Comparative Analysis of Potential Fire Behavior Among Three Typical Tree Species Fuel Loads in Central Yunnan Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Preparation
2.3. Laboratory Experiment
2.3.1. Determination of FMC
2.3.2. Calculation of Fire Intensity
2.3.3. Determination of Burn-Up Rate
2.3.4. Statistical Analysis
3. Results
3.1. The Potential Fire Behavior Characteristics of Three Tree Species
3.1.1. Combustion Duration and Temperature
3.1.2. Smoldering Duration and Temperature
3.1.3. Flame Height
3.1.4. Spread Rate
3.1.5. Mass Loss Rate
3.1.6. Fire Intensity
3.2. Thermocouple Temperature Data
3.3. Effects of Fuel Morphology on Fire Behavior
4. Discussion
4.1. Stand Characteristics of Jin-Dian Yuanbaoshan Forest Area
4.2. Variation in Potential Fire Behavior Among Tree Species
4.3. Critical Factors Affecting Prescribed Burning Efficacy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, R.B.; Yu, P.; Michael, J.A.; Fay, H.J.; Jonathan, M.S.; Michelle, L.B.; Andy, H.; Kristie, L.E.; Li, S.S.; Guo, Y.M. Wildfires, global climate change, and human health. N. Engl. J. Med. 2020, 22, 2173–2181. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Shu, L.F.; Wang, M.Y.; Zhang, H.; Si, L.Q. Recent global forest fires: A comprehensive review. J. Temp. For. Res. 2022, 5, 49–54. [Google Scholar]
- Koukouli, M.E.; Pseftogkas, A.; Karagkiozidis, D.; Mermigkas, M.; Panou, T.; Balis, D.; Bais, A. Extreme wildfires over Northern Greece during Summer 2023—Part B. Adverse effects on regional air quality. Atmos. Res. 2025, 320, 108034. [Google Scholar] [CrossRef]
- MacCarthy, J.; Tyukavina, A.; Weisse, M.J.; Harris, N.; Glen, E. Extreme wildfires in Canada and their contribution to global loss in tree cover and carbon emissions in 2023. Glob. Change Biol. 2024, 30, e17392. [Google Scholar] [CrossRef]
- Wang, B.; Chang, N.; Bai, Y.; Shi, K.; Wu, Y.D. Case analysis of the Maui wildfire in Hawaii, USA. In Proceedings of the 2024 Symposium on Fire Extinguishing and Emergency Rescue Technology—Fire Suppression 2024, Dubai, United Arab Emirates, 16–18 January 2024; pp. 29–32. [Google Scholar]
- Du, J.H.; Gong, Y.T.; Jiang, L.W. Characteristics of forest fires in China and their relationship with major climatic factors. For. Resour. Manag. 2019, 2, 7–14. [Google Scholar]
- Zhang, Y. Research on firefighting safety issues in southwest forest regions. In Proceedings of the Fire Science and Technology Symposium by Academic Working Committee of China Fire Protection Association 2022, Beijing, China, 23–25 September 2022; Academic Working Committee of China Fire Protection Association: Beijing, China, 2022; pp. 491–492. [Google Scholar]
- Tian, X.R.; Zhao, F.J.; Shu, L.F.; Wang, M.Y. Analysis of satellite-detected hotspots and forest fire weather index in southwest forest regions of China. For. Res. 2010, 23, 523–529. [Google Scholar]
- National Forestry and Grassland Administration. 2021 China Forest and Grassland Ecological Comprehensive Monitoring and Assessment Report in Environmental Science; China Forestry Publishing House: Beijing, China, 2023. [Google Scholar]
- Long, T.T.; Yin, J.Y.; Ou, C.R.; Yang, Q.; Li, Y.; Wang, Q.H. Comprehensive risk assessment and spatial pattern analysis of forest fires in Yunnan Province. China Saf. Sci. J. 2021, 31, 167–173. [Google Scholar]
- Wu, C.; Xu, W.H.; Xiao, C.W.; Wang, Q.H.; Yuan, H.; Dong, J.E.; Xiong, Y. Dynamic changes and influencing factors of recovery rates in typical burned areas of central Yunnan. Resour. Sci. 2021, 43, 2465–2474. [Google Scholar]
- Li, L.Q.; Niu, S.K.; Chen, F.; Tao, C.S.; Chen, L.; Zhang, P. Analysis of surface potential fire behavior and combustibility in Miaofengshan Forest Farm, Beijing. J. Beijing For. Univ. 2019, 41, 58–67. [Google Scholar]
- Zong, X.Z.; Tian, X.R. Research advances in forest fire behavior and suppression techniques. World For. Res. 2019, 32, 31–36. [Google Scholar]
- Sun, P.Q. Research on the control techniques of diseases and pests in Pinus armandii. Seed Sci. Technol. 2022, 40, 85–87. [Google Scholar]
- Hu, Y.J. Effects of different afforestation patterns on growth of Alnus nepalensis young plantations. For. Inventory Plan. 2017, 42, 65–67. [Google Scholar]
- Zhang, Y.S.; Shu, L.F.; Zhai, C.J.; Liu, K.Z. Continuous combustion performance of nine tree species in central Yunnan. J. Cent. South Univ. For. Technol. 2023, 43, 1–8. [Google Scholar]
- Pu, Z.Y.; Shi, J.Y.; Yao, J.; Yang, L.; Zhou, D.Q. Seasonal variation in butterfly diversity in Kunming Jindian National Forest Park. Acta Prataculturae Sin. 2013, 22, 109–116. [Google Scholar]
- Yang, C.J.; He, S.N.; Tang, D.C.; Yang, M.Q.; Li, A.X.; Kong, X.Q.; Yu, Z.J. Analysis of plant community structure and diversity in Kunming Golden Temple National Forest Park. Mod. Hortic. 2025, 48, 5–7. [Google Scholar]
- Fan, J.; Hu, T.; Ren, J.; Liu, Q.; Sun, L. A comparison of five models in predicting surface dead fine fuel moisture content of typical forests in Northeast China. Front. For. Glob. Change 2023, 6, 1122087. [Google Scholar] [CrossRef]
- Zhang, W.W.; Yan, X.X.; Wang, Q.H.; Long, T.T.; Li, X.N.; Pu, J.; Ding, Z.D. Effects of prescribed burning on surface fuel fire behavior in Pinus yunnanensis forests. J. Beijing For. Univ. 2022, 44, 69–76. [Google Scholar]
- Zhang, X.; Duan, S.M.; Wang, Q.H.; Zhang, W.W.; Long, T.T.; Wang, R.C. Review on combustibility of Pinus yunnanensis forests. For. Inventory Plan. 2022, 47, 58–64. [Google Scholar]
- Cruz, M.G.; Alexander, M.E. The 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread in forests and shrublands. Ann. For. Sci. 2019, 76, 44. [Google Scholar] [CrossRef]
- Tao, C.S. Characteristics of Canopy Fuels and Potential Fire Behavior in Major Coniferous Forests of Beijing Mountainous Areas. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Wang, Y.W. Spatial Distribution Characteristics of Fuels and Potential Fire Behavior in Pinus yunnanensis Forests of Lushan Forest Farm, Sichuan. Master’s Thesis, Beijing Forestry University, Beijing, China, 2023. [Google Scholar]
- Wang, J. Effects of Prescribed Burning on Surface Fuels and Potential Fire Behavior in Pinus yunnanensis Pure Stands. Master’s Thesis, Beijing Forestry University, Beijing, China, 2024. [Google Scholar]
- Xin, Y.; Gao, F.F.; Wang, X.R. Experimental study on combustibility of surface litter in six major forest types of Changbai Mountain. Fire Sci. Technol. 2021, 40, 416–421. [Google Scholar]
- Shu, L.F.; Wang, M.Y.; Tian, X.R.; Zhang, X.L.; Dai, X.A. Calculation and Description of Forest Fire Behavior Characters. Sci. Silvae Sin. 2004, 40, 179–183. [Google Scholar]
- Fang, W. Mechanism of Spot Fire Smoldering Ignition in Moist Pine Needle Fuel Beds. Master’s Thesis, University of Science and Technology of China, Hefei, China, 2024. [Google Scholar]
- Tang, S.; Shan, Y.; Yin, S.; Cao, L.; Chen, X.; Xie, W.; Yu, M.; Feng, S. Recent Advancements in the Emission Characteristics of Forest Ground Smoldering Combustion. Forests 2024, 15, 2099. [Google Scholar] [CrossRef]
- Guo, Q.X.; Chen, Y.L.; Zhang, M.; Wang, L.J.; Shan, Y.L. Research on the Spatial Correlation Between Heterogeneity of Combustible Materials, Microenvironment Fire Behavior and Its Disturbance; Northeast Forestry University: Harbin, China, 2003. [Google Scholar]
- Mendes-Lopes, J.M.; Ventura, J.M.; Amaral, J.M. Flame characteristics, temperature–time curves, and rate of spread in fires propagating in a bed of Pinus pinaster needles. Int. J. Wildland Fire 2003, 12, 67–84. [Google Scholar] [CrossRef]
- Johnston, J.M.; Wooster, M.J.; Paugam, R.; Wang, X.; Lynham, T.J.; Johnston, L.M. Direct estimation of Byram’s fire intensity from infrared remote sensing imagery. Int. J. Wildland Fire 2017, 26, 668–684. [Google Scholar] [CrossRef]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Tian, Z.W.; Zhang, Z.D.; Zeng, J.; Liu, K.Z. Overview of the influence of forest fuel conditions on fire behavior. For. Fire Prev. 2019, 142, 35–37. [Google Scholar]
- Wang, Q.H.; Yan, X.X.; Long, T.T.; Xu, R.S.; Ye, B.; Chen, Q.L.; Li, X.N. Combustibility of dead branches in Pinus armandii pure stands in Kunming region. Acta Agric. Univ. Jiangxiensis 2020, 42, 66–73. [Google Scholar]
- Chen, Q.L.; Wang, Q.H.; Li, K.; Ye, B.; Li, Z.X.; Yan, X.X.; Li, S.Y. Fire resistance characteristics of Alnus nepalensis forests in Kunming region. For. Fire Prev. 2019, 140, 10–14. [Google Scholar]
- Li, M.H. Design of firebreak forest belts in Yunnan Forest Nature Center. For. Fire Prev. 2002, 1, 28–30. [Google Scholar]
- Long, T.T.; Xiang, L.C.; Yan, X.X.; Gao, L.; Wang, Q.H.; Ye, B.; Chen, Q.L. Study on ignition and spread characteristics of surface fuels in Pinus armandii forests. Fire Sci. Technol. 2020, 39, 590–592. [Google Scholar]
- Li, S.Y.; Wang, Q.H.; Li, B.F.; Gao, F. Comparative study on flammability of fresh leaves and branches from 10 woody plants in central Yunnan. J. Southwest For. Coll. 2006, 1, 56–58. [Google Scholar]
- Su, W.J.; Li, S.Y.; Wang, Q.H.; Shan, B.J. Pyrolysis characteristics of bark from three main afforestation tree species in central Yunnan. J. Southwest For. Univ. 2017, 37, 188–192. [Google Scholar]
- Zhang, Y.S. Flammability of Main Tree Species and Fuel Regulation in Flammable Stands in Central Yunnan Forests. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2022. [Google Scholar]
- Lin, Q.C. Application of prescribed burning in forest fire prevention in Shanghang County. Rural Sci. Technol. 2022, 13, 123–126. [Google Scholar]
- Xu, H.S.; Hu, W.Z. Effects of slope on pine needle fire spread and suppression by firebreaks. J. Tsinghua Univ. (Sci. Technol.) 2025, 65, 672–680. [Google Scholar]
Mass Ratio | Component | Moisture Content (%) | Burning Duration (s) | Smoldering Duration (s) | Combustion Temperature (°C) | Smoldering Temperature (°C) | Flame Height (cm) | Spread Rate (m·min−1) | Mass Loss Rate (%) | Fire Intensity (kW·m−1) |
---|---|---|---|---|---|---|---|---|---|---|
3:1 | Base + Pine needles | 14.13 | 293 | 90 | 711.4 ± 48.9 | 324.3 ± 77.5 | 60 ± 5 | 0.21 | 81.60 | 90.11 |
301 | 106 | 633.6 ± 52.5 | 320.8 ± 71.5 | 53 ± 8 | 0.19 | 76.40 | 68.84 | |||
290 | 97 | 653.2 ± 47.3 | 306.8 ± 61.9 | 57 ± 6 | 0.21 | 79.00 | 80.61 | |||
3:1 | Base + Branch | 12.11 | 365 | 108 | 672.5 ± 44.8 | 306.2 ± 37.4 | 47 ± 3 | 0.16 | 65.55 | 53.04 |
349 | 80 | 689.5 ± 47.5 | 285.7 ± 41.2 | 44 ± 8 | 0.17 | 70.30 | 45.97 | |||
375 | 111 | 666.6 ± 42.9 | 305.6 ± 37.5 | 38 ± 7 | 0.16 | 73.11 | 33.44 | |||
3:1 | Base + Bark | 12.90 | 418 | 154 | 642.1 ± 72.6 | 281.8 ± 22.7 | 37 ± 3 | 0.14 | 63.32 | 31.56 |
343 | 141 | 661.5 ± 68.5 | 290.8 ± 25.4 | 37 ± 4 | 0.18 | 69.43 | 31.56 | |||
400 | 145 | 651.7 ± 61.5 | 283.5 ± 24.7 | 39 ± 4 | 0.15 | 68.33 | 35.38 | |||
5:1:1:1 | Base + Pine needles + Branches + Bark | 13.05 | 391 | 142 | 622.0 ± 23.8 | 251.5 ± 46.1 | 36 ± 7 | 0.15 | 60.62 | 29.74 |
384 | 137 | 603.8 ± 21.7 | 237.6 ± 39.6 | 33 ± 6 | 0.16 | 57.33 | 24.62 | |||
398 | 146 | 625.4 ± 26.9 | 263.3 ± 48.2 | 38 ± 3 | 0.15 | 66.56 | 33.44 |
Mass Ratio | Component | Moisture Content (%) | Burning Duration (s) | Smoldering Duration (s) | Combustion Temperature (°C) | Smoldering Temperature (°C) | Flame Height (cm) | Spread Rate (m·min−1) | Mass Loss Rate (%) | Fire Intensity (kW·m−1) |
---|---|---|---|---|---|---|---|---|---|---|
3:1 | Base + Leaves | 21.98 | 308 | 104 | 587.9 ± 27.5 | 294.5 ± 74.2 | 42 ± 8 | 0.19 | 63.60 | 41.55 |
324 | 116 | 576.0 ± 33.3 | 272.8 ± 43.2 | 45 ± 7 | 0.18 | 66.80 | 48.27 | |||
310 | 113 | 584.5 ± 21.3 | 297.5 ± 50.5 | 38 ± 6 | 0.19 | 70.30 | 33.44 | |||
3:1 | Base + Branch | 16.10 | 426 | 110 | 587.0 ± 25.7 | 298.7 ± 28.7 | 28 ± 4 | 0.14 | 50.18 | 17.24 |
390 | 95 | 608.5 ± 24.2 | 313.9 ± 33.7 | 27 ± 3 | 0.15 | 61.99 | 15.93 | |||
405 | 105 | 589.1 ± 28.2 | 268.0 ± 31.2 | 31 ± 4 | 0.15 | 63.75 | 21.50 | |||
3:1 | Base + Bark | 18.28 | 428 | 61 | 610.1 ± 41.9 | 279.2 ± 30.5 | 27 ± 4 | 0.14 | 50.35 | 15.93 |
400 | 60 | 624.5 ± 32.5 | 280.5 ± 23.2 | 22 ± 3 | 0.14 | 57.04 | 11.25 | |||
436 | 71 | 585.0 ± 30.1 | 310.5 ± 23.4 | 24 ± 4 | 0.15 | 57.07 | 12.34 | |||
5:1:1:1 | Base + Leaves + Branches + Bark | 19.38 | 480 | 83 | 558.2 ± 32.6 | 296.5 ± 22.0 | 26 ± 3 | 0.13 | 37.05 | 14.67 |
456 | 76 | 527.3 ± 28.8 | 257.9 ± 24.7 | 18 ± 5 | 0.13 | 32.33 | 6.61 | |||
494 | 107 | 596.1 ± 38.3 | 307.6 ± 25.8 | 30 ± 3 | 0.12 | 45.58 | 20.02 | |||
3:1 | Base + surface litter (control group). | 15.43 | 436 | 115 | 624.2 ± 57.7 | 214.5 ± 20.2 | 25 ± 5 | 0.14 | 56.50 | 13.48 |
455 | 127 | 637.7 ± 52.6 | 226.7 ± 18.6 | 33 ± 6 | 0.13 | 59.79 | 24.62 | |||
424 | 107 | 588.1 ± 48.3 | 209.5 ± 21.7 | 23 ± 7 | 0.14 | 53.07 | 11.24 |
Mass Ratio | Component | Moisture Content (%) | Burning Duration (s) | Smoldering Duration (s) | Combustion Temperature (°C) | Smoldering Temperature (°C) | Flame Height (cm) | Spread Rate (m·min−1) | Mass Loss Rate (%) | Fire Intensity (kW·m−1) |
---|---|---|---|---|---|---|---|---|---|---|
3:1 | Base + Leaves | 22.05 | 312 | 90 | 605.1 ± 37.5 | 316.6 ± 25.5 | 51 ± 4 | 0.19 | 74.23 | 63.33 |
348 | 107 | 571.7 ± 43.3 | 282.7 ± 28.7 | 48 ± 5 | 0.17 | 71.59 | 55.52 | |||
305 | 77 | 621.7 ± 47.1 | 304.5 ± 25.2 | 50 ± 3 | 0.20 | 78.73 | 60.66 | |||
3:1 | Base + Branch | 18.35 | 500 | 117 | 594.5 ± 32.3 | 283.2 ± 34.9 | 34 ± 6 | 0.12 | 72.17 | 26.24 |
473 | 105 | 597.4 ± 28.1 | 275.7 ± 36.9 | 42 ± 7 | 0.13 | 62.97 | 41.55 | |||
406 | 96 | 626.8 ± 34.4 | 267.4 ± 32.6 | 39 ± 6 | 0.15 | 70.20 | 35.38 | |||
3:1 | Base + Bark | 17.83 | 513 | 177 | 578.1 ± 46.1 | 256.6 ± 42.4 | 27 ± 5 | 0.12 | 57.25 | 15.93 |
441 | 145 | 600.0 ± 48.8 | 285.1 ± 32.7 | 26 ± 6 | 0.14 | 50.06 | 14.68 | |||
431 | 133 | 601.4 ± 35.3 | 266.5 ± 43.2 | 23 ± 8 | 0.14 | 54.89 | 10.21 | |||
5:1:1:1 | Base + Leaves + Branches + Bark | 18.81 | 477 | 75 | 614.3 ± 72.7 | 270.4 ± 65.9 | 34 ± 3 | 0.13 | 42.69 | 26.27 |
489 | 94 | 626.9 ± 69.2 | 288.3 ± 67.0 | 35 ± 6 | 0.12 | 45.53 | 27.98 | |||
483 | 101 | 617.6 ± 73.5 | 265.5 ± 61.2 | 38 ± 3 | 0.12 | 43.85 | 33.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Yu, Y.; Chen, W.; Zhou, M.; Zhao, J.; Ye, B.; Zhu, X.; Xu, S.; He, C.; Kou, W.; et al. Comparative Analysis of Potential Fire Behavior Among Three Typical Tree Species Fuel Loads in Central Yunnan Region. Forests 2025, 16, 1509. https://doi.org/10.3390/f16101509
Liu M, Yu Y, Chen W, Zhou M, Zhao J, Ye B, Zhu X, Xu S, He C, Kou W, et al. Comparative Analysis of Potential Fire Behavior Among Three Typical Tree Species Fuel Loads in Central Yunnan Region. Forests. 2025; 16(10):1509. https://doi.org/10.3390/f16101509
Chicago/Turabian StyleLiu, Mingxing, Yuanbing Yu, Weiming Chen, Ming Zhou, Jiaming Zhao, Biao Ye, Xilong Zhu, Shiying Xu, Chunyi He, Weili Kou, and et al. 2025. "Comparative Analysis of Potential Fire Behavior Among Three Typical Tree Species Fuel Loads in Central Yunnan Region" Forests 16, no. 10: 1509. https://doi.org/10.3390/f16101509
APA StyleLiu, M., Yu, Y., Chen, W., Zhou, M., Zhao, J., Ye, B., Zhu, X., Xu, S., He, C., Kou, W., & Wang, Q. (2025). Comparative Analysis of Potential Fire Behavior Among Three Typical Tree Species Fuel Loads in Central Yunnan Region. Forests, 16(10), 1509. https://doi.org/10.3390/f16101509