Mapping Flat Peaches Using GF-1 Imagery and Overwintering Features by Comparing Pixel/Object-Based Random Forest Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Image Data Acquisition and Preprocessing
2.3. Field Observations and Statistical Data
2.4. Multi-Scale Segmentation
2.5. Feature Selection
2.6. Random Forest Algorithm
2.7. Accuracy Evaluation
3. Results
3.1. Feature Variable Importance Analysis
3.2. Analysis of Partial Extraction Results in the Study Area
3.3. Comparison of Pixel-Based and Object-Based RF Classification Accuracies
3.4. Spatial Distribution and Area Statistics
4. Discussion
4.1. Effect Analysis of Features on Results
4.2. Effect Analysis of Classification Method on Results
4.3. Error Analysis
4.4. Advantages and Applicability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.L.; Wang, P.; Zhan, P.; Yan, H.Y.; Zhou, W.J.; Zhang, F. Effects of β-glucosidase on the aroma characteristics of flat peach juice as assessed by descriptive sensory analysis and gas chromatography and compared by partial least squares regression. LWT Food Sci. Technol. 2017, 82, 113–120. [Google Scholar] [CrossRef]
- Faust, M.; Timon, B. Origin and Dissemination of Peach. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1995; Volume 17. [Google Scholar]
- Temnani, A.; Berríos, P.; Zapata-García, S.; Pérez-Pastor, A. Deficit irrigation strategies of flat peach trees under semi-arid conditions. Agric. Water Manag. 2023, 287, 108464. [Google Scholar] [CrossRef]
- Nicotra, A.; Conte, L.; Moser, L.; Fantechi, P. New types of high quality peaches: Flat peaches (P. persica var. platicarpa) and Ghiaccio peach series with long on tree fruit life. In Proceedings of the 5th International Peach Symposium, Davis, CA, USA, 8–11 July 2001; pp. 131–135. [Google Scholar]
- Huan, L.; Yao, Z.; Chong, W.; Yanfei, S.; Yonghui, L. Community structure analysis of yeast attached to flat peach leaves in Xinjiang. Ecol. Sci. 2019, 38, 29–34. [Google Scholar] [CrossRef]
- Xun, L.; Zhang, J.; Cao, D.; Wang, J.; Zhang, S.; Yao, F. Mapping cotton cultivated area combining remote sensing with a fused representation-based classification algorithm. Comput. Electron. Agric. 2021, 181, 105940. [Google Scholar] [CrossRef]
- Luan, W.J.; Shen, X.J.; Fu, Y.H.; Li, W.C.; Liu, Q.L.; Wang, T.; Ma, D.X. Research on Maize Acreage Extraction and Growth Monitoring Based on a Machine Learning Algorithm and Multi-Source Remote Sensing Data. Sustainability 2023, 15, 16343. [Google Scholar] [CrossRef]
- da Silva, C.A.; Leonel, A.H.S.; Rossi, F.S.; Correia, W.L.F.; Santiago, D.D.; de Oliveira, J.F.; Teodoro, P.E.; Lima, M.; Capristo-Silva, G.F. Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform. Comput. Electron. Agric. 2020, 169, 105194. [Google Scholar] [CrossRef]
- Zhong, K.W.; Zuo, J.; Xu, J.H. Rice Identification and Spatio-Temporal Changes Based on Sentinel-1 Time Series in Leizhou City, Guangdong Province, China. Remote Sens. 2025, 17, 39. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and Mapping of Rice Cropping Pattern in Flooding Area in the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of An Giang Province. ISPRS Int. J. Geo-Inf. 2019, 8, 211. [Google Scholar] [CrossRef]
- Qin, Y.W.; Xiao, X.M.; Dong, J.W.; Zhou, Y.T.; Zhu, Z.; Zhang, G.L.; Du, G.M.; Jin, C.; Kou, W.L.; Wang, J.; et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.M.; Kou, W.L.; Qin, Y.W.; Zhang, G.L.; Li, L.; Jin, C.; Zhou, Y.T.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Zhang, W.M.; Brandt, M.; Prishchepov, A.V.; Li, Z.F.; Lyu, C.G.; Fensholt, R. Mapping the Dynamics of Winter Wheat in the North China Plain from Dense Landsat Time Series (1999 to 2019). Remote Sens. 2021, 13, 1170. [Google Scholar] [CrossRef]
- le Maire, G.; Dupuy, S.; Nouvellon, Y.; Loos, R.A.; Hakarnada, R. Mapping short-rotation plantations at regional scale using MODIS time series: Case of eucalypt plantations in Brazil. Remote Sens. Environ. 2014, 152, 136–149. [Google Scholar] [CrossRef]
- Zhang, G.L.; Xiao, X.M.; Dong, J.W.; Kou, W.L.; Jin, C.; Qin, Y.W.; Zhou, Y.T.; Wang, J.; Menarguez, M.A.; Biradar, C. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, Q.B.; Wu, W.B.; Hu, Q.; Lu, M.; Liu, S.B. Mapping regional cropping patterns by using GF-1 WFV sensor data. J. Integr. Agric. 2017, 16, 337–347. [Google Scholar] [CrossRef]
- Luo, H.X.; Dai, S.P.; Li, M.F.; Liu, E.P.; Zheng, Q.; Hu, Y.Y.; Yi, X.P. Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery. J. Integr. Agric. 2020, 19, 2815–2828. [Google Scholar] [CrossRef]
- Cai, Y.P.; Guan, K.Y.; Peng, J.; Wang, S.W.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Qi, N.; Yang, H.; Shao, G.W.; Chen, R.Q.; Wu, B.G.; Xu, B.; Feng, H.K.; Yang, G.J.; Zhao, C.J. Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China. Comput. Electron. Agric. 2023, 212, 108108. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.L.; Cheng, J.Y.; Ke, Y.H.; Chen, X.W. Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method. Remote Sens. 2019, 11, 1699. [Google Scholar] [CrossRef]
- Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Luo, J.C.; Feng, L.; Yang, Y.P.; Chen, Y.H.; Wu, W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GISci. Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Xu, J.X.; Chen, C.; Zhou, S.T.; Hu, W.M.; Zhang, W. Land use classification in mine-agriculture compound area based on multi-feature random forest: A case study of Peixian. Front. Sustain. Food Syst. 2024, 7, 1335292. [Google Scholar] [CrossRef]
- Wei, D.S.; Hou, D.Y.; Zhou, X.G.; Chen, J. Change Detection Using a Texture Feature Space Outlier Index from Mono-Temporal Remote Sensing Images and Vector Data. Remote Sens. 2021, 13, 3857. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, J.; Zhang, G.; Yang, J.; Liu, R.; Wu, B.; Xiao, X. Improved phenology-based rice mapping algorithm by integrating optical and radar data. Remote Sens. Environ. 2024, 315, 114460. [Google Scholar] [CrossRef]
- Li, M.; Zhao, G.-X.; Qin, Y.-W. Extraction and Monitoring of Cotton Area and Growth Information Using Remote Sensing at Small Scale: A Case Study in Dingzhuang Town of Guangrao County, China. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China, 19–20 February 2011; pp. 816–823. [Google Scholar]
- Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Aghighi, H.; Nematollahi, H.; Alimohammadi, A.; Matkan, A.A. Automatic canola mapping using time series of sentinel 2 images. ISPRS J. Photogramm. Remote Sens. 2019, 156, 63–76. [Google Scholar] [CrossRef]
- Pu, Y.J. Analysis of Climate Characteristics of High-Quality Flat Peaches in Northern Xinjiang. Shihezi Sci. Technol. 2018, 5–7. [Google Scholar]
- Di, Y.; Dong, J.; Zhu, F.; Fu, P. A robust but straightforward phenology-based ginger mapping algorithm by using unique phenology features, and time-series Sentinel-2 images. Comput. Electron. Agric. 2022, 198, 107066. [Google Scholar] [CrossRef]
- Ghosh, A.; Joshi, P.K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 298–311. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Shiu, Y.-S. A Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping. Sensors 2016, 16, 594. [Google Scholar] [CrossRef] [PubMed]
- Tuxen, K.; Schile, L.; Stralberg, D.; Siegel, S.; Parker, T.; Vasey, M.; Callaway, J.; Kelly, M. Mapping changes in tidal wetland vegetation composition and pattern across a salinity gradient using high spatial resolution imagery. Wetl. Ecol. Manag. 2010, 19, 141–157. [Google Scholar] [CrossRef]
- Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87–98. [Google Scholar] [CrossRef]
- Szantoi, Z.; Escobedo, F.J.; Abd-Elrahman, A.; Pearlstine, L.; Dewitt, B.; Smith, S. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environ. Monit. Assess. 2015, 187, 262. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Dong, J.W.; Kou, W.L.; Qin, Y.W.; Xiao, X.M. Mapping Panax Notoginseng Plantations by Using an Integrated Pixel- and Object-Based (IPOB) Approach and ZY-3 Imagery. Remote Sens. 2021, 13, 2184. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Fu, B.; Xie, S.; He, H.; Zuo, P.; Sun, J.; Liu, L.; Huang, L.; Fan, D.; Gao, E. Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm. Ecol. Indic. 2021, 131, 108173. [Google Scholar] [CrossRef]
- Fu, B.L.; Wang, Y.Q.; Campbell, A.; Li, Y.; Zhang, B.; Yin, S.B.; Xing, Z.F.; Jin, X.M. Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecol. Indic. 2017, 73, 105–117. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wu, X. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sens. 2018, 10, 294. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover mapping. ISPRS J. Photogramm. Remote Sens. 2020, 161, 27–36. [Google Scholar] [CrossRef]
- Witharana, C.; Civco, D.L.; Meyer, T.H. Evaluation of data fusion and image segmentation in earth observation based rapid mapping workflows. ISPRS J. Photogramm. Remote Sens. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Rodríguez-Esparragón, D.; Marcello, J.; Eugenio, F.; Gamba, P. Index-based forest degradation mapping using high and medium resolution multispectral sensors. Int. J. Digit. Earth 2024, 17, 2365981. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.; Cen, H.; Zhu, J.; Yin, W.; Wu, W.; Zhu, H.; Sun, D.; Zhou, W.; He, Y. Combining UAV-Based Vegetation Indices and Image Classification to Estimate Flower Number in Oilseed Rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rudiyanto; Minasny, B.; Shah, R.M.; Soh, N.C.; Arif, C.; Setiawan, B.I. Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sens. 2019, 11, 1666. [Google Scholar] [CrossRef]
- Jin, Y.H.; Liu, X.P.; Chen, Y.M.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Fan, J.L.; Defourny, P.; Zhang, X.Y.; Dong, Q.H.; Wang, L.M.; Qin, Z.H.; De Vroey, M.; Zhao, C.L. Crop Mapping with Combined Use of European and Chinese Satellite Data. Remote Sens. 2021, 13, 4641. [Google Scholar] [CrossRef]
- De Vroey, M.; de Vendictis, L.; Zavagli, M.; Bontemps, S.; Heymans, D.; Radoux, J.; Koetz, B.; Defourny, P. Mowing detection using Sentinel-1 and Sentinel-2 time series for large scale grassland monitoring. Remote Sens. Environ. 2022, 280, 113145. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, G.; Wang, G.; Song, W.; Wei, X.; Hu, Y. Identifying Winter Wheat Using Landsat Data Based on Deep Learning Algorithms in the North China Plain. Remote Sens. 2023, 15, 5121. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison: Evaluating the Statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Shahrokh, V.; Khademi, H.; Zeraatpisheh, M. Mapping clay mineral types using easily accessible data and machine learning techniques in a scarce data region: A case study in a semi-arid area in Iran. Catena 2023, 223, 106932. [Google Scholar] [CrossRef]
- Xiao, T.; She, B.; Zhao, J.L.; Huang, L.S.; Ruan, C.; Huang, W.J. Identification of soybean planting areas using Sentinel-1/2 remote sensing data: A combined approach of reduced redundancy feature optimization and ensemble learning. Eur. J. Agron. 2025, 164, 127480. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Mueller, M.; Segl, K.; Kaufmann, H. Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognit. 2004, 37, 1619–1628. [Google Scholar] [CrossRef]
- Shi, Y.F.; Zhang, P.H.; Wang, Z.Y. Extraction of Lilium davidii var. unicolor Planting Information Based on Deep Learning and Multi-Source Data. Sensors 2024, 24, 1543. [Google Scholar] [CrossRef]
- Li, C.C.; Wang, J.; Wang, L.; Hu, L.Y.; Gong, P. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef]
- Wu, N.T.; Crusiol, L.G.T.; Liu, G.X.; Wuyun, D.; Han, G.D. Comparing Machine Learning Algorithms for Pixel/Object-Based Classifications of Semi-Arid Grassland in Northern China Using Multisource Medium Resolution Imageries. Remote Sens. 2023, 15, 750. [Google Scholar] [CrossRef]
- Du, B.J.; Mao, D.H.; Wang, Z.M.; Qiu, Z.Q.; Yan, H.Q.; Feng, K.D.; Zhang, Z.B. Mapping Wetland Plant Communities Using Unmanned Aerial Vehicle Hyperspectral Imagery by Comparing Object/Pixel-Based Classifications Combining Multiple Machine-Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8249–8258. [Google Scholar] [CrossRef]
- Lantz, N.J.; Wang, J. Object-based classification of Worldview-2 imagery for mapping invasive common reed, Phragmites australis. Can. J. Remote Sens. 2014, 39, 328–340. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Kaszta, Z.; Van de Kerchove, R.; Ramoelo, A.; Cho, M.A.; Madonsela, S.; Mathieu, R.; Wolff, E. Seasonal Separation of African Savanna Components Using Worldview-2 Imagery: A Comparison of Pixel- and Object-Based Approaches and Selected Classification Algorithms. Remote Sens. 2016, 8, 763. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, L.; Cracknell, A.P.; Gong, P. Oil palm mapping using Landsat and PALSAR: A case study in Malaysia. Int. J. Remote Sens. 2016, 37, 5431–5442. [Google Scholar] [CrossRef]
- Collins, L.; Guindon, L.; Lloyd, C.; Taylor, S.W.; White, S. Fractional cover mapping of wildland-urban interface fuels using Landsat, Sentinel 1 and PALSAR imagery. Remote Sens. Environ. 2024, 308, 114189. [Google Scholar] [CrossRef]
- Tiwari, A.; Silver, M.; Karnieli, A. Developing object-based image procedures for classifying and characterising different protected agriculture structures using LiDAR and orthophoto. Biosyst. Eng. 2020, 198, 91–104. [Google Scholar] [CrossRef]
- Miao, C.; Fu, S.; Sun, W.; Feng, S.; Hu, Y.; Liu, J.; Feng, Q.; Li, Y.; Liang, T. Large-scale mapping of the spatial distribution and cutting intensity of cultivated alfalfa based on a sample generation algorithm and random forest. Comput. Electron. Agric. 2025, 237, 110613. [Google Scholar] [CrossRef]
- Farbo, A.; Trombetta, N.G.; de Palma, L.; Borgogno-Mondino, E. Estimation of Intercepted Solar Radiation and Stem Water Potential in a Table Grape Vineyard Covered by Plastic Film Using Sentinel-2 Data: A Comparison of OLS-, MLR-, and ML-Based Methods. Plants 2024, 13, 1203. [Google Scholar] [CrossRef]
- Huang, M.Z.; Guan, S.H.; Chai, Y.Q.; Xu, J.; Yang, Y.L.; Liu, H.Y.; Yang, L.; Diao, M. Study on the protective effect of cold-proof and wintering measures on Tunisia soft-seed pomegranate. J. Fruit Sci. 2024, 41, 929–940. [Google Scholar] [CrossRef]
- Raju, C.; Pazhanivelan, S.; Perianadar, I.V.; Kaliaperumal, R.; Sathyamoorthy, N.K.; Sendhilvel, V. Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review. Agriculture 2024, 14, 2018. [Google Scholar] [CrossRef]
- Bulovic, N.; Johnson, F.; Lievens, H.; Shaw, T.E.; McPhee, J.; Gascoin, S.; Demuzere, M.; McIntyre, N. Evaluating the Performance of Sentinel-1 SAR Derived Snow Depth Retrievals Over the Extratropical Andes Cordillera. Water Resour. Res. 2025, 61, e2024WR037766. [Google Scholar] [CrossRef]
- Feng, T.; Huang, C.; Huang, G.; Shao, D.; Hao, X. Estimating snow depth based on dual polarimetric radar index from Sentinel-1 GRD data: A case study in the Scandinavian Mountains. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103873. [Google Scholar] [CrossRef]
- Pham, V.T.; Do, T.A.T.; Tran, H.D.; Do, A.N.T. Classifying forest cover and mapping forest fire susceptibility in Dak Nong province, Vietnam utilizing remote sensing and machine learning. Ecol. Inform. 2024, 79, 102392. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Y.; Zhang, G.; Chen, X.; Chang, Y.; Luo, Y.; Jin, Y.; Pan, Z.; An, P. Mapping the dynamics of intensive forage acreage during 2008–2022 in Google Earth Engine using time series Landsat images and a phenology-based algorithm. Comput. Electron. Agric. 2024, 221, 108983. [Google Scholar] [CrossRef]
- Sen, P.C.; Hajra, M.; Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Emerging Technology in Modelling and Graphics; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 99–111. [Google Scholar]
Spectral Range (μm) | Resolution (m) | Revisit Cycle (d) | |
---|---|---|---|
Panchromatic | 0.45~0.90 | 2 | 4 |
Multispectral | 0.45~0.52 | 8 | 4 |
0.52~0.59 | 8 | 4 | |
0.63~0.69 | 8 | 4 | |
0.77~0.89 | 8 | 4 |
Class | Training Sample | Validation Sample | Total |
---|---|---|---|
flat peach | 414 | 180 | 594 |
grape | 106 | 41 | 147 |
cropland | 177 | 79 | 256 |
forest | 140 | 55 | 195 |
construction land | 284 | 118 | 402 |
water | 26 | 15 | 41 |
total | 1147 | 488 | 1635 |
Feature Variable | Abbreviation | Description or Formula |
---|---|---|
original spectral | B1, B2, B3, B4 | Blue, Green, Red, NIR |
vegetation index | SRI | B4/B3 |
VIgreen | (B2 − B3)/(B2 + B3) | |
NDVI | (B4 − B3)/(B4 + B3) | |
RDVI | ||
MSR | + 1) | |
SAVI | (1 + 0.5)/(B4 + B3 + 0.5) | |
DVI | B4 − B3 | |
EVI | 2.5(B4 − B3)/(B4 + 6B3 − 7.5B1 + 1) | |
RG | B3/B4 | |
texture feature | B1-4_Mean | Mean, Variance, Entropy, Angular Second Moment, Homogeneity, Contrast, Dissimilarity, Correlation for each band of GF-1 image |
B1-4_Var | ||
B1-4_Ent | ||
B1-4_Asm | ||
B1-4_Hom | ||
B1-4_Con | ||
B1-4_Dis | ||
B1-4_Cor |
Classifiers | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5 | |
---|---|---|---|---|---|---|
object-based RF | OA (%) | 72.13 | 92.42 | 94.47 | 93.03 | 92.62 |
Kappa | 0.6413 | 0.9004 | 0.9273 | 0.9089 | 0.9033 | |
pixel-based RF | OA (%) | 78.69 | 90.37 | 90.57 | 89.14 | 88.73 |
Kappa | 0.7115 | 0.8723 | 0.8750 | 0.8562 | 0.8506 |
Comparisons | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5 | |
---|---|---|---|---|---|---|
object vs. pixel (|z|) | 2.78 a | 1.27 | 2.47 a | 2.32 a | 2.39 a | |
object vs. object (|z|) | Scheme 1 | 9.23 a | 9.83 a | 9.09 a | 8.77 a | |
Scheme 2 | - | 2.04 a | 0.51 | 0.20 | ||
Scheme 3 | - | 1.15 | 1.73 | |||
Scheme 4 | - | 0.38 | ||||
Scheme 5 | - | |||||
pixel vs. pixel (|z|) | Scheme 1 | 6.19 a | 6.18 a | 5.31 a | 5.10 a | |
Scheme 2 | - | 0.28 | 1.41 | 1.79 | ||
Scheme 3 | - | 2.11 a | 2.50 a | |||
Scheme 4 | - | 0.47 | ||||
Scheme 5 | - |
Classifiers | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5 | |
---|---|---|---|---|---|---|
object-based RF | PA (%) | 76.67 | 95.00 | 96.67 | 91.67 | 92.78 |
UA (%) | 82.14 | 96.61 | 97.75 | 98.21 | 98.24 | |
F1 score (%) | 79.31 | 95.80 | 97.21 | 94.83 | 95.43 | |
IoU (%) | 65.71 | 91.94 | 94.57 | 90.16 | 91.26 | |
pixel-based RF | PA (%) | 95.00 | 97.22 | 96.67 | 96.11 | 95.00 |
UA (%) | 78.44 | 94.09 | 94.05 | 93.51 | 92.93 | |
F1 score (%) | 85.93 | 95.63 | 95.34 | 94.79 | 93.95 | |
IoU (%) | 75.33 | 91.62 | 91.10 | 90.10 | 88.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, J.; Tang, C. Mapping Flat Peaches Using GF-1 Imagery and Overwintering Features by Comparing Pixel/Object-Based Random Forest Algorithm. Forests 2025, 16, 1566. https://doi.org/10.3390/f16101566
Wang Y, Wang J, Tang C. Mapping Flat Peaches Using GF-1 Imagery and Overwintering Features by Comparing Pixel/Object-Based Random Forest Algorithm. Forests. 2025; 16(10):1566. https://doi.org/10.3390/f16101566
Chicago/Turabian StyleWang, Yawen, Jing Wang, and Cheng Tang. 2025. "Mapping Flat Peaches Using GF-1 Imagery and Overwintering Features by Comparing Pixel/Object-Based Random Forest Algorithm" Forests 16, no. 10: 1566. https://doi.org/10.3390/f16101566
APA StyleWang, Y., Wang, J., & Tang, C. (2025). Mapping Flat Peaches Using GF-1 Imagery and Overwintering Features by Comparing Pixel/Object-Based Random Forest Algorithm. Forests, 16(10), 1566. https://doi.org/10.3390/f16101566