Screening and Validation of Stable Reference Genes for Real-Time Quantitative PCR in Indocalamus tessellatus (Munro) P. C. Keng Under Multiple Tissues and Abiotic Stresses
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Stress Treatments
2.3. Total RNA Extraction and cDNA Reverse Transcription
2.4. Identification of Reference Genes from Transcriptome Data
2.5. KEGG and GO Enrichment Analyses
2.6. Primer Design and Specificity Validation
2.7. Real-Time Quantitative PCR Analysis
2.8. Data Analysis and Statistics
2.9. Reference Genes Validation Using Gene ItPOD
3. Results
3.1. Transcriptome-Based Screening and Functional Enrichment
3.2. Verification of Amplification Specificity and Efficiency for Reference Genes
3.3. Expression Patterns of Candidate Reference Genes
3.4. geNorm Analysis
3.5. NormFinder Analysis
3.6. BestKeeper Analysis
3.7. ΔCt Analysis
3.8. Comprehensive Analysis of RefFinder
3.9. ItPOD-Driven Assessment of Normalization Controls
4. Discussion
4.1. Transcriptome-Guided Candidate Identification and Functional Enrichment
4.2. Cross-Method Stability Assessment and Integrated Ranking of Reference Genes
4.3. Performance and Functional Basis of Key Reference Genes
4.4. Optimal Number of Reference Genes
4.5. ItPOD Validation Confirms Reference Gene Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RT-qPCR | Reverse transcription quantitative PCR |
TPM | Transcripts per million |
GO | Gene Ontology |
BP | Biological Process |
CC | Cellular Component |
MF | Molecular Function |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
CV | Coefficient of variation |
SD | Standard deviation |
eIF | Translation initiation factor |
UBI | Ubiquitin-like protein |
PP2A | Protein phosphatase 2A |
SAMDC | S-adenosylmethionine decarboxylase |
60S | 60S ribosomal protein |
CYP | Cyclophilin |
BS | bet1-like SNARE |
ARF | ADP-ribosylation factor |
UBP | oligouridylate-binding protein |
PEX | peroxisomal membrane protein |
SKA | shaggy-related protein kinase alpha |
PNN | pinin |
RPN | Regulatory Particle Non-ATPase |
MD10B | Mediator complex subunit 10B |
SUGP1 | SURP and G-patch domain protein 1 |
HNRPQ | Heterogeneous nuclear ribonucleoprotein Q |
References
- Shi, J.; Zhang, Y.; Zhou, D.; Ma, L.; Yao, J. Indocalamus Nakai. In Illustrated Flora of Bambusoideae in China; Springer: Berlin/Heidelberg, Germany, 2022; Volume 2, pp. 231–270. [Google Scholar]
- Sun, J.; Xun, H.; Yu, J.; Tang, F.; Yue, Y.D.; Guo, X.F. Chemical Constituents and Antibacterial Properties of Indocalamus latifolius McClure Leaves, the Packaging Material for “Zongzi”. Molecules 2015, 20, 15686–15700. [Google Scholar] [CrossRef]
- Zhang, Y.L.; He, L.; Li, Q.; Cheng, J.W.; Wang, Y.B.; Zhao, J.C.; Yuan, S.F.; Chen, Y.J.; Shi, R. Optimization of ultrasonic-assisted deep eutectic solvent for the extraction of polysaccharides from Indocalamus tessellatus leaves and their biological studies. Sustain. Chem. Pharm. 2022, 30, 100855. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Peng, W.J.; Ren, X.X.; Dai, H.T.; Tai, B.W.; Yang, B.L.; Wang, G.; Li, X.; Xing, F.G. Comprehensive analyses of inhibition of the Chinese traditional food-packaging materials, Indocalamus latifolius leaves (Zongye) on Aspergillus flavus. Food Qual. Saf. 2024, 8, fyae031. [Google Scholar] [CrossRef]
- Dutta, S.; Gorain, S.; Roy, J.; Das, R.; Banerjee, S.; Gorai, S.K.; Choudhury, M.R.; Das, S. Bamboo for global sustainability: A systematic review of its environmental and ecological implications, climate action, and biodiversity contributions. Environ. Rev. 2025, 33, 1–26. [Google Scholar] [CrossRef]
- Zhan, W.F.; Xie, Y.Q.; Xie, X.R.; Chen, Z.J.; Deng, C.Y.; Huang, H. Multidimensional Environmental Drivers of Bamboo Species Richness on Subtropical Islands. Diversity 2025, 17, 46. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Yrjälä, K.; Vinod, K.K.; Sharma, A.; Cho, J.; Satheesh, V.; Zhou, M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur. 2020, 9, e229. [Google Scholar] [CrossRef]
- Xu, M.; Zhuang, S.; Gui, R. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox. Sci. Rep. 2017, 7, 14353. [Google Scholar] [CrossRef] [PubMed]
- Akinlabi, E.T.; Anane-Fenin, K.; Akwada, D.R. Regeneration, Cultivation, and Sustenance of Bamboo. In Bamboo: The Multipurpose Plant; Akinlabi, E.T., Anane-Fenin, K., Akwada, D.R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 39–86. [Google Scholar]
- Cao, Z.; Wu, Z.; Liu, J.; Miao, T.; Sun, H.; Yan, C. Physiological responses and comprehensive evaluation of different bamboo species under waterlogging stress. J. Cent. South Univ. For. Technol. 2022, 42, 1–14. [Google Scholar]
- Liu, S.; Feng, J.; Lei, P.; Peng, S.; Sun, J.; Gao, P. Responses of Antioxidant System of Indocalamus decorus to High Temperature and Drought Stress. Mol. Plant Breed. 2024, 22, 2330–2337. [Google Scholar]
- Liao, J.; Cai, X.; Yang, Y.; Chen, Q.; Gao, S.; Liu, G.; Sun, L.; Luo, Z.; Lei, T.; Jiang, M. Dynamic study of the lead (Pb) tolerance and accumulation characteristics of new dwarf bamboo in Pb-contaminated soil. Chemosphere 2021, 282, 131089. [Google Scholar] [CrossRef]
- Juan, L.; Jian, G. Photosynthetic and physiological responses to drought, cold and Pb stresses in Pleioblastus kongosanensi, Indocalamus latifolius and Sasa fortunei. J. Bamboo Res. 2016, 35, 22–29. [Google Scholar]
- Zhao, H.; Gao, Z.; Wang, L.; Wang, J.; Wang, S.; Fei, B.; Chen, C.; Shi, C.; Liu, X.; Zhang, H.; et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). Gigascience 2018, 7, giy115. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Q.; Wang, N.; Ye, S.; Wang, Y.; Zhang, J.; Lin, C.; Zhu, Q. Advances in bamboo genomics: Growth and development, stress tolerance, and genetic engineering. J. Integr. Plant Biol. 2025, 67, 1725–1755. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Guo, C.; Zhao, L.; Mao, L.; Hu, X.Z.; Yang, Y.Z.; Qian, K.C.; Ma, P.F.; Guo, Z.H.; Li, D.Z. Haplotype-resolved nonaploid genome provides insights into in vitro flowering in bamboos. Hortic. Res. 2024, 11, uhae250. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ding, H.; Cheng, P.; Jin, X.; Fu, Y.; Peng, Y. Chromosome-level genome assembly and annotation of Phyllostachys violascens ‘Prevernalis’. Sci. Data 2025, 12, 912. [Google Scholar] [CrossRef]
- Ma, P.F.; Liu, Y.L.; Guo, C.; Jin, G.; Guo, Z.H.; Mao, L.; Yang, Y.Z.; Niu, L.Z.; Wang, Y.J.; Clark, L.G.; et al. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat. Genet. 2024, 56, 710–720. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, F.; Zheng, X.; Yang, L.; Diao, Y.; Hu, Z. Evaluation and validation of suitable reference genes for quantitative real-time PCR analysis in lotus (Nelumbo nucifera Gaertn.). Sci. Rep. 2024, 14, 10857. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Ma, B.; Wang, W.; Hu, Z.; Leng, P. Selection and Validation of Reference Genes for Gene Expression Studies in Euonymus japonicus Based on RNA Sequencing. Genes 2024, 15, 131. [Google Scholar] [CrossRef]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Fan, C.; Ma, J.; Guo, Q.; Li, X.; Wang, H.; Lu, M. Selection of Reference Genes for Quantitative Real-Time PCR in Bamboo (Phyllostachys edulis). PLoS ONE 2013, 8, e56573. [Google Scholar] [CrossRef]
- Jiang, J.; Mu, C.; Bai, Y.; Cheng, W.; Geng, R.; Xu, J.; Dou, Y.; Cheng, Z.; Gao, J. Selection and Validation of Reference Genes in Dendrocalamus brandisii for Quantitative Real-Time PCR. Plants 2024, 13, 2363. [Google Scholar] [CrossRef]
- Li, D.; Yu, S.; Zeng, M.; Liu, X.; Yang, J.; Li, C. Selection and Validation of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis in Needles of Larix olgensis under Abiotic Stresses. Forests 2020, 11, 193. [Google Scholar] [CrossRef]
- Ni, X.; Yang, Y.; Xie, Y.; Li, D.; Xia, X.; Zhang, Y.; Zheng, C. Selection and verification of reference genes for real-time quantitative PCR in endangered mangrove species Acanthus ebracteatus under different abiotic stress conditions. Mar. Environ. Res. 2025, 204, 106862. [Google Scholar] [CrossRef]
- Zhang, K.; Lan, Y.; Zhang, S.; Wang, L.; Wu, M.; Xiang, Y. A PLATZ transcription factor PhePLATZ8 from Moso bamboo (Phyllostachys edulis) plays a positive role in regulating growth and abiotic stress tolerance. Ind. Crops Prod. 2024, 221, 119334. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H.; Zhang, K.; Li, F.; Wu, M.; Xiang, Y. A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice. Plant Cell Rep. 2021, 40, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; He, W.; Wang, L.; Zhang, X.; Wang, K.; Xiang, Y. PheLBD29, an LBD transcription factor from Moso bamboo, causes leaf curvature and enhances tolerance to drought stress in transgenic Arabidopsis. J. Plant Physiol. 2023, 280, 153865. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Li, R.; Zhang, M.; Li, Y.; Wang, H.; Wang, S.; Bao, Z. Systematic identification and validation of the reference genes from 60 RNA-Seq libraries in the scallop Mizuhopecten yessoensis. BMC Genom. 2019, 20, 288. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Yang, Z.; Liu, D.; Jin, Y.; Li, X.; Deng, Y.; Wang, B.; Zhang, Z.; Ma, Y. Identification and validation of the reference genes in the echiuran worm Urechis unicinctus based on transcriptome data. BMC Genom. 2023, 24, 248. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genom. 2023, 23, 125. [Google Scholar] [CrossRef]
- Perkins, J.R.; Dawes, J.M.; McMahon, S.B.; Bennett, D.L.; Orengo, C.; Kohl, M. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data. BMC Genom. 2012, 13, 296. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Guenin, S.; Mauriat, M.; Pelloux, J.; Van Wuytswinkel, O.; Bellini, C.; Gutierrez, L. Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009, 60, 487–493. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Sun, M.; Zhu, L.; Yang, M.; Zhao, Y. Selection of Reference Genes for Quantitative Real-Time PCR Normalization in Panax ginseng at Different Stages of Growth and in Different Organs. PLoS ONE 2014, 9, e112177. [Google Scholar] [CrossRef]
- Fan, W.; Shi, Y.; Shi, P.; Yang, Y.; Zhang, M. Selection and validation of reference genes in alfalfa based on transcriptome sequence data. Sci. Rep. 2025, 15, 6324. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cao, G.; Tang, L. Selection and validation of reference genes for qRT-PCR normalization in dayflower (Commelina communis) based on the transcriptome profiling. BMC Plant Biol. 2024, 24, 1131. [Google Scholar] [CrossRef]
- Jun, W.; Jun, Z.; Ying, P.; Hua, H.; Xiong, L.; Zai, T. Identification and evaluation of reference genes for normalization in quantitative real-time PCR analysis in the premodel tree Betula luminifera. J. For. Res. 2016, 28, 273–282. [Google Scholar] [CrossRef]
- Chen, W.; Lin, X.; Wang, Y.; Mu, D.; Mo, C.; Huang, H.; Zhao, H.; Luo, Z.; Liu, D.; Wilson, I.W.; et al. Selection of Reference Genes in Siraitia siamensis and Expression Patterns of Genes Involved in Mogrosides Biosynthesis. Plants 2024, 13, 2449. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, L.; Wang, Y.; Li, X.; Feng, X.; Li, L. Stepwise Optimization of the RT-qPCR Protocol and the Evaluation of Housekeeping Genes in Pears (Pyrus bretschneideri) under Various Hormone Treatments and Stresses. Horticulturae 2023, 9, 275. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Janssens, V.; Goris, J. Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 2001, 353, 417–439. [Google Scholar] [CrossRef]
- Liu, D.; Shi, L.; Han, C.; Yu, J.; Li, D.; Zhang, Y. Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE 2012, 7, e46451. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, Y.; Fang, H.; Shi, H.; Chen, K.; Zhang, Z.; Tan, X. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions. Mol. Genet. Genom. 2014, 289, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.Q.; Eamens, A.L.; Grof, C.P.L. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis. Plant Methods 2018, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Mou, Z. The function of the Mediator complex in plant immunity. Plant Signal. Behav. 2013, 8, e23182. [Google Scholar] [CrossRef]
- Freytes, S.N.; Gobbini, M.L.; Cerdan, P.D. The Plant Mediator Complex in the Initiation of Transcription by RNA Polymerase II. Annu. Rev. Plant Biol. 2024, 75, 211–237. [Google Scholar] [CrossRef]
- Wlodarchak, N.; Xing, Y. PP2A as a master regulator of the cell cycle. Crit. Rev. Biochem. Mol. Biol. 2015, 51, 162–184. [Google Scholar] [CrossRef] [PubMed]
- Hussey, P.J.; Ketelaar, T.; Deeks, M.J. Control of the actin cytoskeleton in plant cell growth. Annu. Rev. Plant Biol. 2006, 57, 109–125. [Google Scholar] [CrossRef]
- Agarwal, P.A.-O.; Chittora, A.; Verma, A.; Agarwal, P.A.-O. Structural Dynamics, Evolutionary Significance, and Functions of Really Interesting New Gene Proteins in Ubiquitination and Plant Stress: A Review. DNA Cell Biol. 2025, 44, 214–228. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Wang, P.; Liu, W.C.; Han, C.; Wang, S.; Bai, M.Y.; Song, C.P. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. J. Integr. Plant Biol. 2024, 66, 330–367. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, H.; Chen, H.; Liu, H.; Liu, X.; Zheng, X.; Zou, G.; Wang, J. Comparative analysis of POD gene family and expression differentiation under NaCl, H2O2 and PEG stresses in sorghum. BMC Genom. 2025, 26, 674. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, J.; Pan, Y.; Wang, H.; Dang, X.; Zhao, S.; Wang, Y. The bHLH Transcription Factor PubHLH66 Improves Salt Tolerance in Daqing Poplar (Populus ussuriensis). Forests 2024, 15, 2051. [Google Scholar] [CrossRef]
Category | Gene | ID | Description | Rice Ortholog | Arabidopsis Ortholog |
---|---|---|---|---|---|
TRGs * | Actin7 | Ite22542 | Actin | Os11t0163100 | AT5G09810 |
Tubulin | Ite01366 | Alpha-tubulin | Os03t0219300 | AT5G19780 | |
UBI | Ite18473 | Ubiquitin-like protein | Os08t0295100 | AT5G25270 | |
eIF1A | Ite39018 | Translation initiation factor 1A | Os06t0342200 | AT2G04520 | |
eIF4A | Ite16714 | Translation initiation factor 4A | Os03t0566800 | AT3G19760 | |
PP2A | Ite19575 | Protein phosphatase 2A | Os01t0691700 | AT1G50370 | |
SAMDC | Ite30893 | S-adenosylmethionine decarboxylase | Os02t0611200 | AT3G25570 | |
60S | Ite41075 | 60S ribosomal protein L36 | Os05t0459900 | AT5G02450 | |
CYP | Ite17392 | Cyclophilin | Os06t0670500 | AT1G53720 | |
NRGs * | BS | Ite29857 | bet1-like SNARE | Os02t0820700 | AT3G58170 |
Ite23725 | Ite23725 | unknown protein | Os08t0374200 | AT4G10970 | |
ARF | Ite03155 | ADP-ribosylation factor | Os05t0489600 | AT5G14670 | |
UBP1 | Ite37126 | oligouridylate-binding protein 1 | Os11t0620100 | AT1G17370 | |
PEX13 | Ite18045 | peroxisomal membrane protein 13 | Os07t0152800 | AT3G07560 | |
SKA | Ite10401 | shaggy-related protein kinase alpha | Os01t0252100 | AT5G26751 | |
PNN | Ite00796 | pinin | Os03t0701900 | AT1G15200 | |
RPN8 | Ite09253 | Regulatory Particle Non-ATPase 8 | Os04t0661900 | AT5G05780 | |
MD10B | Ite31918 | Mediator complex subunit 10B | Os09t0528300 | AT1G26665 | |
SUGP1 | Ite07289 | SURP and G-patch domain protein 1 | Os09t0281600 | AT3G52120 | |
HNRPQ | Ite14890 | Heterogeneous nuclear ribonucleoprotein Q | Os11t0250000 | AT4G00830 |
Ranking | Drought | Salt | Waterlogging | Different Organs | ||||
---|---|---|---|---|---|---|---|---|
Genes | Stability Score | Genes | Stability Score | Genes | Stability Score | Genes | Stability Score | |
1 | MD10B | 1.78 | eIF1A | 2.89 | PP2A | 1.32 | 60S | 2.40 |
2 | PP2A | 1.86 | Ite23725 | 3.31 | eIF4A | 2.65 | UBP1 | 3.35 |
3 | PEX13 | 3.03 | SAMDC | 3.46 | CYP | 3.13 | BS | 3.94 |
4 | 60S | 4.12 | MD10B | 3.66 | Tubulin | 3.72 | eIF4A | 6.00 |
5 | Ite23725 | 4.16 | PP2A | 3.76 | Actin7 | 4.56 | SKA | 6.34 |
6 | ARF | 5.96 | 60S | 5.05 | HNRPQ | 5.70 | UBI | 6.36 |
7 | UBP1 | 7.26 | PEX13 | 6.48 | ARF | 6.32 | Ite23725 | 6.62 |
8 | HNRPQ | 7.75 | UBP1 | 6.96 | SAMDC | 6.91 | PP2A | 6.82 |
9 | eIF4A | 9.69 | ARF | 7.17 | PEX13 | 9.49 | ARF | 7.33 |
10 | SKA | 10.12 | RPN8 | 8.66 | SKA | 10.59 | PNN | 7.48 |
11 | RPN8 | 10.29 | SUGP1 | 9.53 | BS | 10.92 | MD10B | 9.32 |
12 | PNN | 10.72 | Actin7 | 10.79 | SUGP1 | 11.89 | eIF1A | 10.10 |
13 | eIF1A | 11.17 | UBI | 11.13 | UBP1 | 12.24 | CYP | 10.44 |
14 | Actin7 | 13.07 | CYP | 12.62 | UBI | 13.48 | PEX13 | 11.03 |
15 | SAMDC | 14.46 | SKA | 14.00 | 60S | 14.49 | SAMDC | 11.98 |
16 | BS | 15.23 | PNN | 14.42 | eIF1A | 14.98 | HNRPQ | 13.24 |
17 | CYP | 15.66 | Tubulin | 16.36 | PNN | 15.17 | SUGP1 | 13.94 |
18 | SUGP1 | 17.20 | HNRPQ | 17.73 | RPN8 | 16.49 | Tubulin | 14.49 |
19 | Tubulin | 19.00 | eIF4A | 18.74 | MD10B | 19.00 | RPN8 | 15.54 |
20 | UBI | 20.00 | BS | 20.00 | Ite23725 | 20.00 | Actin7 | 20.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhou, C.; Pan, J.; Wu, W.; Wu, S.; Yan, X.; Wang, C.; Zhu, Q. Screening and Validation of Stable Reference Genes for Real-Time Quantitative PCR in Indocalamus tessellatus (Munro) P. C. Keng Under Multiple Tissues and Abiotic Stresses. Forests 2025, 16, 1607. https://doi.org/10.3390/f16101607
Hu X, Zhou C, Pan J, Wu W, Wu S, Yan X, Wang C, Zhu Q. Screening and Validation of Stable Reference Genes for Real-Time Quantitative PCR in Indocalamus tessellatus (Munro) P. C. Keng Under Multiple Tissues and Abiotic Stresses. Forests. 2025; 16(10):1607. https://doi.org/10.3390/f16101607
Chicago/Turabian StyleHu, Xiaoqing, Chenjie Zhou, Junhao Pan, Wangqing Wu, Shuang Wu, Xiaofang Yan, Chenxin Wang, and Qianggen Zhu. 2025. "Screening and Validation of Stable Reference Genes for Real-Time Quantitative PCR in Indocalamus tessellatus (Munro) P. C. Keng Under Multiple Tissues and Abiotic Stresses" Forests 16, no. 10: 1607. https://doi.org/10.3390/f16101607
APA StyleHu, X., Zhou, C., Pan, J., Wu, W., Wu, S., Yan, X., Wang, C., & Zhu, Q. (2025). Screening and Validation of Stable Reference Genes for Real-Time Quantitative PCR in Indocalamus tessellatus (Munro) P. C. Keng Under Multiple Tissues and Abiotic Stresses. Forests, 16(10), 1607. https://doi.org/10.3390/f16101607