Applying Electrical Resistance Tomography to Diagnose Trees Damaged by Surface Fire
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. External Morphological Characteristics
2.3. Electrical Resistance Tomography
2.4. Statistical Analysis
3. Results
3.1. Tree Mortality and External Characteristics
3.2. Seasonal Progression of Internal Damage Assessed by ERT
3.3. Multivariate Patterns Distinguishing Tree Mortality
4. Discussion
4.1. Influence of Tree Morphometrics and Bark Scorch Index (BSI) on Mortality
4.2. Seasonal Expansion of Internal Defects Detected by ERT
4.3. Key Indicators Differentiating Post-Fire Survivors from Non-Survivors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korea Forest Service. Yearbook of Forest Fire Statistics; Korea Forest Service: Seoul, Republic of Korea, 2024.
- Shin, J.I.; Seo, W.W.; Kim, T.; Woo, C.S.; Park, J. Analysis of availability of high-resolution satellite and UAV multispectral images for forest burn severity classification. Korean J. Remote Sens. 2019, 35, 1095–1106. [Google Scholar]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Lucash, M.S.; Scheller, R.M.; Sturtevant, B.R.; Gustafson, E.J.; Kretchun, A.M.; Foster, J.R. More than the sum of its parts: How disturbance interactions shape forest dynamics under climate change. Ecosphere 2018, 9, e02293. [Google Scholar] [CrossRef]
- Bär, A.; Schröter, D.M.; Mayr, S. When the heat is on: High temperature resistance of buds from European tree species. Plant Cell Environ. 2021, 44, 2593–2603. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Kim, S.; Kim, J.; Kang, W.; Park, K.H.; Kim, C.B.; Girona, M.M. Predicting post-fire tree mortality in a temperate pine forest, Korea. Sustainability 2021, 13, 569. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A. How forest fires kill trees: A review of the fundamental biophysical processes. Scand. J. For. Res. 2007, 22, 500–515. [Google Scholar] [CrossRef]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Kang, W.; Jung, Y. Application of the class-balancing strategies with bootstrapping for fitting logistic regression models for post-fire tree mortality in South Korea. Environ. Ecol. Stat. 2023, 30, 575–598. [Google Scholar] [CrossRef]
- Won, M.; Kim, K.; Lee, S. Analysis of burn severity in large-fire area using SPOT5 images and field survey data. Korean J. Agric. For. Meteorol. 2014, 16, 114–124. [Google Scholar] [CrossRef]
- Pascual, A.; Tupinambá-Simões, F.; Guerra-Hernández, J.; Bravo, F. High-resolution planet satellite imagery and multi-temporal surveys to predict risk of tree mortality in tropical eucalypt forestry. J. Environ. Manag. 2022, 310, 114804. [Google Scholar] [CrossRef]
- Martin, L.; Cochard, H.; Mayr, S.; Badel, E. Using electrical resistivity tomography to detect wetwood and estimate moisture content in silver fir (Abies alba Mill.). Ann. For. Sci. 2021, 78, 65. [Google Scholar] [CrossRef]
- Guyot, A.; Ostergaard, K.T.; Lenkopane, M.; Fan, J.; Lockington, D.A. Using electrical resistivity tomography to differentiate sapwood from heartwood: Application to conifers. Tree Physiol. 2013, 33, 187–194. [Google Scholar] [CrossRef]
- Bär, A.; Hamacher, M.; Ganthaler, A.; Losso, A.; Mayr, S. Electrical resistivity tomography: Patterns in Betula pendula, Fagus sylvatica, Picea abies and Pinus sylvestris. Tree Physiol. 2019, 39, 1262–1271. [Google Scholar] [CrossRef]
- Gilbert, G.S.; Ballesteros, J.O.; Barrios-Rodriguez, C.A.; Bonadies, E.F.; Cedeño-Sánchez, M.L.; Fossatti-Caballero, N.J.; Trejos-Rodríguez, M.M.; Pérez-Suñiga, J.M.; Holub-Young, K.S.; Henn, L.A.W.; et al. Use of sonic tomography to detect and quantify wood decay in living trees. Appl. Plant Sci. 2016, 4, 1600060. [Google Scholar] [CrossRef]
- Song, Y.; Jung, Y.; Lee, Y.; Kang, W.; Bae, J.; Han, S.; Lee, K. Non-Destructive Methods for Diagnosing Surface-Fire-Damaged Pinus densiflora and Quercus variabilis. Forests 2025, 16, 817. [Google Scholar] [CrossRef]
- Brazee, N.J.; Marra, R.E.; Göcke, L.; Van Wassenaer, P. Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry 2011, 84, 33–39. [Google Scholar] [CrossRef]
- Günther, T.; Rücker, C.; Spitzer, K. Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophys. J. Int. 2006, 166, 506–517. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Stephenson, N.L.; Knapp, E.; Battles, J.; Keeley, J.E. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California. For. Ecol. Manag. 2011, 261, 989–994. [Google Scholar] [CrossRef]
- Kane, J.M.; Varner, J.M.; Metz, M.R.; van Mantgem, P.J. Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western US Forests. For. Ecol. Manag. 2017, 405, 188–199. [Google Scholar] [CrossRef]
- Hood, S.M.; Smith, S.L.; Cluck, D.R. Predicting mortality for five California conifers following wildfire. For. Ecol. Manag. 2010, 260, 750–762. [Google Scholar] [CrossRef]
- Rigolot, E. Predicting postfire mortality of Pinus halepensis Mill. and Pinus pinea L. Plant Ecol. 2004, 171, 139–151. [Google Scholar] [CrossRef]
- Brando, P.M.; Nepstad, D.C.; Balch, J.K.; Bolker, B.; Christman, M.C.; Coe, M.; Putz, F.E. Fire-induced tree mortality in a neotropical forest: The roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 2012, 18, 630–641. [Google Scholar] [CrossRef]
- Frejaville, T.; Curt, T.; Carcaillet, C. Bark flammability as a fire-response trait for subalpine trees. Front. Plant Sci. 2013, 4, 71181. [Google Scholar] [CrossRef]
- Hood, S.M. Physiological Responses to Fire That Drive Tree Mortality. Authorea Prepr. 2020. [Google Scholar] [CrossRef]
- Ryan, K.C.; Peterson, D.L.; Reinhardt, E.D. Modeling long-term fire-caused mortality of Douglas-fir. For. Sci. 1988, 34, 190–199. [Google Scholar] [CrossRef]
- Ryan, K.C. Effects of fire injury on water relations of ponderosa pine. In Tall Timbers Fire Ecology Conference; Tall Timbers Research Station: Tallahassee, FL, USA, 2000; Volume 21, pp. 58–66. [Google Scholar]
- Chatziefstratiou, E.K.; Bohrer, G.; Bova, A.S.; Subramanian, R.; Frasson, R.P.; Scherzer, A.; Butler, B.W.; Dickinson, M.B. Firestem2d–a two-dimensional heat transfer model for simulating tree stem injury in fires. PLoS ONE 2013, 8, e70110. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A.; Tyree, M.T. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: Cavitation and deformation of xylem in forest fires. New Phytol. 2012, 194, 254–263. [Google Scholar] [CrossRef]
- Speck, O.; Speck, T. Is a Forest Fire a Natural Disaster? Investigating the Fire Tolerance of Various Tree Species—An Educational Module. Biomimetics 2024, 9, 114. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Woodruff, D.R.; Marias, D.E.; McCulloh, K.A.; Sevanto, S. Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species. Plant Cell Environ. 2014, 37, 2577–2586. [Google Scholar] [CrossRef]
- Leakey, A.D.B.; Ainsworth, E.A.; Bernacchi, C.J.; Rogers, A.; Long, S.P.; Ort, D.R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Exp. Bot. 2009, 60, 2859–2876. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, F.C.; McCulloh, K.A. Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return? Tree Physiol. 2013, 33, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K.A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461. [Google Scholar] [CrossRef]
- Cochard, H.; Froux, F.; Mayr, S.; Coutand, C. Xylem wall collapse in water-stressed pine needles. Plant Physiol. 2004, 134, 401–408. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Temperature-dependent rate models of vascular cambium cell mortality. Can. J. For. Res. 2004, 34, 546–559. [Google Scholar] [CrossRef]
- Sperry, J.S.; Sullivan, J.E. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 1992, 100, 605–613. [Google Scholar] [CrossRef]
- Sparks, J.P.; Black, R.A. Winter hydraulic conductivity and xylem cavitation in coniferous trees from upper and lower treeline. Arct. Antarct. Alp. Res. 2000, 32, 397–403. [Google Scholar] [CrossRef]
- Mayr, S.; Schmid, P.; Beikircher, B.; Feng, F.; Badel, E. Die hard: Timberline conifers survive annual winter embolism. New Phytol. 2020, 226, 13–20. [Google Scholar] [CrossRef]
- Mayr, S.; Schmid, P.; Rosner, S. Winter embolism and recovery in the conifer shrub Pinus mugo L. Forests 2019, 10, 941. [Google Scholar] [CrossRef]
Elevation (m) | Type | Slope (°) | Height (m) | DBH (cm) | Circ. (mm) | CBH (m) | BSI | Number of Trees | Number of Logged Trees |
---|---|---|---|---|---|---|---|---|---|
53–67 | Total | 11.8 ± 3.1 | 15.5 ± 1.0 | 36.9 ± 5.6 | 1178 ± 177 | 12.4 ± 1.9 | 10.0 ± 3.6 | 30 | |
H | 11.8 ± 3.3 | 15.9 ± 0.8 | 38.5 ± 5.8 | 1229 ± 184 | 12.3 ± 2.0 | 9.1 ± 3.5 | 19 | 5 | |
H-H | 11.7 ± 3.7 | 15.8 ± 0.8 | 39.3 ± 5.0 | 1254 ± 161 | 12.3 ± 2.0 | 8.1 ± 3.2 | 14 | ||
D | 12.0 ± 3.6 | 14.4 ± 1.1 | 34.6 ± 5.8 | 1124 ± 183 | 12.2 ± 2.4 | 12.8 ± 4.7 | 5 | 5 | |
H-D | 12.0 ± 2.2 | 15.3 ± 0.6 | 33.8 ± 2.5 | 1065 ± 73 | 12.6 ± 1.2 | 10.8 ± 1.1 | 6 | ||
p value | 0.988 | <0.035 | <0.032 | <0.028 | 0.953 | <0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.C.; Song, Y.; Choi, W.; Ju, H.; Kang, W.-S.; Ahn, S.; Jung, Y.-G. Applying Electrical Resistance Tomography to Diagnose Trees Damaged by Surface Fire. Forests 2025, 16, 1504. https://doi.org/10.3390/f16101504
Lee KC, Song Y, Choi W, Ju H, Kang W-S, Ahn S, Jung Y-G. Applying Electrical Resistance Tomography to Diagnose Trees Damaged by Surface Fire. Forests. 2025; 16(10):1504. https://doi.org/10.3390/f16101504
Chicago/Turabian StyleLee, Kyeong Cheol, Yeonggeun Song, Wooyoung Choi, Hyoseong Ju, Won-Seok Kang, Sujung Ahn, and Yu-Gyeong Jung. 2025. "Applying Electrical Resistance Tomography to Diagnose Trees Damaged by Surface Fire" Forests 16, no. 10: 1504. https://doi.org/10.3390/f16101504
APA StyleLee, K. C., Song, Y., Choi, W., Ju, H., Kang, W.-S., Ahn, S., & Jung, Y.-G. (2025). Applying Electrical Resistance Tomography to Diagnose Trees Damaged by Surface Fire. Forests, 16(10), 1504. https://doi.org/10.3390/f16101504