Assessing Spatiotemporal Dynamics of Poplar Plantation in Northern China’s Farming-Pastoral Ecotone (1989–2022)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Satellite Images
2.2.2. Ground Survey Data
2.3. Extraction Method of Poplar Plantation Areas
2.3.1. Random Forest Classification
2.3.2. Selected Years for the Extraction of Poplar Plantation Areas
2.3.3. Input Variables
2.3.4. Training and Validation Datasets
2.3.5. Model Training and Implementation
2.3.6. Evaluation Matrices
2.4. Existing High-Resolution Land Cover Products for Comparison
2.5. Analysis of Growth Trend Changes
2.5.1. NDVI Filtering and Interpolation
2.5.2. Trend Analysis
3. Results
3.1. Extraction Accuracy of Poplar Plantation
3.2. Comparison with Existing Land Cover Products
3.3. Spatiotemporal Changes in Poplar Plantation Areas
3.4. Spatiotemporal Changes in Vegetation Growth Status
4. Discussion
4.1. The Uncertainty of and Its Impact on Existing Land Cover Products
4.2. The Significance of Poplar Plantations
4.3. Degradation of Poplar Plantations
4.4. Future Perspectives and Uncertainty Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Wei, Y.; Yu, D.; Lewis, B.J.; Zhou, L.; Zhou, W.; Fang, X.; Zhao, W.; Wu, S.; Dai, L. Forest Carbon Storage and Tree Carbon Pool Dynamics under Natural Forest Protection Program in Northeastern China. Chin. Geogr. Sci. 2014, 24, 397–405. [Google Scholar] [CrossRef]
- Peng, B.; Zhou, Z.; Cai, W.; Li, M.; Xu, L.; He, N. Maximum Potential of Vegetation Carbon Sink in Chinese Forests. Sci. Total Environ. 2023, 905, 167325. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Guan, H.; Ren, Y.; Chen, Y.; Chen, M.; Yang, Z.; Lin, D.; Liu, W.; Xu, J.; et al. Unveiling China’s Natural and Planted Forest Spatial–Temporal Dynamics from 1990 to 2020. ISPRS J. Photogramm. Remote Sens. 2024, 209, 37–50. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132974-0. [Google Scholar]
- Diao, J.; Liu, J.; Zhu, Z.; Wei, X.; Li, M. Active Forest Management Accelerates Carbon Storage in Plantation Forests in Lishui, Southern China. For. Ecosyst. 2022, 9, 100004. [Google Scholar] [CrossRef]
- Li, B.V.; Wu, S.; Hua, F.; Mi, X. The Past and Future of Ecosystem Restoration in China. Curr. Biol. 2024, 34, R379–R387. [Google Scholar] [CrossRef]
- Xu, K.; Zou, G.; Hu, H.; Xu, K.; Zou, G.; Hu, H. Forest Carbon Sequestration Functions and Mitigation Strategies for Global Climate Change; IntechOpen: London, UK, 2025; ISBN 978-1-83634-712-5. [Google Scholar]
- Xiao, Y.; Wang, Q.; Zhang, H.K. Global Natural and Planted Forests Mapping at Fine Spatial Resolution of 30 m. J. Remote Sens. 2024, 4, 0204. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, L.; Tang, F.; Zhao, S.; Huang, N.; Zheng, K. Mapping Spatial and Temporal Distribution Information of Plantations in Guangxi from 2000 to 2020. Front. Ecol. Evol. 2023, 11, 1201161. [Google Scholar] [CrossRef]
- Lu, W.W.; Wu, B.; Bai, J.H.; Song, X.D.; Shi, Z.J.; Dang, H.Z.; Li, H.; Yin, M. Causes and Research Prospects of the Decline of Pinus sylvestris var. mongolica Plantation. Chin. Sci. Bull. 2023, 68, 1286–1297. [Google Scholar]
- Fagan, M.E.; Kim, D.-H.; Settle, W.; Ferry, L.; Drew, J.; Carlson, H.; Slaughter, J.; Schaferbien, J.; Tyukavina, A.; Harris, N.L.; et al. The Expansion of Tree Plantations across Tropical Biomes. Nat. Sustain. 2022, 5, 681–688. [Google Scholar] [CrossRef]
- Li, M.; Liu, A.; Zou, C.; Xu, W.; Shimizu, H.; Wang, K. An Overview of the “Three-North” Shelterbelt Project in China. For. Stud. China 2012, 14, 70–79. [Google Scholar] [CrossRef]
- Qi, Y.; Chang, Q.; Jia, K.; Liu, M.; Liu, J.; Chen, T. Temporal-Spatial Variability of Desertification in an Agro-Pastoral Transitional Zone of Northern Shaanxi Province, China. CATENA 2012, 88, 37–45. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, B.; Zhang, Z.; Zhang, X.; Dai, S. The Three-North Shelterbelt Program and Dynamic Changes in Vegetation Cover. J. Resour. Ecol. 2014, 5, 53–59. [Google Scholar] [CrossRef]
- Ma, W. Research Report on the Degradation and Renewal of the Three North Shelterbelt Forests (I). For. Sci. Technol. 2016, 03, 10–15. [Google Scholar] [CrossRef]
- Yu, T.; Liu, P.; Zhang, Q.; Ren, Y.; Yao, J. Detecting Forest Degradation in the Three-North Forest Shelterbelt in China from Multi-Scale Satellite Images. Remote Sens. 2021, 13, 1131. [Google Scholar] [CrossRef]
- Gao, T.; Zhu, J.; Zheng, X.; Shang, G.; Huang, L.; Wu, S. Mapping Spatial Distribution of Larch Plantations from Multi-Seasonal Landsat-8 OLI Imagery and Multi-Scale Textures Using Random Forests. Remote Sens. 2015, 7, 1702–1720. [Google Scholar] [CrossRef]
- Liu, K.; Wang, A.; Zhang, S.; Zhu, Z.; Bi, Y.; Wang, Y.; Du, X. Tree Species Diversity Mapping Using UAS-Based Digital Aerial Photogrammetry Point Clouds and Multispectral Imageries in a Subtropical Forest Invaded by Moso Bamboo (Phyllostachys edulis). Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102587. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, L.; Zhao, F.; Wu, J.; Tang, H.; Lv, Z.; Xu, B.; Zhou, L.; Sun, R.; Meng, R. A Spectral-Temporal Constrained Deep Learning Method for Tree Species Mapping of Plantation Forests Using Time Series Sentinel-2 Imagery. ISPRS J. Photogramm. Remote Sens. 2023, 204, 397–420. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Busetto, L.; Meroni, M.; Colombo, R. Combining Medium and Coarse Spatial Resolution Satellite Data to Improve the Estimation of Sub-Pixel NDVI Time Series. Remote Sens. Environ. 2008, 112, 118–131. [Google Scholar] [CrossRef]
- Hsieh, P.-F.; Lee, L.C.; Chen, N.-Y. Effect of Spatial Resolution on Classification Errors of Pure and Mixed Pixels in Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2657–2663. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Sun, W.; Ding, X.; Su, J.; Mu, X.; Zhang, Y.; Gao, P.; Zhao, G. Land Use and Cover Changes on the Loess Plateau: A Comparison of Six Global or National Land Use and Cover Datasets. Land Use Policy 2022, 119, 106165. [Google Scholar] [CrossRef]
- Ghazoul, J.; Burivalova, Z.; Garcia-Ulloa, J.; King, L.A. Conceptualizing Forest Degradation. Trends Ecol. Evol. 2015, 30, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; He, C.; Qiu, L.; Li, C.; Zhang, J.; Meng, P. Stable Isotope Analysis Reveals Prolonged Drought Stress in Poplar Plantation Mortality of the Three-North Shelter Forest in Northern China. Agric. For. Meteorol. 2018, 252, 39–48. [Google Scholar] [CrossRef]
- Zi, E.; Jia, G.; Yu, X.; Shi, J.; Jiang, T. Assessing water sources for Populus simonii with different degrees of degradation based on stable isotopes. Chin. J. Appl. Ecol. 2020, 31, 1807–1816. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Li, T. Bashang Forest Change Monitoring with Multi-Temporal MODIS Images and Random Forest Algorithm. Acta Sci. Nat. Univ. Pekin. 2018, 54, 792–800. [Google Scholar] [CrossRef]
- Han, W.; Chen, D.; Li, H.; Chang, Z.; Chen, J.; Ye, L.; Liu, S.; Wang, Z. Spatiotemporal Variation of NDVI in Anhui Province from 2001 to 2019 and Its Response to Climatic Factors. Forests 2022, 13, 1643. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Bai, X.; Tan, Q.; Li, Q.; Wu, L.; Tian, S.; Hu, Z.; Li, C.; Deng, Y. Factors Affecting Long-Term Trends in Global NDVI. Forests 2019, 10, 372. [Google Scholar] [CrossRef]
- Su, W.; Yu, D.; Sun, Z.; Zhan, J.; Liu, X.; Luo, Q. Vegetation Changes in the Agricultural-Pastoral Areas of Northern China from 2001 to 2013. J. Integr. Agric. 2016, 15, 1145–1156. [Google Scholar] [CrossRef]
- Chen, W.; Li, A.; Hu, Y.; Li, L.; Zhao, H.; Han, X.; Yang, B. Exploring the Long-Term Vegetation Dynamics of Different Ecological Zones in the Farming-Pastoral Ecotone in Northern China. Environ. Sci. Pollut. Res. 2021, 28, 27914–27932. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Dong, S.; Wei, M.; Zhou, J. Spatial and Temporal Changes in Vegetation and Desertification (1982–2018) and Their Responses to Climate Change in the Ulan Buh Desert, Northwest China. Theor. Appl. Climatol. 2021, 143, 1643–1654. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, W.; Li, S.; Wang, T.; Yu, L.; Xu, M.; Singh, R.P.; Liu, C.-Q. Spatio-Temporal Changes in Vegetation in the Last Two Decades (2001–2020) in the Beijing–Tianjin–Hebei Region. Remote Sens. 2022, 14, 3958. [Google Scholar] [CrossRef]
- Cui, T.; Han, G.; Zhang, L. Analysis on the Changes of 50 Years Climate Resources on Bashang Regionin North-West of Hebei—In the Case of Zhangbei County. J. Shanxi Agric. Sci. 2017, 45, 819–824. [Google Scholar]
- Liu, Q.; Li, J.; Guo, Z.; Chang, C.; Wang, H. The Relationships between Root Traits and the Soil Erodibility of Farmland Shelterbelts in the Bashang Region of China. Forests 2023, 14, 1827. [Google Scholar] [CrossRef]
- Liang, X.; Xin, Z.; Shen, H.; Yan, T. Deep Soil Water Deficit Causes Populus simonii Carr Degradation in the Three North Shelterbelt Region of China. J. Hydrol. 2022, 612, 128201. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Wu, X.; Jiang, W.; Zhang, H. Regime Shifts of Anguli Wetland and Its Response to Climate Change from 1985 to 2016. Res. Environ. Sci. 2021, 34, 2954–2961. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- El Fellah, S.; Rziza, M.; El Haziti, M. An Efficient Approach for Filling Gaps in Landsat 7 Satellite Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 62–66. [Google Scholar] [CrossRef]
- Flood, N. Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape. Remote Sens. 2014, 6, 7952–7970. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wu, F.; Ren, Y.; Wang, X. Application of Multi-Source Data for Mapping Plantation Based on Random Forest Algorithm in North China. Remote Sens. 2022, 14, 4946. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Ye, F.; Zhou, B. Mangrove Species Classification from Unmanned Aerial Vehicle Hyperspectral Images Using Object-Oriented Methods Based on Feature Combination and Optimization. Sensors 2024, 24, 4108. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef]
- Abdi, A.M. Land Cover and Land Use Classification Performance of Machine Learning Algorithms in a Boreal Landscape Using Sentinel-2 Data. GISci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 V200. In Zenodo; European Space Agency (ESA): Paris, France, 2022. [Google Scholar]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30 m Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Fritsch, F.; Carlson, R. Monotone Piecewise Cubic Interpolation. SIAM J. Numer. Anal. 1980, 17, 238–246. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-Temporal Analysis of Vegetation Variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Wang, Y.; Xu, Y.; Xu, X.; Jiang, X.; Mo, Y.; Cui, H.; Zhu, S.; Wu, H. Evaluation of Six Global High-Resolution Global Land Cover Products over China. Int. J. Digit. Earth 2024, 17, 2301673. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Zedaker, S.M. Forest Ecosystems: Concepts and Management. For. Sci. 1986, 32, 841–842. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Fu, X.; Tang, M.; Guo, M.; Zhang, S.; Zhu, Y.; Qu, L.; Wu, G. Impacts of Regional Land-Use Patterns on Ecosystem Services in the Typical Agro-Pastoral Ecotone of Northern China. Ecosyst. Health Sustain. 2022, 8, 2110521. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest Biomass Carbon Sinks in East Asia, with Special Reference to the Relative Contributions of Forest Expansion and Forest Growth. Glob. Change Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef]
- Chavan, S.B.; Dhillon, R.S.; Ajit; Rizvi, R.H.; Sirohi, C.; Handa, A.K.; Bharadwaj, K.K.; Johar, V.; Kumar, T.; Singh, P.; et al. Estimating Biomass Production and Carbon Sequestration of Poplar-Based Agroforestry Systems in India. Environ. Dev. Sustain. 2022, 24, 13493–13521. [Google Scholar] [CrossRef]
- Marchetti, M.; Sallustio, L.; Ottaviano, M.; Barbati, A.; Corona, P.; Tognetti, R.; Zavattero, L.; Capotorti, G. Carbon Sequestration by Forests in the National Parks of Italy. Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2012, 146, 1001–1011. [Google Scholar] [CrossRef]
- Liang, X.; Guo, S.; Huang, C.; Wang, B.; Xiao, Y.; He, J.; Li, Y.; Wang, M.; Guan, Q. Modeling the Subpixel Land-Use Dynamics and Its Influence on Urban Heat Islands: Impacts of Factors and Scale, and Population Exposure Risk. Sustain. Cities Soc. 2024, 107, 105417. [Google Scholar] [CrossRef]
- Cao, S. Why Large-Scale Afforestation Efforts in China Have Failed to Solve the Desertification Problem. Environ. Sci. Technol. 2008, 42, 1826–1831. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive Reliance on Afforestation in China’s Arid and Semi-Arid Regions: Lessons in Ecological Restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Han, Y.; Jin, S.; Chen, W.; Zhan, M.; Yuan, Z.; Wang, X.; Bai, S. Biophysical Controls on Energy Exchange and Water Use Efficiency over a Poplar Plantation in Northern Hilly China. Agric. Water Manag. 2022, 273, 107920. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.; Sun, G.; Fang, X.; Zha, T.; Chen, J.; Noormets, A.; Guo, J.; McNulty, S. Water-Use Efficiency of a Poplar Plantation in Northern China. J. For. Res. 2014, 19, 483–492. [Google Scholar] [CrossRef]
- Jia, G.; Chen, L.; Yu, X.; Liu, Z. Soil Water Stress Overrides the Benefit of Water-use Efficiency from Rising CO2 and Temperature in a Cold Semi-arid Poplar Plantation. Plant Cell Environ. 2022, 45, 1172–1186. [Google Scholar] [CrossRef]
- Hamrouni, Y.; Paillassa, E.; Chéret, V.; Monteil, C.; Sheeren, D. Sentinel-2 Poplar Index for Operational Mapping of Poplar Plantations over Large Areas. Remote Sens. 2022, 14, 3975. [Google Scholar] [CrossRef]
- Peña, J.M.; de Castro, A.I.; Torres-Sánchez, J.; Andújar, D.; San Martín, C.; Dorado, J.; Fernández-Quintanilla, C.; López-Granados, F. Estimating Tree Height and Biomass of a Poplar Plantation with Image-Based UAV Technology. AIMS Agric. Food 2018, 3, 313–326. [Google Scholar] [CrossRef]
PS | 2022 | 2013 | 2002 | 1989 |
---|---|---|---|---|
LE | 04.18 | 05.03 | 04.27 | 05.01 |
RG | 05.20 | 05.19 | 05.29 | 05.17 |
CC | 09.01 | 08.23 | 08.17 | 09.06 |
LF | 11.01 | 11.11 | 10.12 | 10.08 |
Global Product Correct | Global Product Incorrect | |
---|---|---|
Method correct | a | b |
Method correct | c | d |
Year | PA | Kappa | ||
---|---|---|---|---|
Scheme 1 | Scheme 2 | Scheme 1 | Scheme 2 | |
2022 | 0.829 | 0.950 | 0.800 | 0.895 |
2013 | 0.847 | 0.933 | 0.826 | 0.905 |
2002 | 0.927 | 0.958 | 0.875 | 0.880 |
1989 | 0.945 | 0.970 | 0.925 | 0.935 |
Product | Year | PA | Kappa | p-Value |
---|---|---|---|---|
WorldCover10 | 2021 | 0.201 | 0.177 | <0.001 |
ESRI GLC10 | 2022 | 0.000 | −0.005 | <0.001 |
FROM_GLC10 | 2017 | 0.101 | 0.086 | <0.001 |
FROM_GLC30 | 2017 | 0.030 | 0.010 | <0.001 |
GLC_FCS30 | 2022 | 0.020 | 0.015 | <0.001 |
GlobeLand30 | 2020 | 0.025 | −0.005 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Hu, S.; Sun, Z.; Wang, Y.; Liang, X.; Yang, Z.; Liao, Z. Assessing Spatiotemporal Dynamics of Poplar Plantation in Northern China’s Farming-Pastoral Ecotone (1989–2022). Forests 2025, 16, 1502. https://doi.org/10.3390/f16101502
Song J, Hu S, Sun Z, Wang Y, Liang X, Yang Z, Liao Z. Assessing Spatiotemporal Dynamics of Poplar Plantation in Northern China’s Farming-Pastoral Ecotone (1989–2022). Forests. 2025; 16(10):1502. https://doi.org/10.3390/f16101502
Chicago/Turabian StyleSong, Jiale, Shun Hu, Ziyong Sun, Yunquan Wang, Xun Liang, Zhuzhang Yang, and Zilong Liao. 2025. "Assessing Spatiotemporal Dynamics of Poplar Plantation in Northern China’s Farming-Pastoral Ecotone (1989–2022)" Forests 16, no. 10: 1502. https://doi.org/10.3390/f16101502
APA StyleSong, J., Hu, S., Sun, Z., Wang, Y., Liang, X., Yang, Z., & Liao, Z. (2025). Assessing Spatiotemporal Dynamics of Poplar Plantation in Northern China’s Farming-Pastoral Ecotone (1989–2022). Forests, 16(10), 1502. https://doi.org/10.3390/f16101502