influencing factors of mangrove plantation in Kaozhouyang, Guangdong Province, South China. Front. Mar. Sci. 2025, 11, 1439266. [Google Scholar] [CrossRef]
- Tue, N.T.; Dung, L.V.; Nhuan, M.T.; Omori, K. Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. Catena 2014, 121, 119–126. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, C.; Wu, K.; Gao, W.; Yang, N.; Lin, J. Advancements and trends in mangrove species mapping based on remote sensing: A comprehensive review and knowledge visualization. Glob. Ecol. Conserv. 2025, 57, e03408. [Google Scholar] [CrossRef]
- Dong, D.; Gao, Q.; Huang, H. Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China. Forests 2024, 15, 1788. [Google Scholar] [CrossRef]
- Dong, D.; Huang, H.; Gao, Q. Tracking the Dynamics of Spartina alterniflora with WorldView-2/3 and Sentinel-1/2 Imagery in Zhangjiang Estuary, China. Water 2024, 16, 1780. [Google Scholar] [CrossRef]
- Giri, C. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L. How to automate timely large-scale mangrove mapping with remote sensing. Remote Sens. Environ. 2021, 264, 112584. [Google Scholar] [CrossRef]
- Tran, T.V.; Reef, R.; Zhu, X. A review of spectral indices for mangrove remote sensing. Remote Sens. 2022, 14, 4868. [Google Scholar] [CrossRef]
- Roy, A.D.; Arachchige, P.S.P.; Watt, M.S.; Kale, A.; Davies, M.; Heng, J.E.; Daneil, R.; Galgamuwa, G.P.; Moussa, L.G.; Timsina, K.; et al. Remote sensing-based mangrove blue carbon assessment in the Asia-Pacific: A systematic review. Sci. Total Environ. 2024, 938, 173270. [Google Scholar]
- Meng, Y.; Gou, R.; Bai, J.; Moreno-Mateos, D.; Davis, C.C.; Wan, L.; Song, S.; Zhang, H.; Zhu, X.; Lin, G. Spatial patterns and driving factors of carbon stocks in mangrove forests on Hainan Island, China. Glob. Ecol. Biogeogr. 2022, 31, 1692–1706. [Google Scholar] [CrossRef]
- Pirasteh, S.; Mafi-Gholami, D.; Li, H.; Fang, Z.; Nouri-Kamari, A.; Khorrami, B. Precision in mapping and assessing mangrove Biomass: Insights from the Persian Gulf coasts. Int. J. Appl. Earth Obs. 2024, 128, 103769. [Google Scholar] [CrossRef]
- Ali, Y.; Rahman, M.M. Quantifying forest stocking changes in Sundarbans mangrove using remote sensing data. Sci. Remote Sens. 2025, 11, 100181. [Google Scholar] [CrossRef]
- Dey, R.; Vaidya, K.; Solanki, M.; Naz, A.; Jadeja, M.; Jadeja, V.; Sharma, S.B.; Chowdhury, A. Fluctuations in sediment blue carbon density associated with land use changes and mangrove distribution along the semiarid, rapidly industrializing coastline of India. Mar. Environ. Res. 2025, 210, 107295. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fu, H.; Lee, S.Y.; Fan, H.; Wang, M. Can strict protection stop the decline of mangrove ecosystems in China? From rapid destruction to rampant degradation. Forests 2020, 11, 55. [Google Scholar] [CrossRef]
- Peng, Y.; Zheng, M.; Zheng, Z.; Wu, G.; Chen, Y.; Xu, H.; Tian, G.; Peng, S.; Chen, G.; Lee, S.Y. Virtual increase or latent loss? A reassessment of mangrove populations and their conservation in Guangdong, southern China. Mar. Pollut. Bull. 2016, 109, 691–699. [Google Scholar] [CrossRef]
- Dong, D.; Huang, H.; Gao, Q. Monitoring Coastal Blue Carbon Ecosystems by Combing Satellite and UAV Remote Sensing Data in Southern China. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024; pp. 1–5. [Google Scholar]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses; Conservation International, Intergovernmental Oceanographic Commission of UNESCO & International Union for Conservation of Nature: Arlington, VA, USA, 2014. [Google Scholar]
- Adame, M.F.; Connolly, R.M.; Turschwell, M.P.; Lovelock, C.E.; Fatoyinbo, T.; Lagomasino, D.; Goldberg, L.A.; Holdorf, J.; Friess, D.A.; Sasmito, S.D.; et al. Future carbon emissions from global mangrove forest loss. Glob. Change Biol. 2021, 27, 2856–2866. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Li, F.; Gao, W.; Guo, F.; Li, Z.; Yang, Z. Regional mangrove vegetation carbon stocks predicted integrating UAV-LiDAR and satellite data. J. Environ. Manag. 2024, 368, 122101. [Google Scholar] [CrossRef] [PubMed]
- Tam, N.; Wong, Y.; Lan, C.; Chen, G. Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 1995, 295, 193–201. [Google Scholar] [CrossRef]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Comley, B.; McGuinness, K. Above-and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust. J. Bot. 2005, 53, 431–436. [Google Scholar] [CrossRef]
- Hossain, M.; Siddique, M.R.H.; Saha, S.; Abdullah, S.R. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetl. Ecol. Manag. 2015, 23, 765–774. [Google Scholar] [CrossRef]
- Fromard, F.; Puig, H.; Mougin, E.; Marty, G.; Betoulle, J.; Cadamuro, L. Structure, above-ground biomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia 1998, 115, 39–53. [Google Scholar] [CrossRef]
- Peng, C.J.; Qian, J.W.; Guo, X.D.; Zhao, H.W.; Hu, N.X.; Yang, Q.; Chen, C.P.; Chen, L.Z. Vegetation carbon stocks and net primary productivity of the mangrove forests in Shenzhen, China. J. Appl. Ecol. 2016, 27, 2059–2065. (In Chinese) [Google Scholar]
- Zhu, Y.; Liu, K.; Liu, L.; Myint, S.W.; Wang, S.; Cao, J.; Wu, Z. Estimating and mapping mangrove biomass dynamic change using WorldView-2 images and digital surface models. IEEE J. Sel. Top. Appl. Earth Obs. 2020, 13, 2123–2134. [Google Scholar] [CrossRef]
- Clough, B.; Scott, K. Allometric relationships for estimating above-ground biomass in six mangrove species. For. Ecol. Manag. 1989, 27, 117–127. [Google Scholar] [CrossRef]
- Pei, H.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Identifying spatial variation of carbon stock in a warm temperate forest in central Japan using sentinel-2 and digital elevation model data. Remote Sens. 2023, 15, 1997. [Google Scholar] [CrossRef]
- Yan, M.; Xia, Y.; Yang, X.; Wu, X.; Yang, M.; Wang, C.; Hou, Y.; Wang, D. Biomass estimation of subtropical arboreal forest at single tree scale based on feature fusion of airborne liDAR data and aerial images. Sustainability 2023, 15, 1676. [Google Scholar] [CrossRef]
- Yao, C.; Yinglan, A.; Wang, G.; Xue, B.; Wu, J.; Dai, X. Evaluation of grassland biomass and driving factors in the Hailar river basin based on random forest model. J. Clean. Prod. 2025, 526, 146590. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Liu, H.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Stenberg, P.; Rautiainen, M.; Manninen, T.; Voipio, P.; Smolander, H. Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands. Silva Fenn. 2004, 38, 431. [Google Scholar] [CrossRef]
- Di, D.; Chao, W.; Jinhui, Y.; Qingyou, H.; Jisheng, Z.; Zheng, W. Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google Earth Engine: A case study in Zhangjiang Estuary. J. Appl. Remote Sens. 2020, 14, 044504. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Hickey, S.; Callow, N.; Phinn, S.; Lovelock, C.; Duarte, C.M. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuar. Coast. Shelf Sci. 2018, 200, 194–201. [Google Scholar] [CrossRef]
- Clarke, P.J. Dispersal of grey mangrove (Avicennia marina) propagules in southeastern Australia. Aquat. Bot. 1993, 45, 195–204. [Google Scholar] [CrossRef]
- Wan, H.W.; Li, H.X.; Gao, J.X.; Sun, C.X.; Li, G.Y.; Gao, Y.H.; Li, Q. Spatial pattern analysis of carbon sequestration of vegetation ecosystem in China. Acta Ecol. Sin. 2022, 42, 8568–8580. (In Chinese) [Google Scholar] [CrossRef]
- Pham, T.D.; Yoshino, K.; Le, N.N.; Bui, D.T. Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Int. J. Remote Sens. 2018, 39, 7761–7788. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sens. Environ. 2016, 183, 65–81. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. 2016, 53, 1–15. [Google Scholar] [CrossRef]
- Su, S.Q.; Zou, G.H.; Yun, Y.J.; Wen, F.; Zhang, N.W. Carbon reserve and carbon sink potential estimation of mangrove in Guangdong Province. South. Energy Constr. 2024, 11, 63–74. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.T.; Yan, D.D.; Yao, X.Y.; Xie, S.Y.; Liu, Y.; Sheng, Y.F.; Luan, Y.F. Carbon storage estimation of coastal wetlands in China. Acta Pedol. Sin. 2023, 60, 800–814. (In Chinese) [Google Scholar]
- Wang, Y.; Chao, B.; Dong, P.; Zhang, D.; Yu, W.; Hu, W.; Ma, Z.; Chen, G.; Liu, Z.; Chen, B. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 2021, 788, 147914. [Google Scholar] [CrossRef]
- Li, S.B.; Chen, P.H.; Huang, J.S.; Hsueh, M.L.; Hsieh, L.Y.; Lee, C.L.; Lin, H.J. Factors regulating carbon sinks in mangrove ecosystems. Glob. Change Biol. 2018, 24, 4195–4210. [Google Scholar] [CrossRef]
- Hauff, R.D.; Ewel, K.C.; Jack, J. Tracking human disturbance in mangroves: Estimating harvest rates on a Micronesian Island. Wetl. Ecol. Manag. 2006, 14, 95–105. [Google Scholar] [CrossRef]
- Ke, L.; Wong, T.W.Y.; Wong, Y.S.; Tam, N.F.Y. Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill. Mar. Pollut. Bull. 2002, 45, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jia, P.; Zhang, Z.; Cheng, J.; Wang, N. Carbon Storage Assessment under Mangrove Restoration of Dongzhai Harbor in Hainan Island, China. Ecosyst. Health Sustain. 2024, 10, 0257. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, M.; Li, Y.; Kong, S.; Gao, Y.; Huang, Y.; Qiu, P.; Yang, Y.; Wan, S. Spatial Differentiation of Mangrove Aboveground Biomass and Identification of Its Main Environmental Drivers in Qinglan Harbor Mangrove Nature Reserve. Sustainability 2024, 16, 8408. [Google Scholar] [CrossRef]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral Reflectance to Estimate Genetic Variation for In-Season Biomass, Leaf Chlorophyll, and Canopy Temperature in Wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Vaghela, B.; Chirakkal, S.; Putrevu, D.; Solanki, H. Modelling above ground biomass of Indian mangrove forest using dual-pol SAR data. Remote Sens. Appl. Soc. Environ. 2021, 21, 100457. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D. Aboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data-The superiority of deep learning over a semi-empirical model. Comput. Geosci. 2021, 150, 104737. [Google Scholar] [CrossRef]
- Salum, R.B.; Souza-Filho, P.W.M.; Simard, M.; Silva, C.A.; Fernandes, M.E.; Cougo, M.F.; do Nascimento Junior, W.; Rogers, K. Improving mangrove above-ground biomass estimates using LiDAR. Estuar. Coast. Shelf Sci. 2020, 236, 106585. [Google Scholar] [CrossRef]
- Mo, L.; Crowther, T.W.; Maynard, D.S.; van den Hoogen, J.; Ma, H.; Bialic-Murphy, L.; Liang, J.; de-Miguel, S.; Nabuurs, G.-J.; Reich, P.B.; et al. The global distribution and drivers of wood density and their impact on forest carbon stocks. Nat. Ecol. Evol. 2024, 8, 2195–2212. [Google Scholar] [CrossRef] [PubMed]
- Doraisami, M.; Domke, G.M.; Martin, A.R. Improving wood carbon fractions for multiscale forest carbon estimation. Carbon Bal. Manag. 2024, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Sasmito, S.D.; Taillardat, P.; Adinugroho, W.C.; Krisnawati, H.; Novita, N.; Fatoyinbo, L.; Friess, D.A.; Page, S.E.; Lovelock, C.E.; Murdiyarso, D.; et al. Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nat. Commun. 2025, 16, 740. [Google Scholar] [CrossRef]
- Zhang, J.; Gan, S.; Yang, P.; Zhou, J.; Huang, X.; Chen, H.; He, H.; Saintilan, N.; Sanders, C.J.; Wang, F. A global assessment of mangrove soil organic carbon sources and implications for blue carbon credit. Nat. Commun. 2024, 15, 8994. [Google Scholar] [CrossRef] [PubMed]
- Zanvo, S.M.G.; Salako, K.V.; Mensah, S.; Glèlè Kakaï, R. Impacts of harvesting intensity on carbon allocation to species, size classes and pools in mangrove forests, and the relationships with stand structural attributes. Ecol. Indic. 2023, 155, 111037. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Xiong, Y.; Liao, B.; Proffitt, E.; Guan, W.; Sun, Y.; Wang, F.; Liu, X. Soil carbon storage in mangroves is primarily controlled by soil properties: A study at Dongzhai Bay, China. Sci. Total Environ. 2018, 619–620, 1226–1235. [Google Scholar] [CrossRef]
- Rahman, M.S.; Donoghue, D.N.; Bracken, L.J. Is soil organic carbon underestimated in the largest mangrove forest ecosystems? Evidence from the Bangladesh Sundarbans. Catena 2021, 200, 105159. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Fajraoui, N.; Don, A.; Liebisch, F. Satellite-based soil organic carbon mapping on European soils using available datasets and support sampling. Sci. Remote Sens. 2024, 9, 100118. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Song, J.; Gao, J.; Zhang, Y.; Li, F.; Man, W.; Liu, M.; Wang, J.; Li, M.; Zheng, H.; Yang, X.; et al. Estimation of soil organic carbon content in coastal wetlands with measured VIS-NIR spectroscopy using optimized support vector machines and random forests. Remote Sens. 2022, 14, 4372. [Google Scholar] [CrossRef]
- Ren, Y.; Mao, D.; Wang, Z.; Yu, Z.; Xu, X.; Huang, Y.; Xi, Y.; Luo, L.; Jia, M.; Song, K.; et al. China’s wetland soil organic carbon pool: New estimation on pool size, change, and trajectory. Glob. Change Biol. 2023, 29, 6139–6156. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS model to predict and analyze the pattern of ecosystem carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Wu, X.; Shen, C.; Shi, L.; Wan, Y.; Ding, J.; Wen, Q. Spatio-temporal evolution characteristics and simulation prediction of carbon storage: A case study in Sanjiangyuan Area, China. Ecol. Inform. 2024, 80, 102485. [Google Scholar] [CrossRef]
- Wu, W.; Huang, Z.; Sun, Z.; Zhang, J.; Wang, S.; Fang, M.; Yang, H.; Lu, H.; Guo, G.; Liu, W. Simulation and attribution analysis of terrestrial ecosystem carbon storage of Hainan Island from 2015 to 2050. Sci. Total Environ. 2024, 917, 170348. [Google Scholar] [CrossRef]







| Site Name | Latitude | Longitude | Number of Field Survey Plots |
|---|---|---|---|
| Yingluo Harbor (YLH) | – N | – E | 15 |
| Techeng Island (TCI) | – N | – E | 5 |
| Tongming (TM) | – N | – E | 9 |
| Shenzhen Bay (SZB) | – N | – E | 8 |
| Qi’ao Island (QAI) | – N | – E | 7 |
| Kaozhou Yang (KZY) | – N | – E | 6 |
| Species | Allometric Equation * | Wooden Density a | References |
|---|---|---|---|
| Aegiceras corniculatum | 0.597 | [40] | |
| Avicennia marina | 0.732 | [41] | |
| [42] | |||
| [41] | |||
| Excoecaria agallocha | 0.429 | [43] | |
| Laguncularia racemosa | 0.610 | [44] | |
| Sonneratia caseolaris | 0.534 | [45] | |
| Sonneratia apetala | 0.478 b | [46] | |
| Kandelia obovata | 0.523 | [40] | |
| Bruguiera gymnorhiza | 0.868 | [46] | |
| Rhizophora stylosa | 0.940 | [47] | |
| Common c | - | [41] | |
| Location | Mangrove Area (ha) | Mean AGBC (Mg C/ha) | Mean BGBC (Mg C/ha) | Mean BC (Mg C/ha) | Total BC (Mg C) | Contribution to Provincial Total BC |
|---|---|---|---|---|---|---|
| Zhanjiang | 7009.77 | 62.29 | 17.48 | 79.77 | 685,190.41 | 56.66% |
| Maoming | 402.17 | 65.11 | 19.04 | 84.15 | 41,284.54 | 3.41% |
| Yangjiang | 1014.02 | 59.65 | 16.02 | 75.67 | 95,888.93 | 7.93% |
| Jiangmen | 1514.62 | 60.21 | 16.33 | 76.54 | 139,592.09 | 11.54% |
| Zhuhai | 708.08 | 71.46 | 22.55 | 94.01 | 71,339.16 | 5.90% |
| Zhongshan | 148.04 | 66.02 | 19.54 | 85.56 | 23,953.75 | 1.98% |
| Guangzhou | 385.23 | 62.8 | 17.76 | 80.56 | 41,641.56 | 3.44% |
| Dongguan | 74.62 | 56.97 | 14.53 | 71.5 | 7317.58 | 0.61% |
| Shenzhen | 229.49 | 66.18 | 19.63 | 85.81 | 24,609.89 | 2.04% |
| Huizhou | 374.3 | 65.91 | 19.48 | 85.39 | 39,462.12 | 3.26% |
| Shanwei | 65.38 | 71.29 | 22.46 | 93.75 | 7725.21 | 0.64% |
| Jieyang | 2.81 | 60.54 | 16.51 | 77.05 | 319.79 | 0.03% |
| Shantou | 263.8 | 68.71 | 21.03 | 89.74 | 29,390.50 | 2.43% |
| Chaozhou | 15.23 | 66.48 | 19.8 | 86.28 | 1590.15 | 0.13% |
| Guangdong | 12,207.56 | 62.80 | 17.76 | 80.56 | 1,209,305.68 | 100% |
| Location | Mangrove Area (ha) | Mean AGBC (Mg C/ha) | Mean BGBC (Mg C/ha) | Mean BC (Mg C/ha) | BC (Mg C) | Contribution to Provincial Total BC |
|---|---|---|---|---|---|---|
| Inside nature reserves | 6531.15 | 64.39 | 18.64 | 83.03 | 636,514.14 | 52.63% |
| Outside nature reserves | 5676.41 | 61.14 | 16.84 | 77.99 | 572,791.54 | 47.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, D.; Huang, H.; Gao, Q.; Li, K.; Zhang, S.; Yan, R. Integrating Remote Sensing and Field Data to Quantify Mangrove Biomass Carbon Hotspots and Protection Gaps in Guangdong, China. Forests 2025, 16, 1612. https://doi.org/10.3390/f16101612
Dong D, Huang H, Gao Q, Li K, Zhang S, Yan R. Integrating Remote Sensing and Field Data to Quantify Mangrove Biomass Carbon Hotspots and Protection Gaps in Guangdong, China. Forests. 2025; 16(10):1612. https://doi.org/10.3390/f16101612
Chicago/Turabian StyleDong, Di, Huamei Huang, Qing Gao, Kang Li, Shengpeng Zhang, and Ran Yan. 2025. "Integrating Remote Sensing and Field Data to Quantify Mangrove Biomass Carbon Hotspots and Protection Gaps in Guangdong, China" Forests 16, no. 10: 1612. https://doi.org/10.3390/f16101612
APA StyleDong, D., Huang, H., Gao, Q., Li, K., Zhang, S., & Yan, R. (2025). Integrating Remote Sensing and Field Data to Quantify Mangrove Biomass Carbon Hotspots and Protection Gaps in Guangdong, China. Forests, 16(10), 1612. https://doi.org/10.3390/f16101612
